
sgcWebSockets 2024.4
April 2024

Documentation for CBuilder

Copyright © 2012-2024 eSeGeCe Software
info@esegece.com

 www.esegece.com.com

https:#nogo

SGCWEBSOCKETS

ii

Contents

Introduction .. 18

Overview.. 22

Editions.. 22

Installation .. 24

Install.. 27

Install Setup .. 27

Install Package .. 38

Install Errors.. 45

Configure Install ... 49

Install sgcIndy Package.. 51

Configure ZLib .. 57

QuickStart.. 58

Overview ... 58

QuickStart WebSockets ... 60

QuickStart HTTP ... 62

Threading Flow ... 64

Build... 66

Build OSX Application .. 67

Build Android Application ... 69

Build iOS Application ... 70

Fast Performance Server... 72

Memory Manager... 75

OpenSSL .. 78

OpenSSL Windows ... 80

OpenSSL OSX.. 82

SGCWEBSOCKETS

iii

OpenSSL Android ... 84

OpenSSL iOS ... 85

OpenSSL Own CA Certificates... 87

Indy .. 89

Topics ... 91

WebSocket Events.. 91

WebSocket Parameters Connection .. 92

Using inside a DLL.. 93

Web Browser Test .. 94

Custom Sub-Protocols ... 95

Authentication .. 96

Secure Connections ... 98

HeartBeat .. 100

WatchDog.. 101

Logs.. 102

HTTP... 103

Broadcast and Channels ... 104

Bindings... 105

Post Big Files ... 106

Compression... 108

Flash... 109

Custom Objects .. 110

Groups... 111

IOCP ... 113

EPOLL... 114

ALPN .. 115

Forward HTTP Requests .. 116

Quality Of Service... 117

Queues .. 119

Transactions ... 121

SGCWEBSOCKETS

iv

TCP Connections .. 122

SubProtocol .. 123

Throttle .. 124

Server-Sent Events ... 125

LoadBalancing .. 127

Files .. 128

Proxy.. 129

Fragmented Messages .. 130

Components .. 131

TsgcWebSocketClient.htm... 131

Connect WebSocket Server... 137

Client Open Connection .. 138

Client Close Connection .. 140

Client Keep Connection Open .. 141

Dropped Disconnections... 142

Connect TCP Server ... 143

Connections TIME_WAIT.. 144

WebSocket Redirections.. 145

Connect Secure Server .. 146

Certificates OpenSSL.. 147

Certificates SChannel... 148

SChannel Get Connection Info ... 150

Client Send Text Message ... 151

Client Send Binary Message.. 152

Client Send Text and Binary Message ... 153

Receive Text Messages .. 154

Receive Binary Messages .. 155

Client Authentication ... 156

Client Exceptions.. 158

Client WebSocket HandShake .. 159

SGCWEBSOCKETS

v

Client Register Protocol ... 160

Client Proxies .. 161

TsgcWebSocketServer ... 162

Server Start ... 169

Server Bindings... 170

Server Startup Shutdown.. 171

Server Keep Active ... 172

Server SSL.. 173

Server Verify Certificate... 175

Server Keep Connections Alive... 176

Server Plain TCP ... 177

Server Close Connection ... 178

Client Connections ... 179

Server Authentication.. 180

Server Send Text Message .. 182

Server Send Binary Message .. 183

Server Receive Text Message.. 184

Server Receive Binary Message.. 185

Server Read Headers from Client... 186

TsgcWebSocketHTTPServer .. 187

HTTP Server Requests ... 191

HTTP Dispatch Files.. 192

HTTP/2 Server... 193

HTTP/2 Server Push ... 194

HTTP/2 Alternate Service... 196

HTTP/2 Server Threads.. 197

HTTP 404 Error without Response Body ... 199

HTTP Server Sessions .. 200

TsgcWebSocketServer_HTTPAPI... 202

HTTPAPI URL Reservation ... 206

HTTPAPI Server SSL.. 208

SGCWEBSOCKETS

vi

Self-Signed Certificates.. 209

HTTPAPI Disable HTTP/2 ... 210

HTTPAPI Custom Headers... 211

HTTPAPI Send Text Response... 212

HTTPAPI Send File Response .. 213

HTTPAPI OnDisconnect not fired ... 214

TsgcWebSocketClient_WinHTTP ... 215

TsgcWebSocketLoadBalancerServer.. 217

TsgcWebSocketProxyServer.. 219

TsgcIWWebSocketClient .. 220

TsgcWSConnection.htm .. 222

Protocols ... 224

Protocols Javascript.. 226

Protocol MQTT.. 229

TsgcWSPClient_MQTT .. 231

Client MQTT Connect ... 237

Connect Mosquitto MQTT Servers ... 238

Client MQTT Sessions .. 239

Client MQTT Version .. 240

MQTT Publish Subscribe ... 241

MQTT Topics ... 242

MQTT Subscribe ... 243

MQTT Publish Message ... 244

MQTT Receive Messages ... 245

MQTT Publish and Wait Response ... 246

MQTT Clear Retained Messages... 247

Protocol AMQP ... 248

TsgcWSPClient_AMQP.. 249

Client AMQP Connect .. 252

Client AMQP Disconnect.. 253

AMQP Channels.. 254

SGCWEBSOCKETS

vii

AMQP Exchanges ... 256

AMQP Queues .. 258

AMQP Publish Messages... 261

AMQP Consume Messages ... 262

AMQP Get Messages.. 264

AMQP QoS... 265

AMQP Transactions.. 266

Protocol AMQP1 ... 268

TsgcWSPClient_AMPQ1 ... 269

Client AMQP1 Connect .. 272

Client AMQP1 Disconnect ... 273

Client AMQP1 Idle Timeout Connection.. 274

Client AMQP1 Connection State... 275

Client AMQP1 Authentication ... 276

AMQP1 Sessions... 277

AMQP1 Links... 279

AMQP1 Sender Links ... 280

AMQP1 Receiver Links ... 283

AMQP1 Send Message... 285

AMQP1 Read Message... 287

Protocol STOMP ... 288

TsgcWSPClient_STOMP.. 289

TsgcWSPClient_STOMP_RabbitMQ... 291

TsgcWSPClient_STOMP_ActiveMQ ... 293

Protocol AppRTC .. 296

TsgcWSPServer_AppRTC.. 297

Protocol WebRTC ... 298

TsgcWSPServer_WebRTC... 299

Protocol WebRTC Javascript.. 300

Protocol WAMP... 301

TsgcWSPServer_WAMP.. 302

SGCWEBSOCKETS

viii

TsgcWSPClient_WAMP ... 304

Protocol WAMP Javascript ... 306

Subscribers ... 309

Publishers.. 310

Simple RPC .. 311

RPC Progress Results ... 312

Protocol WAMP2 .. 314

TsgcWSPClient_WAMP2... 315

Protocol Default ... 320

TsgcWSPServer_sgc.. 322

TsgcWSPClient_sgc ... 324

TsgcIWWSPClient_sgc .. 326

Protocol Default Javascript.. 327

Protocol Dataset... 331

TsgcWSPServer_Dataset.. 332

TsgcWSPClient_Dataset ... 334

TsgcIWWSPClient_Dataset... 336

Protocol Dataset Javascript ... 337

Protocol Dataset Replicate Table ... 340

Protocol Dataset Notify Updates.. 341

Protocol Files .. 342

TsgcWSPServer_Files.. 343

TsgcWSPClient_Files... 345

TsgcWSMessageFile ... 347

How Send Files To Server.. 348

How Send Files To Clients ... 349

How Send Big Files ... 350

Protocol Presence .. 351

TsgcWSPServer_Presence ... 352

TsgcWSPresenceMessage ... 355

TsgcWSPClient_Presence... 356

SGCWEBSOCKETS

ix

Protocol Presence Javascript .. 359

APIs .. 362

API Binance ... 364

Binance Connect WebSocket API ... 370

Binance Subscribe WebSocket Channel .. 371

Binance Get Market Data .. 372

Binance Private REST API... 373

Binance Trade Spot.. 374

Binance Private Requests Time .. 376

Binance Withdraw.. 377

API Binance Futures... 378

API Binance Futures Trade.. 383

API SocketIO.. 384

API Coinbase Pro.. 386

Coinbase Pro Connect WebSocket API .. 391

Coinbase Pro Subscribe WebSocket Channel... 392

Coinbase Pro Get Market Data... 393

Coinbase Pro Private REST API ... 394

Coinbase Pro Private Requests Time... 395

Coinbase Pro Place Orders ... 396

Coinbase Pro SandBox Account ... 397

API SignalRCore .. 398

API SignalR .. 404

API Kraken... 407

API Kraken WebSockets Public ... 409

API Kraken WebSockets Private.. 415

API Kraken REST Public.. 418

API Kraken REST Private .. 420

API Kraken Futures... 423

API Kraken Futures WebSockets Public... 424

API Kraken Futures WebSockets Private ... 431

SGCWEBSOCKETS

x

API Kraken Futures REST Public ... 437

API Kraken Futures REST Private.. 439

API FTX ... 444

FTX Connect WebSocket API ... 452

FTX Subscribe WebSocket Channel.. 453

FTX Get market Data.. 454

FTX Private REST API .. 455

FTX Place Orders .. 456

API Pusher... 457

API Bitmex... 464

Bitmex Connect WebSocket API ... 467

Bitmex Subscribe WebSocket Channel.. 468

How Place Bitmex Order ... 469

API Bitfinex.. 471

API Kucoin ... 475

Kucoin Connect WebSocket API ... 481

Kucoin Subscribe WebSocket Channel .. 482

Kucoin Get Market Data .. 483

Kucoin Private REST API... 484

Kucoin Trade Spot.. 485

Kucoin Private Requests Time .. 487

API Kucoin Futures ... 488

Kucoin Futures Connect WebSocket API ... 493

Kucoin Futures Subscribe WebSocket Channel.. 494

Kucoin Futures Get Market Data.. 495

Kucoinf Futures Private REST API ... 496

Kucoin Futures Trade... 497

Kucoin Futures Private Requests Time.. 500

API 3Commas ... 501

API OKX.. 504

API XTB .. 509

SGCWEBSOCKETS

xi

API Bybit .. 512

API Blockchain .. 516

API Cex... 518

API Cex Plus .. 525

API Discord.. 529

API Whatsapp ... 532

WhatsApp Create App ... 536

WhatsApp Phone Number Id.. 538

WhatsApp Token .. 539

WhatsApp Webhook .. 540

WhatsApp Security ... 541

WhatsApp Send Messages .. 542

WhatsApp Send Interactive Messages... 545

WhatsApp Send Template Messages... 549

WhatsApp Receive Messages and Status Notifications... 551

WhatsApp Send Files ... 553

WhatsApp Download Media ... 555

API Telegram... 556

Send Telegram Message With Inline Buttons... 564

Send Telegram Message With Buttons.. 565

Send Telegram Message Bold .. 566

Telegram Chat not found as Bot .. 567

Telegram Sponsored Messages ... 568

Send Telegram Invoice Message .. 569

Telegram Get SuperGroup Members .. 570

Add Telegram Proxy... 571

Register Telegram User ... 572

RCON ... 573

CryptoHopper... 574

RTCMultiConnection .. 579

WebPush ... 581

SGCWEBSOCKETS

xii

TsgcWSAPIServer_WebPush ... 582

TsgcWebPush_Client.. 584

Extensions... 585

PerMessage-Deflate... 586

Deflate-Frame... 587

OpenAI... 588

OpenAI Moderation ... 592

OpenAI Chat.. 593

OpenAI Edit ... 594

OpenAI Audio.. 595

OpenAI Moderation ... 596

OpenAI Applications .. 597

OpenAI Audio.. 598

TsgcAudioRecorderMCI ... 599

TsgcAudioPlayerMCI .. 600

TsgcTextToSpeechSystem... 601

TsgcTextToSpeechGoogle ... 602

TsgcTextToSpeechAmazon ... 603

TsgcAIOpenAIChatBot ... 604

TsgcAIOpenAITranslator.. 606

TsgcAIOpenAIEmbeddings.. 608

TsgcAIDatabaseVectorFile ... 610

TsgcAIDatabaseVectorPinecone... 611

Embeddings Create Vectors.. 612

Embeddings ChatBot ... 613

Pinecone.. 614

IoT .. 617

IoT_Amazon_MQTT_Client.htm .. 618

IoT Azure MQTT Client ... 625

HTTP... 630

HTTP2 .. 631

SGCWEBSOCKETS

xiii

TsgcHTTP2Client... 632

Request HTTP/2 Method ... 638

HTTP/2 Server Push ... 639

HTTP/2 Download File ... 640

HTTP/2 Partial Responses ... 641

HTTP/2 Headers ... 642

Client Close Connection .. 643

Client Keep Connection Active.. 644

HTTP/2 Reason Disconnection ... 645

Client Pending Requests.. 646

Client Authentication ... 647

HTTP/2 and OAuth2 ... 648

TsgcHTTP2ConnectionClient... 649

TsgcHTTP2RequestProperty ... 650

TsgcHTTP2ResponseProperty... 651

Apple Push Notifications ... 652

Generate a Remote Notification APNs .. 653

Sending Notification Requests to APNs... 654

Token-Based Connection to APNs ... 655

Certificate-Based Connection to APNs .. 656

HTTP1 .. 658

OAuth2 .. 661

TsgcHTTP_OAuth2_Client .. 662

TsgcHTTP_OAuth2_Client_Google .. 668

TsgcHTTP_OAuth2_Client_Microsoft.. 669

TsgcHTTP_OAuth2_Server ... 670

OAuth2 Server Example .. 673

OAuth2 Customize Sign-In HTML ... 677

OAuth2 Server Endpoints.. 678

OAuth2 Register Apps ... 679

OAuth2 Recover Access Tokens ... 680

SGCWEBSOCKETS

xiv

OAuth2 Server Authentication.. 681

OAuth2 None Authenticate URLs... 682

TsgcHTTP_OAuth2_Server_Provider .. 683

OAuth2 Provider Azure AD ... 685

OAuth2 Provider Private Endpoints... 686

OAuth2 Provider Authentication.. 687

OAuth2 Provider Requests.. 689

JWT ... 690

TsgcHTTP_JWT_Client ... 692

TsgcHTTP_JWT_Server.. 695

Amazon SQS ... 697

Google OAuth2 Keys .. 702

Google Service Accounts ... 708

Google Cloud Pub/Sub .. 712

Google Calendar... 721

Google Calendar Sync Calendars ... 727

Google Calendar Sync Events ... 728

Google Calendar RefreshToken.. 729

Google Calendar Service Account .. 730

TsgcUDPClient .. 731

TsgcUDPServer ... 733

STUN .. 735

TsgcSTUNClient .. 736

STUN Client UDP Retransmissions... 739

STUN Client Long Term Credentials... 740

STUN Client Attributes... 741

TsgcSTUNServer ... 742

STUN Server Long Term Credentials ... 744

STUN Server Alternate Server... 745

TURN.. 746

TsgcTURNClient .. 747

SGCWEBSOCKETS

xv

TURN Client Allocate IP Address... 751

TURN Client Create Permissions .. 752

TURN Client Send Indication... 753

TURN Client Channels.. 754

TsgcTURNServer... 755

TURN Server Long Term Credentials ... 758

TURN Server Allocations.. 759

ICE .. 760

TsgcICEClient... 761

ICE Gather Candidates... 763

ICE Pair Candidates.. 764

TsgcRTCPeerConnection ... 765

RTCPeerConnection WebSocket Server .. 767

RTCPeerConnection WebSocket Client.. 768

RTCPeerConnection STUN TURN ... 769

RTCPeerConnection Signaling .. 770

RTCPeerConnection ICE... 771

RTCPeerConnection DTLS ... 772

RTCPeerConnection Data.. 773

Datasnap ... 774

TsgcWSHTTPWebBrokerBridgeServer ... 775

TsgcWSHTTP2WebBrokerBridgeServer... 777

TsgcWSServer_HTTPAPI_WebBrokerBridge .. 778

OpenAPI ... 779

OpenAPI .. 779

OpenAPI Parser Pascal .. 780

OpenAPI Additional Properties... 785

OpenAPI Client ... 787

OpenAPI Amazon AWS .. 789

OpenAPI Amazon AWS Credentials.. 795

SGCWEBSOCKETS

xvi

OpenAPI Amazon AWS S3 ... 797

OpenAPI Google Cloud.. 798

OpenAPI Google Cloud OAuth2.. 803

OpenAPI Google Cloud Service Accounts.. 806

OpenAPI Google Cloud PubSub ... 811

OpenAPI Google Cloud Calendar ... 812

OpenAPI Microsoft ... 813

OpenAPI Microsoft Tenant.. 818

OpenAPI Microsoft Register Application ... 819

OpenAPI Microsoft OAuth2 Code... 822

OpenAPI Microsoft OAuth2 Credentials.. 824

OpenAPI Microsoft Graph... 826

APIs .. 827

AbstractApi Geolocation.. 828

Demos .. 829

Server Chat.. 829

Client Chat... 831

Client.. 832

Client MQTT .. 833

Client SocketIO ... 835

Server Monitor.. 836

Server Snapshots ... 839

Client Snapshots... 840

Upload File .. 841

Server Authentication.. 843

KendoUI_Grid.. 844

ServerSentEvents ... 846

Server WebRTC... 847

Server AppRTC.. 848

Telegram Client .. 850

SGCWEBSOCKETS

xvii

Third-parties.. 852

Coturn.. 852

Reference... 854

WebSockets... 854

HTTP/2 ... 855

JSON... 856

JSON-RPC 2.0... 857

WAMP .. 858

WebRTC ... 859

MQTT ... 860

Server-Sent Events ... 861

OAuth2 .. 862

JWT ... 863

STUN .. 864

AMQP... 865

TURN.. 866

License ... 867

License... 867

Index... 869

PDF-Back-Cover ... 874

INTRODUCTION

18

•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•

Introduction
WebSockets represent a long-awaited evolution in client/server web technology. They allow a long-established sin
gle TCP socket connection to be established between the client and server, allowing bi-directional, full-duplex mes
sages to be distributed instantly with little overhead, resulting in a very low latency connection.

Both the WebSocket API and the well as native WebSocket support in browsers such as Google Chrome, Firefox,
Opera and a prototype Silverlight to JavaScript bridge implementation for Internet Explorer, there are now Web
Socket library implementations in Objective-C, .NET, Ruby, Java, node.js, ActionScript and many other languages.

The Internet wasn't designed to be so dynamic. It was designed to be a collection of HyperText Markup Language
(HTML) pages, linked together to form a conceptual web of information. Over time, static resources increased in
number and richer elements such as images became part of the web fabric. Server technologies evolved to allow
dynamic server pages - pages whose content is generated in response to a request.

Soon the need for more dynamic web pages led to the availability of Dynamic HyperText Markup Language
(DHTML), all thanks to JavaScript (let's pretend VBScript never existed). In the years that followed, we saw cross-
frame communication in an attempt to avoid page reloads, followed by in-frame HTTP polling. Things started to get
interesting with the introduction of LiveConnect, then the forever frame technique, and finally, thanks to Microsoft,
we ended up with the XMLHttpRequest object and thus Asynchronous JavaScript and XML (AJAX). AJAX in turn
enabled XHR Long-Polling and XHR Streaming. But none of these provided a truly standardised, cross-browser so
lution for real-time, bi-directional communication between a server and a client.

Finally, WebSockets are a standard for bi-directional, real-time communication between servers and clients. Initially
in web browsers, but ultimately between any server and any client. The standards-first approach means that we as
developers can finally create functionality that works consistently across multiple platforms. Connection limitations
are no longer an issue as WebSockets represent a single TCP socket connection. Cross-domain communication
has been considered from day one and is handled within the connection handshake. This means that services like
Pusher can easily use them to provide a massively scalable real-time platform that can be used by any website,
web, desktop or mobile application.

WebSockets don't make AJAX obsolete, but they do replace Comet (HTTP Long-polling/HTTP Streaming) as the
solution of choice for true real-time functionality. AJAX should still be used for short-lived web service calls, and
when we eventually see a good uptake in CORS supporting web services, it will become even more useful. Web
Sockets should now be the standard for real-time functionality, as they provide low-latency, bi-directional communi
cation over a single connection. Even if a web browser doesn't natively support the WebSocket object, there are
polyfill fallback options that almost guarantee that any web browser can actually make a WebSocket connection.

sgcWebSockets is a complete package providing access to WebSockets protocol, allowing to create WebSockets
Servers, Intraweb Clients or WebSocket Clients in VCL, Firemonkey, Linux and FreePascal applications.

Fully functional multithreaded WebSocket server according to RFC 6455.
Supports Firemonkey (Windows and MacOS).
Supports NEXTGEN Compiler (IOS and Android Support).
Supports LINUX Compiler.
Supports Lazarus / FreePascal.
Supports CBuilder.
Supports Chrome, Firefox, Safari, Opera and Internet Explorer (including iPhone, iPad and iPod)
Supports Microsoft HTTP Server API and IOCP for high-performance Windows Servers. HTTP/2 protocol
is supported.
Multiple Threads Support. Indy Servers support IOCP(Windows), EPOLL(Linux) or default Indy one thread
per connection model.
Supports Message Compression using PerMessage_Deflate extension RFC 7692.
Supports Text and Binary Messages.
Supports Server and Client Authentication. OAuth2 is fully supported.
Server component providing WebSocket and HTTP/2 connections through the same port.
Proxy Server component allowing to Web Browsers to connect to any TCP server.
WebBroker Server which supports DataSnap, HTTP/2 and WebSocket connections using the same port.
Load Balancing Server.
Client WebSocket based on WinHTTP API.
Client WebSocket supports connections through Socket.IO Servers.

INTRODUCTION

19

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

Build AI Powered applications with support for OpenAI, Pinecone and more.
HTTP/2 protocol is fully supported (client and Server components).
WhatsApp and Telegram clients.
STUN and TURN protocols are fully supported (client and Server components).
Supports Server-Sent Events (Push Notifications) over HTTP Protocol.
WatchDog and HeartBeat built-in support.
Client WebSocket supports connections through HTTP Proxy Servers and SOCKS Proxy Servers.
Events Available: OnConnect, OnDisconnect, OnMessage, OnError, OnHandshake
Built-in sub-protocols: JSON-RPC 2.0, Dataset, Presence, WebRTC, MQTT (3.1.1 and 5.0), STOMP,
AMQP (0.9.1 and 1.0.0) and WAMP (1.0 and 2.0)
Client Built-in API: Blockchain, Bitfinex, Pusher, SignalR Core, Huobi, CEX, Bitmex and Binance.
Support for JSON parsers: Delphi JSON and XSuperObject.
Built-in Javascript libraries to support browser clients.
Easy to setup
Javascript Events for full control
Async Events using Ajax
SSL/TLS Support for Server / Client Components (OpenSSL libraries required). OpenSSL 1.1.1 and 3.0.0 li
braries are supported. Client supports SChannel for Windows.

Find below a list of the components included in sgcWebSockets Library.

◦

◦

◦

◦

◦

sgcWebSockets

TsgcWebSocketClient: WebSocket Client based on Indy Library.

TsgcWebSocketServer: WebSocket Server based on Indy Library

TsgcWebSocketHTTPServer: WebSocket + HTTP Server based on Indy Library.

TsgcWebSocketServer_HTTPAPI: Fast Performance WebSocket + HTTP Server based on

HTTP.SYS Microsoft HTTP API.

TsgcWebSocketClient_WinHTTP: WebSocket Client based on WinHTTP Library.

1

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

sgcWebSocket APIs

TsgcWSAPI_Binance: Binance Spot Client, supports WebSocket + REST APIs.

TsgcWSAPI_Binance_Futures: Binance Futures Client, supports WebSocket + REST APIs.

TsgcWSAPI_SocketIO: Socket.IO Client.

TsgcWSAPI_Coinbase:Coinbase Pro Client, supports WebSocket + REST APIs.

TsgcWSAPI_Bitmex: Bitmex Client, supports WebSocket + REST APIs.

TsgcWSAPI_SignalR: SignalR WebSocket Client.

TsgcWSAPI_SignalRCore: SignalRCore WebSocket Client.

TsgcWSAPI_Pusher: Pusher WebSocket Client.

TsgcWSAPI_Kraken: Kraken Client API, supports WebSocket and REST Api.

TsgcWSAPI_Kraken_Futures: Kraken Futures Client API, supports WebSocket and REST Api.

TsgcWSAPI_Bitstamp: Bitstamp WebSocket Client.

TsgcWSAPI_Cex: Cex WebSocket Client.

TsgcWSAPI_FXCM: FXCM WebSocket Client.

TsgcWSAPI_Huobi: Huobi WebSocket Client.

TsgcWSAPI_ThreeCommas: ThreeCommas Client API.

TsgcWSAPI_Bitfinex: Bitfinex WebSocket API.

TsgcWSAPI_Discord: Discord WebSocket Client.

2

INTRODUCTION

20

◦ TsgcWSAPI_BlockChain: BlockChain WebSocket Client.

◦

◦

◦

◦

sgcWebSocket Libs

TsgcTDLib_Telegram: Telegram API Client.

TsgcWhatsApp_Client: WhatsApp Business Cloud Client.

TsgcHTTP_Cryptohopper: Cryptohopper Client API.

TsgcLib_RCON: RCON Client.

3

◦

◦

◦

◦

▪

▪

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

sgcWebSocket Protocols

TsgcWSPClient_MQTT: MQTT (3.1.1 and 5.0) Client. Supports WebSocket and Plain TCP Connec

tions.

TsgcWSPClient_AMQP1: AMQP 1.0.0 Client. Supports RabbitMQ Brokers.

TsgcWSPClient_AMQP: AMQP 0.9.1 Client. Supports RabbitMQ Brokers.

TsgcWSPClient_STOMP: STOMP Client, supports WebSocket and Plain TCP Connections.

TsgcWSPClient_STOMP_ActiveMQ: STOMP Client for ActiveMQ Broker.

TsgcWSPClient_STOMP_RabbitMQ: STOMP Client for RabbitMQ Broker.

TsgcWSPClient_WAMP: WAMP 1.0 Client Protocol.

TsgcWSPServer_WAMP: WAMP 1.0 Server Protocol.

TsgcWSPClient_WAMP2: WAMP 2.0 Client Protocol.

TsgcWSPServer_AppRTC: WebRTC Server based on AppRTC Google Project.

TsgcWSPServer_WebRTC: WebRTC Server Protocol.

TsgcWSPClient_sgc: WebSocket Client SGC Protocol based on JSON RPC.

TsgcWSPServer_sgc: WebSocket Server SGC Protocol based on JSON RPC.

TsgcWSPClient_Files: WebSocket File Transfer Client Protocol.

TsgcWSPServer_Files: WebSocket File Transfer Server Protocol.

TsgcWSPClient_Dataset: WebSocket Client Dataset Synchronization Protocol.

TsgcWSPServer_Dataset: WebSocket Server Dataset Synchronization Protocol.

TsgcWSPClient_Presence: WebSocket Client Presence Protocol.

TsgcWSPServer_Presence: WebSocket Server Presence Protocol.

4

◦

◦

◦

◦

◦

◦

◦

◦

◦

sgcWebSockets HTTP

TsgcHTTP1Client:HTTP 1.0 Client based on Indy TIdHTTP.

TsgcHTTP2Client: HTTP 2.0 Client.

TsgcHTTP_JWT_Client: JWT (JSON WEB TOKEN) Client.

TsgcHTTP_JWT_Server: JWT (JSON WEB TOKEN) Server.

TsgcHTTP_OAuth2_Client: OAuth 2.0 Client.

TsgcHTTP_OAuth2_Server: OAuth 2.0 Server.

TsgcHTTPAWS_SQS_Client: Amazon AWS SQS Client.

TsgcHTTPGoogleCloud_PubSub_Client: Google Cloud Pub/Sub Client.

TsgcHTTPGoogleCloud_Calendar_Client: Google Calendar Client.

5

◦

◦

sgcWebSockets IoT

TsgcIoTAmazon_MQTT_Client: Amazon MQTT IoT Core Client.

TsgcIoTAzure_MQTT_Client: Azure IoT MQTT Client.

6

INTRODUCTION

21

◦

◦

◦

◦

◦

◦

◦

sgcWebSockets P2P

TsgcUDPCLient: UDP Client.

TsgcUDPServer: UDP Server.

TsgcSTUNClient: STUN Client.

TsgcSTUNServer: STUN Server.

TsgcTURNClient: STUN / TURN Client.

TsgcTURNServer: STUN / TURN Server.

TsgcICEClient: ICE Client.

7

◦

◦

◦

sgcWebSockets DataSnap

TsgcWSHTTPWebBrokerBridgeServer: DataSnap Server Replacement with HTTP + WebSockets

Support.

TsgcWSHTTP2WebBrokerBridgeServer: DataSnap Server Replacement with HTTP + HTTP/2 +

WebSockets Support.

TsgcWSServer_HTTPAPI_WebBrokerBridge: DataSnap Server Replacement based on HTTP.SYS

Microsoft Server.

8

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

sgcWebSockets AI

TsgcAIOpenAIChatBot: Build a ChatBot with Voice Commands.

TsgcAIOpenAITranslator: Real-Time translation.

TsgcAudioRecorderMCI: Record Audio using MCI.

TsgcAudioPlayerMCI: Play Audio using MCI.

TsgcTextToSpeechSystem: Text-To-Speech using operating system default.

TsgcTextToSpeechGoogle: TextToSpeech using Google Cloud.

TsgcTextToSpeechAmazon: TextToSpeech using Amazon AWS.

TsgcAIOpenAIEmbeddings: allows to use your custom data to build AI applications.

TsgcAIDatabaseVectorFile: stores the vectors in a plain text file.

TsgcAIDatabaseVectorPinecone: supports pinecone vector database.

9

OVERVIEW

22

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

Versions Support
Delphi supported IDE

Delphi 7 (* only supported if upgraded to Indy 10, Intraweb is not supported)
Delphi 2007
Delphi 2009
Delphi 2010
Delphi XE
Delphi XE2
Delphi XE3
Delphi XE4
Delphi XE5
Delphi XE6
Delphi XE7
Delphi XE8
Delphi 10 Seattle
Delphi 10.1 Berlin
Delphi 10.2 Tokyo
Delphi 10.3 Rio
Delphi 10.4 Sydney
Delphi 11 Alexandria
Delphi 12 Athens

CBuilder supported IDE

CBuilder 2007
CBuilder 2010
CBuilder XE
CBuilder XE2
CBuilder XE3
CBuilder XE4
CBuilder XE5
CBuilder XE6
CBuilder XE7
CBuilder XE8
CBuilder 10 Seattle
CBuilder 10.1 Berlin
CBuilder 10.2 Tokyo
CBuilder 10.3 Rio
CBuilder 10.4 Sydney
CBuilder 11 Alexandria
CBuilder 12 Athens

FreePascal supported IDE

Lazarus

Trial Version

Compiled *.dcu files provided with free version are using default Indy and Intraweb version. If you have upgraded
any of these packets, probably it won't work or you need to buy full source code version.

OVERVIEW

23

Indy Package

Some components use Indy as TCP/IP library (like TsgcWebSocketClient or TsgcWebSocketServer), this means
that Indy is needed in order to install sgcWebSockets Package. By default, sgcWebSockets uses Indy library built-
in with Rad Studio, but we provide a custom indy version which has more features than Indy: support for OpenSSL
API 1.1, OpenSSL 3.0, ALPN protocol...

OVERVIEW

24

Installation
Delphi / CBuilder / Lazarus

1. Unzip the files included into a directory {$DIR}

2. From Delphi\CBuilder:

Add the directory where the files are unzipped {$DIR} to the Delphi\CBuilder library path under Tools, Envi
ronment options, Directories

All Delphi\CBuilder Versions

Add the directory {$DIR}\source to the library path

For specific Delphi version

Delphi 7 : Add the directory {$DIR}\libD7 to the library path
Delphi 2007 : Add the directory {$DIR}\libD2007 to the library path
Delphi 2009 : Add the directory {$DIR}\libD2009 to the library path
Delphi 2010 : Add the directory {$DIR}\libD2010 to the library path
Delphi XE : Add the directory {$DIR}\libDXE to the library path
Delphi XE2 : Add the directory {$DIR}\libDXE2\$(Platform) to the library path
Delphi XE3 : Add the directory {$DIR}\libDXE3\$(Platform) to the library path
Delphi XE4 : Add the directory {$DIR}\libDXE4\$(Platform) to the library path
Delphi XE5 : Add the directory {$DIR}\libDXE5\$(Platform) to the library path
Delphi XE6 : Add the directory {$DIR}\libDXE6\$(Platform) to the library path
Delphi XE7 : Add the directory {$DIR}\libDXE7\$(Platform) to the library path
Delphi XE8 : Add the directory {$DIR}\libDXE8\$(Platform) to the library path
Delphi 10 : Add the directory {$DIR}\libD10\$(Platform) to the library path
Delphi 10.1 : Add the directory {$DIR}\libD10_1\$(Platform) to the library path
Delphi 10.2 : Add the directory {$DIR}\libD10_2\$(Platform) to the library path
Delphi 10.3 : Add the directory {$DIR}\libD10_3\$(Platform) to the library path
Delphi 10.4 : Add the directory {$DIR}\libD10_4\$(Platform) to the library path
Delphi 11 : Add the directory {$DIR}\libD11\$(Platform) to the library path

For specific CBuilder version

C++ Builder 2010 : Add the directory {$DIR}\libD2010 to the library path
C++ Builder XE : Add the directory {$DIR}\libDXE to the library path
C++ Builder XE2 : Add the directory {$DIR}\libDXE2\$(Platform) to the library path
C++ Builder XE3 : Add the directory {$DIR}\libDXE3\$(Platform) to the library path
C++ Builder XE4 : Add the directory {$DIR}\libDXE4\$(Platform) to the library path
C++ Builder XE5 : Add the directory {$DIR}\libDXE5\$(Platform) to the library path
C++ Builder XE6 : Add the directory {$DIR}\libDXE6\$(Platform) to the library path
C++ Builder XE7 : Add the directory {$DIR}\libDXE7\$(Platform) to the library path
C++ Builder XE8 : Add the directory {$DIR}\libDXE8\$(Platform) to the library path
C++ Builder 10 : Add the directory {$DIR}\libD10\$(Platform) to the library path
C++ Builder 10.1 : Add the directory {$DIR}\libD10_1\$(Platform) to the library path
C++ Builder 10.2 : Add the directory {$DIR}\libD10_2\$(Platform) to the library path
C++ Builder 10.3 : Add the directory {$DIR}\libD10_3\$(Platform) to the library path
C++ Builder 10.4 : Add the directory {$DIR}\libD10_4\$(Platform) to the library path
C++ Builder 11 : Add the directory {$DIR}\libD11\$(Platform) to the library path

For all CBuilder versions, Add dcp\$(Platform) to the library path (contains .bpi files)

OVERVIEW

25

3. From Delphi

Choose
File, Open and browse for the correct Packages\sgcWebSockets.groupproj (First compile
sgcWebSocketsX.dpk and then install dclsgcWebSocketsX.dpk)

packages files for Delphi

sgcWebSocketsD7.groupproj : Delphi 7
sgcWebSocketsD2007.groupproj : Delphi 2007
sgcWebSocketsD2009.groupproj : Delphi 2009
sgcWebSocketsD2010.groupproj : Delphi 2010
sgcWebSocketsDXE.groupproj : Delphi XE
sgcWebSocketsDXE2.groupproj : Delphi XE2
sgcWebSocketsDXE3.groupproj : Delphi XE3
sgcWebSocketsDXE4.groupproj : Delphi XE4
sgcWebSocketsDXE5.groupproj : Delphi XE5
sgcWebSocketsDXE6.groupproj : Delphi XE6
sgcWebSocketsDXE7.groupproj : Delphi XE7
sgcWebSocketsDXE8.groupproj : Delphi XE8
sgcWebSocketsD10.groupproj : Delphi 10
sgcWebSocketsD10_1.groupproj : Delphi 10.1
sgcWebSocketsD10_2.groupproj : Delphi 10.2
sgcWebSocketsD10_3.groupproj : Delphi 10.3
sgcWebSocketsD10_4.groupproj : Delphi 10.4
sgcWebSocketsD11.groupproj : Delphi 11

4. From CBuilder

Choose
File, Open and browse for the correct Packages\sgcWebSockets.groupproj (First compile
sgcWebSocketsX.dpk and then install dclsgcWebSocketsX.dpk)

packages files for CBuilder

sgcWebSocketsC2010.groupproj : C++ Builder 2010
sgcWebSocketsCXE.groupproj : C++ Builder XE
sgcWebSocketsCXE2.groupproj : C++ Builder XE2
sgcWebSocketsCXE3.groupproj : C++ Builder XE3
sgcWebSocketsCXE4.groupproj : C++ Builder XE4
sgcWebSocketsCXE5.groupproj : C++ Builder XE5
sgcWebSocketsCXE6.groupproj : C++ Builder XE6
sgcWebSocketsCXE7.groupproj : C++ Builder XE7
sgcWebSocketsCXE8.groupproj : C++ Builder XE8
sgcWebSocketsC10.groupproj : C++ Builder 10
sgcWebSocketsC10_1.groupproj : C++ Builder 10.1
sgcWebSocketsC10_2.groupproj : C++ Builder 10.2
sgcWebSocketsC10_3.groupproj : C++ Builder 10.3
sgcWebSocketsC10_4.groupproj : C++ Builder 10.4
sgcWebSocketsC11.groupproj : C++ Builder 11

5. From Lazarus

Choose : File, Open and browse Packages\sgcWebSocketsLazarus.lpk (First compile and then install)

OVERVIEW

26

Compiled files are located on Lazarus Directory, inside this, there is a Indy directory with latest Indy source
version.

Tested with Lazarus 2.0.6 and Indy 10.5.9.4930

6. Demos

All demos are available in subdirectory Demos. Just open the project and run it. Intraweb demos may need
to modify some units due to different Intraweb Versions.

INSTALL

27

•
•
•

•

Install Setup
*Requires Windows Vista as minimum (Windows 2000, XP and Server 2003 are not supported).

If you use the Windows Setup to install sgcWebSockets library, the installation is guided and very simple. If there is
any error while installing, please refer to Install Errors page and you can try to install the package manually.

Trial Setup

Execute the Trial Installer.
The Trial setup required Admin privileges.
The installer will show a list of Delphi / CBuilder / Rad Studio versions and by default the downloaded ver
sion will be enabled. If this version is NOT detected by the installer, the installer will extract the files but won't
try to compile. Please refer to install the package manually.

The next page shows the Platforms that can be installed, only those platforms detected by the installer are
enabled.

INSTALL

28

•
•

•

The next page shows the license agreement which must be accepted to install the trial.
After accept the license agreement, it shows the Components that will be installed, by default all package,
compiled dcus, demos and help files will be installed. You can customize if the Help files and Demos are in
stalled or not

Finally, it will extract the files, compile and install the package and register the required paths in the IDE.

INSTALL

29

•
•

•

•
◦

◦

◦

Customers Setup

The users who have purchase a license can install the sgcWebSockets Library using the setup. Find below step by
step how install the package.

Execute the Installer.
The installer runs with the lowest privileges (if runs as admin, it can't be installed in network drives). If the
destination install requires admin privileges, run the setup as administrator.
First you must set your username/password of your private eSeGeCe account. This only must be entered
one time, the next time you use the setup, the installer will read the latest value.

There are 3 options:

Use Existing License: if this version has been already installed, the option will be selected by de
fault. It will use the latest configuration for this version.
New / Update License: if this version has not been installed previously, this option will be selected by
default. It will connect to the Server License to get the license information. If you've upgraded your li
cense recently, you can select this option to update the license to install.
Install Offline: if the machine hasn't internet access, select this option to activate your license.

Generate Key

This option generates a key that will be used to activate the license.

INSTALL

30

Copy the key and access to your private online account: www.esegece.com/my-account/subscriptions.

Select the subscription to activate and paste the key.

INSTALL

31

•

Activate License

If the request is correct it will return a license that must be copied in the setup.

If the license has been activated successfully, select if you want to install in Delphi, CBuilder or Rad Studio
IDE. There is a check to extract the required lazarus files (Lazarus requires to install the package manually).

INSTALL

32

•

◦
◦
◦

•
◦
◦

◦

◦

◦

◦

◦

There are some options that can be customized every time you use the installer, press the button Options to
access these properties.

Build Packages: if selected, the installer will try to build the packages.
Register Paths IDE: if selected, the installer will register the required library paths in the IDE.
Register BPLs IDE: if selected and the installer has built the packages successfully, the installer will
register the design-time package in the IDE.

The following options are only available for licenses with source code:

Build Intraweb: if selected, the installer will install the required Intraweb files (disabled by default).
Build CBuilder Dproj: if selected, the installer will build the CBuilder package using the sgcWeb
Sockets Delphi package and generating all required CBuilder files.
Use Custom Indy: (only Enterprise), if selected, the sgcWebSockets will use the Custom Indy Ver
sion (with support for openSSL 1.1 and 3.0, TLS 1.3, ALPN...)
sgcIndy Installed: if the sgcIndy package has been installed and you want to use this package to
compile sgcWebSockets package, check this option.
sgcIndy Compatibility Mode: if the sgcIndy package has been installed in Compatibility Mode (be
cause other packages are using Indy, like DevExpress), check this option.
Always use of the following OpenSSL API Versions: check this option if you want to force the use
of OpenSSL 1.1.1 or OpenSSL 3.0.0 APIs
Debug Mode: saves in a log file the debug message, dont' use this mode in production environment.

INSTALL

33

•

•

Now you can select which IDE Versions you want to install. Only those IDE versions that the installer detect
as installed, will be available.

Next step is select the Platforms.

INSTALL

34

•

•

Select the folder where the package will be installed. If you reinstall the package, the installer will select by
default the same folder selected in the previous install.

Select which components to install. The registered customers have an IDE expert that allows to connect to
the eSeGeCe account from the IDE, know if there are available updates, direct access to helpdesk... and
more.

INSTALL

35

•

•

•
•
•

Finally, it will extract the files, compile and install the package and register the required paths in the IDE.

Install Errors

MsBuild raises an error if the Length of the Library Path is too high, to fix this issue, try to delete unused
paths from the library path. MsBuild has a limitation of 32K characters.

Install Command Line Parameters

The following commands are supported by the installer.

/SILENT
The wizard and the background window are not displayed but the installation progress is

/VERYSILENT
When a setup is very silent this installation progress window is not displayed.

/EXTRACT
The package is not installed only extracted. The path where it's installed can be customized using /
EXTRACT=path-to-folder
Use this parameter and /SILENT if you only want to extract the files without user interaction.

/IDE
This parameter allows to set which do you want to install. Set one of the following:

delphi
cbuilder
radstudio

Additionally you can add Lazarus.

Example: install delphi and lazarus.

INSTALL

36

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

 /ide=delphi-lazarus.

/VERSIONS
Using this parameter you can set which Rad Studio versions do you want to install. Multiple options are allowed:

D7
D2007
D2009
D2010
DXE
DXE2
DXE3
DXE4
DXE5
DXE6
DXE7
DXE8
D10
D10_1
D10_2
D10_3
D10_4
D11
D12

Use the value "All" to install all possible versions.

Example: install Delphi 10 and Delphi 12.

 /versions=D10-D12

/PLATFORMS
Using this parameter you can set which Rad Studio Personalities do you want to install. Multiple options are al
lowed:

Win32
Win64
Android
Android64
iOSDevice32
iOSDevice64
iOSSimulator
iOSSimARM64
OSX32
OSX64
OSXARM64
Linux64

Use the value "All" to install all possible platforms

Example: install Win32 and Win64.

 /platforms=Win32-Win64

IDE Expert

If the IDE Expert is installed, you will find the following menu options:

INSTALL

37

•

•

•

MyAccount: direct access to the Downloads menu (where you can download the latest version of beta) and
to the Subscriptions, to manage your license or renew an expired license.
Support: direct access to HelpDesk or Forum with automatic login. Documentation and Contact Us form is
available too.
Options: in this menu you can configure the username/password of your account. Select the default brows
er and check if there are any updates available.

INSTALL

38

Install Package Manually
Follow next steps to install sgcWebSockets package, screenshots use Delphi 10.3 version.

1. Open sgcWebSocketsD10_3 group project.

2. Now we must compile first runtime packages (name starts with sgcWebSockets). There is one package for
every target platform and this depends of Delphi version, so select target platform one by one and build every
package.

3. Select win64 as Target platform and build package.

INSTALL

39

4. Select Android as Target Platform and build package.

5. Select iOS Device 32 as Target Platform and build package.

INSTALL

40

6. Select iOS Device 64 as Target Platform and build package.

7. Select iOS Device Simulator as Target Platform and build package.

INSTALL

41

8. Select MacOS 32 as Target Platform and build package.

9. Select Win32 as Target Platform and build package.

INSTALL

42

10. Once all runtime packages are compiled, select design time package (name starts with dcl) and first build and
then install (design time packages only have Win32 as target platform).

INSTALL

43

11. If installation is successful you will see a message with all components installed.

12. Then, you only must to add the Directory where are the compiled files to your Rad Studio Library Path. You
must add this for every Target Platform (win32, win64, osx64...)

INSTALL

44

* If you are using the Datasnap servers, these are NOT included in sgcWebSockets package because cannot be
installed, are only runtime components. In this case, you must add to your library path the Source folder too.

INSTALL

45

Install Errors
Sometimes you may get some errors installing components.

Intraweb package not found

sgcWebsockets is compiled using the default Intraweb version provided with Delphi. If you don't have Intraweb in
stalled, you can modify sgcVer.inc file (located in Source folder).
Search your Delphi version and comment all compiler defines for Intraweb (starts with IW). Example: for Delphi
10.4 comment all compiler defines for Intraweb

{$IFDEF VER340} { Delphi 10.4 }
 {$DEFINE D2006}
 {$DEFINE D2007}
 {$DEFINE D2009}
 {$DEFINE D2010}
 {$DEFINE DXE}
 {$DEFINE DXE2}
 {$DEFINE DXE3}
 {$DEFINE DXE4}
 {$DEFINE DXE5}
 {$DEFINE DXE6}
 {$DEFINE DXE7}
 {$DEFINE DXE8}
 {$DEFINE D10}
 {$DEFINE D10_1}
 {$DEFINE D10_2}
 {$DEFINE D10_3}
 {$DEFINE D10_4}
 {$DEFINE INDY10_1}
 {$DEFINE INDY10_2}
 {$DEFINE INDY10_5_5}
 {$DEFINE INDY10_5_7}
 {$DEFINE INDY10_5_8}
 {$DEFINE INDY10_6}
 {$DEFINE INDY10_6_0_5122}
 {$DEFINE INDY10_6_0_5169}
 {$DEFINE INDY10_6_2_5263}
 {$DEFINE INDY10_6_2_5366}
 {$DEFINE INDY10_6_2_D10_4}

 {$IFNDEF BCB}
 {$IFNDEF MACOS}
 {$IFNDEF ANDROID}
 {.$DEFINE IWIX}
 {.$DEFINE IWXI}
 {.$DEFINE IWXIV}
 {.$DEFINE IWXV}
 {$ENDIF}
 {$ENDIF}
 {$IFNDEF NEXTGEN}
 {$DEFINE SGC_JSON_INTF}
 {$ENDIF}
 {$ENDIF}
{$ENDIF}

If Intraweb is installed but it's a different version from the default that comes with Delphi, maybe your Intraweb
package has a different name. Then open sgcWebSockets runtime package and change Intraweb name in project
source.

INSTALL

46

Indy Package not found

sgcWebSockets requires Indy to install components in your IDE. Trial installation is compiled against Indy library
provided with Delphi / CBuilder, so if you get a message like this:

[DCC Fatal Error] dclsgcWebSocketsDX.dpk(31): E2202 Required package 'IndyCore' not found

Most probably you have a newer Indy version, so in order to install trial you must delete this version and install
built-in indy version using Delphi / CBuilder setup.

If you have full source code, then you only must check:

1. Required Indy packages: IndyCore, IndySystem and IndyProtocols. If you have a newer Indy version, most prob
ably packages have a different name (including version), so access to menu "Component / Install Packages" and
check which name have Indy packages and change accordingly in the project.

2. sgcWebSockets supports several Indy versions, there are compiler defines to allow compile for every Indy ver
sion. Open sgcVer.inc, located in the source folder, and change accordingly for your Indy version (is gsIdVersion of
IdVers.inc Indy file). Some compiler defines:

 {$DEFINE INDY10_1}
 {$DEFINE INDY10_2}
 {$DEFINE INDY10_5_5}
 {$DEFINE INDY10_5_7}
 {$DEFINE INDY10_5_8}
 {$DEFINE INDY10_6}
 {$DEFINE INDY10_6_0_5122}
 {$DEFINE INDY10_6_0_5169}
 {$DEFINE INDY10_6_2_5263}
 {$DEFINE INDY10_6_2_5366}
 {$DEFINE INDY10_6_2_D10_4}

INSTALL

47

c00000005 ACCESS_VIOLATION in CBuilder

If you compile a project using CBuidler and you get this error, set the following options in your project:

Project > Options > C++ Linker
uncheck "Link with Dynamic RTL"

Project > Options > Packages > Runtime Packages
uncheck "Link with runtime packages"

Unable to find package import: sgcWebSocketsCXXX.bpi in CBuilder Win64

When you compile runtime package for win64, you must compile Release and Debug.

Ambiguous reference System.ZLib.hpp and IdZLib.hpp CBuilder

sgcWebSockets Standard and Professional uses Indy for some components and Indy doesn't make use of ZLib
unit, uses its own copy of ZLib: IdZLib, IdZLibHeaders... the project is linking to ZLib and indy ZLib units, so when
compile, compiler doesn't know which is the correct reference because names are the same. There are 2 solutions:

1. Search where is included a link to System.ZLib.hpp and delete or move after IdZLibHeaders.hpp
2. Use the following conditional defines NO_USING_NAMESPACE_SYSTEM_ZLIB or
DELPHIHEADER_NO_IMPLICIT_NAMESPACE_USE in your projects options to avoid the use of System.Zlib.hpp

Ambiguous reference System.ZLib.hpp and sgcIdZLib.hpp CBuilder

sgcWebSockets Enterprise uses a custom Indy version for some components and Indy doesn't make use of ZLib
unit, uses its own copy of ZLib: sgcIdZLib, sgcIdZLibHeaders... the project is linking to ZLib and indy ZLib units, so
when compile, compiler doesn't know which is the correct reference because names are the same. There are 2 so
lutions:

1. Search where is included a link to System.ZLib.hpp and delete or move after sgcIdZLibHeaders.hpp
2. Use the following conditional defines NO_USING_NAMESPACE_SYSTEM_ZLIB or
DELPHIHEADER_NO_IMPLICIT_NAMESPACE_USE in your projects options to avoid the use of System.Zlib.hpp

Undefined reference to vTable for Sgcwebsocket... on CBuilder and Android

Use the following workarround to fix the error. Add the file libsgcwebsocketsC*.a which is located in the dcp/android
default folder to your project using the menu "Project/ Add to Project".
Example: for CBuilder 11, add to your project the file "libsgcWebSocketsC11.a" which is located by default in the
folder "C:\Users\Public\Documents\Embarcadero\Studio\22.0\DCP\Android\Release".

Checksum changed under Lazarus

This error can be raised while trying to install the components under Lazarus if the profile to build the IDE is not
"Optimized IDE". The trial is compiled with the profile "Optimized IDE".

INSTALL

48

Cannot find X used by Y, incompatible ppu

Try the following workarround "Run / Clean up and rebuild" from the menu option.

INSTALL

49

Configure Install
In the source folder, there is a file called sgcVer.inc which includes all compiler defines for all Delphi, CBuilder and
Lazarus IDEs.

Here you can customize your configuration for Intraweb, Indy... usually there is no need to do any changes, un
less you want enable/disable some features.

Change carefully the compiler defines and contact us if you require assistance.

For every Delphi version, there is a section where you can configure all compiler defines, an example for Delphi
10.4

{$IFDEF VER340} { Delphi 10.4 }
 {$DEFINE D2006}
 {$DEFINE D2007}
 {$DEFINE D2009}
 {$DEFINE D2010}
 {$DEFINE DXE}
 {$DEFINE DXE2}
 {$DEFINE DXE3}
 {$DEFINE DXE4}
 {$DEFINE DXE5}
 {$DEFINE DXE6}
 {$DEFINE DXE7}
 {$DEFINE DXE8}
 {$DEFINE D10}
 {$DEFINE D10_1}
 {$DEFINE D10_2}
 {$DEFINE D10_3}
 {$DEFINE D10_4}
 {$DEFINE INDY10_1}
 {$DEFINE INDY10_2}
 {$DEFINE INDY10_5_5}
 {$DEFINE INDY10_5_7}
 {$DEFINE INDY10_5_8}
 {$DEFINE INDY10_5_9}
 {$DEFINE INDY10_6}
 {$DEFINE INDY10_6_0_5122}
 {$DEFINE INDY10_6_0_5169}
 {$DEFINE INDY10_6_2_5263}
 {$DEFINE INDY10_6_2_5366}
 {$DEFINE INDY10_6_2_D10_4}

 {$IFNDEF BCB}
 {$IFNDEF MACOS}
 {$IFNDEF ANDROID}
 {.$DEFINE IWIX}
 {.$DEFINE IWXI}
 {.$DEFINE IWXIV}
 {.$DEFINE IWXV}
 {$ENDIF}
 {$ENDIF}
 {$IFNDEF NEXTGEN}
 {$DEFINE SGC_JSON_INTF}
 {$ENDIF}
 {$ENDIF}
{$ENDIF}

INSTALL

50

Indy

There are some compiler defines for Indy library. This depends on Indy version installed, by default is configured for
Indy package included with Delphi. Indy version is gsIdVersion parameter of IdVers.inc Indy file.

Intraweb

If Intraweb is not installed, just comment compiler defines for Intraweb (those who starts with IW...)

INSTALL

51

•
•

•

Install sgcIndy Package
Setup Installation

*Requires Windows Vista as minimum (Windows 2000, XP and Server 2003 are not supported).

The users who have purchase a license can install the sgcIndy package using the setup. Find below step by step
how install the package.

Execute the Installer.
First you must set your username/password of your private eSeGeCe account. This only must be entered
one time, the next time you use the setup, the installer will read the latest value.

If the user has login successfully, select if you want to install in Delphi, CBuilder or Rad Studio IDE.

INSTALL

52

•

◦
◦
◦

◦

◦

◦

◦

There are some options that can be customized every time you use the installer, press the button Options to
access these properties.

Build Packages: if selected, the installer will try to build the packages.
Register Paths IDE: if selected, the installer will register the required library paths in the IDE.
Register BPLs IDE: if selected and the installer has built the packages successfully, the installer will
register the design-time package in the IDE.
Remove Default Indy Version: if selected, the installer will uninstall first the Standard Indy version
that comes with Rad Studio.
Restore Default Indy Version when Uninstalling: if selected, the installer rollback the uninstalled
Standard Indy version when the package is uninstalled.
Compatibility Mode: if selected, the dcp files are compiled without version and are copied to the Em
barcadero/lib folder. Check this option if other packages are making use of Indy packages, like Dev
Express.
Always use of the following OpenSSL API Versions: check this option if you want to force the use
of OpenSSL 1.1.1 or OpenSSL 3.0.0 APIs

INSTALL

53

•

•

Now you can select which IDE Versions you want to install. Only those IDE versions that the installer detect
as installed, will be available.

Next step is select the Platforms.

INSTALL

54

•

•

Select the folder where the package will be installed. If you reinstall the package, the installer will select by
default the same folder selected in the previous install.

Select which components to install.

INSTALL

55

•

•

1.

2.

3.

1.
2.

1.
2.
3.
4.
5.

1.

Finally, it will extract the files, compile and install the package and register the required paths in the IDE.

Install Errors

MsBuild raises an error if the Length of the Library Path is too high, to fix this issue, try to delete unused
paths from the library path. MsBuild has a limitation of 32K characters.

Manual installation

If Indy is already installed, it needs to be uninstalled first.

Remove the pre-compiled BPL files - dclIndyCoreX.bpl and dclIndyProtocolsX.bpl - from the IDE via the
"Components > Install Packages" dialog.
Then delete all of the existing binaries (IndySystemX., IndyCoreX., IndyProtocolsX., dclIndyCoreX., and
dclIndyProtocolsX.*) as well as delete any Indy 10 source files, if present.
Be sure to check for files in the IDE's \bin, \lib, and \source folders, \Indy subfolders, and OS system fold
ers."

To build the sgcIndy package, you can either

(Only CBuilder) Use the command-line FULLC#.BAT script that corresponds to your CBuilder version.
Open the individual DPK files in the IDE and compile them, in the following order:

IndySystemX.dpk (in Lib\System)
IndyCoreX.dpk (in Lib\Core)
IndyProtocolsX.dpk (in Lib\Protocols)
dclIndyCoreX.dpk (in Lib\Core)
dclIndyProtocolsX.dpk (in Lib\Protocols)

Once the Indy packages have been built, go to the menu Components / Install Packages and install the Indy De
sign-Time Packages

dclIndyCore*.bpl

INSTALL

56

2. dclIndyProtocols*.bpl

Finally set the paths in your IDE to the sgcIndy Packages.

INSTALL

57

Configure ZLib
ZLib version: 1.2.12

sgcWebSockets uses the ZLib compression when WebSocket Compression PerMessage Deflate Extension is en
abled. By default, ZLib is statically linked with your application so there is no need to deploy the ZLib library.

If you want to use a specific library, add the following Conditional Define to your project:

SGC_DYNAMICLOAD_ZLIB

As an alternative, you can edit the file sgcIndy.inc (located in the source folder) and add the following line

{$DEFINE SGC_DYNAMICLOAD_ZLIB}

Finally, you must set the location where is the ZLib library, to do this, use the following method and pass the Full
Path (without the name of the library) where is located

sgcIdZLibHeaders.IdZLibSetLibPath('c:\software\zlib');

*This configuration is only valid for sgcWebSockets Enterprise Edition with Source code.

QUICKSTART

58

QuickStart
WebSockets Components

Creating a new WebSocket Server or WebSocket client is very simple, just create a new instance of the class, con
figure the Host / Port and set the property Active = true to start the process.

QuickStart WebSockets

HTTP Components

The HTTP/2 protocol allows to create much faster HTTP Servers / Clients than using HTTP/1 protocol. The HTTP/2
Server is included in the WebSocket server while the HTTP/2 client is a dedicated components which implements
the HTTP/2 protocol.

QuickStart HTTP

Threading Flow

sgcWebSockets components are threaded, which means that connections runs in secondary threads. By de
fault, the main events are dispatched on the main thread, this is useful when the number of events to dispatch is
low, but for better performance you can configure the components where the events are dispatched in the con
text of connection thread. Read the following article which explains how configure threading flow:

How Configure NotifyEvents

How Build Applications

Build Applications with sgcWebSockets library is very easy, just follow the next tips which will helps to successfully
build your application.

Build

Fast Performance Server

sgcWebSockets has 2 server implementations: 1 based on Indy server and another based on HTTP.SYS Mi
crosoft Server. The latest is the recommended for High Performance Servers which requires to handle thousands
of concurrents connections. Check the following article which explains how improve server performance.

Fast Performance Server

Memory Manager

Choose an adequate memory manager can improve the performance of your application, check the following article
which shows a comparison between some memory managers

Memory Manager

QUICKSTART

59

OpenSSL

When your application requires secure connections, usually openSSL libraries are required to encrypt communi
cations, follow the next steps to configure successfully your application with openSSL libraries.

Configure OpenSSL

Indy

The Indy library is used as a base in some sgcWebSockets components, sgcWebSockets Enterprise edition in
cludes a custom indy version which allows to use openSSL 1.1.1 and openSSL 3.0.0, ALPN...

Indy

Linux (Lazarus)

If you compile a Lazarus project for Linux and you get this message:

Semaphore init failed (possibly too many concurrent threads)

Just add cthreads unit to your project file.

QUICKSTART

60

QuickStart | WebSockets
Let's start with a basic example where we need to create a Server WebSocket and 2 client WebSocket types: Ap
plication Client and Web Browser Client.

WebSocket Server

1. Create a new Window Forms Application
2. Drop a TsgcWebSocketServer onto a Form.
3. On Events Tab, Double click OnMessage Event, and type following code:

void OnMessage(TsgcWSConnection *Connection, const string Text)

{

 ShowMessage("Message Received From Client: " + Text);

}

4. Drop a Button onto the Form, Double Click and type this code:

TsgcWebSocketServer1->Active = true;

WebSocket Client

1. Create a new Window Forms Application
2. Drop a TsgcWebSocketClient onto a Form and configure Host and Port Properties to connect to Server.
3. Drop a TButton in a Form, Double Click and type this code:

TsgcWebSocketClient1->Active = true;

4. Drop a Button onto the Form, Double Click and type this code:

TsgcWebSocketClient1->WriteData("Hello Server From VCL Client");

Web Browser Client

1. Create a new HTML file

2. Open file with a text editor and copy following code:

<html>

<head>

<script type="text/javascript" src="http://host:port/sgcWebSockets.js"></script>

</head>

<body>

Open

Send

</body>

</html>

 You need to replace host and port in this file for your custom Host and Port!!

3. Save File and that's all, you have configured a basic WebSocket Web Browser Client.

QUICKSTART

61

How To Use

1. Start Server Application and press button to start WebSocket Server to listen new connections.

2. Start Client Application and press button1 to connect to server and press button2 to send a message. On Server
Side, you will see a message with text sent by Client.

3. Open then HTML file with your Web Browser (Chrome, Firefox, Safari or Internet Explorer 10+), press Open to
open a connection and press send, to send a message to the server. On Server Side, you will see a message with
a text sent by Web Browser Client.

Linux Compiler

Simple Server example (listening on port 5000).

program sgcWebSockets_linux;

{$APPTYPE CONSOLE}

{$R *.res}

uses

 System.SysUtils, sgcWebSocket;

var

 oServer: TsgcWebSocketServer;

begin

 try

 oServer := TsgcWebSocketServer.Create(nil);

 oServer.Port := 5000;

 oServer.Active := True;

 while oServer.Active do

 Sleep(10);

 except

 on E: Exception do

 Writeln(E.ClassName, ': ', E.Message);

 end;

end.

Linux (Lazarus)

If you compile a Lazarus project for Linux and you get this message:

Semaphore init failed (possibly too many concurrent threads)

Just add cthreads unit to your project file.

QUICKSTART

62

QuickStart | HTTP
Let's start with a basic example where we need to create a HTTP/2 Server and a HTTP/2 client.

HTTP/2 Server

1. Create a new Window Forms Application
2. Drop a TsgcWebSocketHTTPServer onto a Form.
3. On Events Tab, Double click OnCommandGet Event, and type following code:

void OnCommandGet(TIdContext *AContext, TIdHTTPRequestInfo *ARequestInfo,

 TIdHTTPResponseInfo *AResponseInfo)

{

 if (ARequestInfo->Document == "/")

 {

 AResponseInfo->ContentText = "<html><head><title>Test Page</title></head><body></body></html>";

 AResponseInfo->ContentType = "text/html";

 AResponseInfo->ResponseNo = 200;

 }

}

4. By default, the server only enables HTTP/1 connections, so enable HTTP/2 options in the property
HTTP2Options.Enabled = true, and then configure the SSL Options. Secure connections require OpenSSL li
braries.

TsgcWebSocketHTTPServer1->Port = 443;

TsgcWebSocketHTTPServer1->SSL = true;

TsgcWebSocketHTTPServer1->SSLOptions->CertFile = "server cert file";

TsgcWebSocketHTTPServer1->SSLOptions->KeyFile = "server private key file";

TsgcWebSocketHTTPServer1->SSLOptions->RootCertFile = "server root cert file";

TsgcWebSocketHTTPServer1->SSLOptions->OpenSSL_Options->APIVersion = oslAPI_1_1;

TsgcWebSocketHTTPServer1->SSLOptions->Port = 443;

TsgcWebSocketHTTPServer1->SSLOptions->Version = tls1_3;

5. Drop a Button onto the Form, Double Click and type this code:

TsgcWebSocketHTTPServer1->Active = true;

HTTP/1 Client

1. Create a new Window Forms Application
2. Drop a TButton in a Form, Double Click and type this code:

TsgcHTTP1Client *oHTTP1 = new TsgcHTTP1Client();

try

{

 ShowMessage(oHTTP1->Get("https://127.0.0.1"));

}

__finally

{

 oHTTP1->Free();

}

QUICKSTART

63

HTTP/2 Client

1. Create a new Window Forms Application
2. Drop a TButton in a Form, Double Click and type this code:

TsgcHTTP2Client *oHTTP2 = new TsgcHTTP2Client();

try

{

 ShowMessage(oHTTP2->Get("https://127.0.0.1"));

}

__finally

{

 oHTTP2->Free();

}

QUICKSTART

64

QuickStart | Threading Flow
sgcWebSockets components are threaded, for example, TsgcWebSocketHTTPServer (based on Indy library) cre
ates one thread for every connection while TsgcWebSocketServer_HTTPAPI (based on Microsoft HTTP.SYS)
runs a pool of threads and the connections are handled by this pool of threads (max of 64 threads) and TsgcWeb
SocketClient runs his own thread to run asynchronously the responses from WebSocket server.

By default, there is a property called NotifyEvents, which has the value neAsynchronous. This means that when a
WebSocket client receives a message, this message is queued and is dispatched on the main thread by OS later.
This runs well for clients that doesn't receive a lot of messages and for easy of use, because doesn't require to syn
chronize with the main thread when you want for example update a control of your form.

But when the server / client must process several messages in short period of time, it's better change this threading
flow to another where the events are dispatched in the context of connection thread. To do this, just set Noti
fyEvents property to neNoSync, this way, when for example a client receives a message from server, this message
will be dispatched in the context of a secondary thread, so if you need to update a control of your form, first syn
chronize with the main thread and the update the form control (because form controls are not thread safe). The
same applies if you want access to a shared object, you need to implement your own synchronization methods.

Threading Flow Easy Mode (NotifyEvents = neAsynchronous) and Low Performance

This is the threading flow by default and it's usually used on demo samples. Select this mode if you don't expect to
handle several messages per seconds and you need update Form Controls or access shared objects.

NotifyEvents = neAsynchronous

Threading Flow Best Performance (NotifyEvents = neNoSync)

Set this threading flow for server components and for clients which needs a high performance because you expect
will require to handle several messages. Using this configuration, the events are dispatched in the context of con
nection thread, so in order to update a Form control, first synchronize with the main thread.

NotifyEvents = neNoSync

How Synchronize Main Thread

You can synchronize with Main Thread calling TThread.Synchronize or TThread.Queue, both methods can be used
and select one or another depends of how you want implement synchronization.

TThread.Synchronize

This method is blocking, which means that when you call Synchronize, the code blocks tills synchronize with the
main thread.

TThread.Queue

This method is non blocking, so when you call queue, the message is queued and will be dispatched later.

Example Code

Update a Memo with the messages received from WebSocket Client.

void OnClientMessage(TsgcWSConnection *Connection, string aText)

{

 TThread->Queue(nil,

QUICKSTART

65

 procedure

 {

 memo1->lines->add(aText);

 });

}

QUICKSTART

66

•
•
•

•
•
•
•

QuickStart | Build
Build an application with sgcWebSockets library is very easy, only keep in mind if your components require
openSSL libraries or not. If your applications require secure connections, openSSL libraries must be deployed (ex
cept if you use SChannel for windows on Client Components).

For windows applications, is enough to deploy the openSSL libraries in the same folder where application is lo
cated.

For other personalities check the following articles:

Build OSX Application
Build Android Application
Build iOS Application

CBuilder DEBUG

If you are using CBuilder and want to debug the sgcWebSockets library, follow the next steps:

Go into the Project Options.
Enable Use debug .dcus under Delphi Compiler > Compiling.
Disable Link with Dynamic RTL under C++ Linker.
Disable Link with Runtime Packages under Packages > Runtime Packages.

You will then be able to step into the VCL/RTL source code.

QUICKSTART

67

Build | OSX Application
In order to build a OSX Application with sgcWebSockets library you must follow the steps from Embarcadero web
site to build a OSX Application.

Install PASServer in MacOS

http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer,_the_Platform_Assistant_Server_Application

Obtain a Developer ID Certificate

Login with a valid Apple Developer Account to https://developer.apple.com and create a new "Developer ID Appli
cation" from Certificates menu.

http://docwiki.embarcadero.com/RADStudio/Rio/en/MacOS_Notarization

Create a new Apple Id

Then go to https://appleid.apple.com/account to create a new Apple Id

Configure Provisioning

Finally, open the menu Project / Options / Provisioning and fill the required data to notarize a OSX Application.

If your project requires some libraries, don't forget to include in the menu Project / Deployment. Set Remote Path
to "Contents\MacOS\"

These libraries will be automatically signed when the application is notarized, you can check if the library has been
signed using the following command:

codesign -dv --verbose=4 libcrypto.1.1.dylib

http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer%2c_the_Platform_Assistant_Server_Application
http://docwiki.embarcadero.com/RADStudio/Rio/en/MacOS_Notarization
https://appleid.apple.com/account

QUICKSTART

68

Read more about How Configure openSSL OSX.

QUICKSTART

69

Build | Android Application
In order to build a Android Application with sgcWebSockets library you must follow the steps from Embarcadero
website to build an Android Application.

Creating an Android App

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Creating_an_Android_App

Project Deployment

If your project requires some libraries, don't forget to include in the menu Project / Deployment. Set Remote Path
to ".\assets\internal"

Read more about How Configure openSSL Android.

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Creating_an_Android_App

QUICKSTART

70

•
•

Build | iOS Application
In order to build a iOS Application with sgcWebSockets library you must follow the steps from Embarcadero web
site to build a iOS Application.

Install PASServer in MacOS

http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer,_the_Platform_Assistant_Server_Application

Obtain a iOS Development Certificate

Login with a valid Apple Developer Account to https://developer.apple.com and create a new "iOS Development
Certificate" from Certificates menu.
Create a new Identifier for your iOS apps and a new provisioning profile.

http://docwiki.embarcadero.com/RADStudio/Sydney/en/IOS_Mobile_Application_Development

Configure Bundle Identifier

Open the menu Project / Options / Application / Version Info and set your Bundle Identifier

Deployment

If your project requires some static libraries, copy these libraries in the Embarcadero lib/iosDevice64 folder:

C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\debug
C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\release

Read more about How Configure openSSL iOS

Provisioning

Finally, check in the menu Project / Options / Deployment, if the certificate has been successfully loaded.

http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer%2c_the_Platform_Assistant_Server_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IOS_Mobile_Application_Development

QUICKSTART

71

QUICKSTART

72

Fast Performance Servers
Servers based on Indy Library

TsgcWebSocketServer and TsgcWebSocketHTTPServer are based on Indy library, so every connection is handled
by a thread, so if you have 1000 concurrent connections, you will have, at least, 1000 threads to handle these con
nections. When performance is important, you must do some "tweaks" to increase performance and improve server
work. From sgcWebSockets 4.3.3 Indy servers support IOCP too, you can read more.

Use the following tips to increase server performance.

1. Set in Server component property NotifyEvents := neNoSync. This means that events are raised in the context
of connection thread, so there is no synchronization mechanism. If you must access to VCL controls or shared ob
jects, use your own synchronization mechanisms.

2. Set in Server component property Optimizations.Connections.Enabled := True. If you plan to have more than
1000 concurrent connections in your server, and you call Server.WriteData method a lot, enable this property. Basi
cally, it saves connections in a cache list where searches are faster than accessing to Indy connections list.

2.1 CacheSize: is the number of connections stored in a fast cache. Default value = 100.
2.2 GroupLevel: creates internally several lists split by the first character, so if you have lots of connections,
searches are faster. Default value = 1.

3. Set in Server component property Optimizations.Channels.Enabled := True. Enabling this property, channels
are saved in a list where searches are faster than previous method.

4. Set in Server component property Optimizations.ConnectionsFree.Enabled := True. If this property is en
abled, every time there is a disconnection, instead of destroying TsgcWSConnection, the object is stored in a List
and every X seconds, all objects stored in this list are destroyed.

4.1 Interval: number of seconds where all disconnected connections stored in a list are destroyed. By default
is 60.

5. By default, sgcWebSockets uses Critical Sections to protect access to shared objects. But you can use TMoni
tor or SpinLocks instead of critical sections. Just compile your project with one of the following compiler defines

3.1 {$DEFINE SGC_SPINLOCKS}
3.2 {$DEFINE SGC_TMONITOR}

6. Use latest FastMM4, you can download from: https://github.com/pleriche/FastMM4
 FastMM4 is a very good memory manager, but sometimes doesn't scale well with multi-threaded applications.
Use the following compiler define in your application:

{$DEFINE UseReleaseStack}

 Then, add FastMM4 as the first unit in your project uses and compile again. For a high concurrent server, you will
note an increase in performance.
 This tweak does the following: If a block cannot be released immediately during a FreeMem call the block will be
added to a list of blocks that will be freed later, either in the background cleanup thread or during the next call to
FreeMem.

7. Better than FastMM4, use the latest FastMM5, you can download from: https://github.com/pleriche/FastMM5
 This is a new version from the same developer of FastMM4, support from Delphi XE3 Compiler and can used on
Windows32 and Windows64.
 FastMM5 is dual licensed, so there are 2 licenses: GPL and Commercial. So if you want use in commercial
projects, you must purchase a license
 Find below a grid which compares the performance between FastMM4 and FastMM5, doing 100.000 websocket
requests and responses using 1, 10, 100, 500 and 1000 concurrent clients. The performance under FastMM5 is
much better, in multithreaded applications, than using FastMM4.

https://github.com/pleriche/FastMM4
https://github.com/pleriche/FastMM5

QUICKSTART

73

•

•

•

•

Clients Win
dows FMM4 FMM5 Differ

ence
1 Win32 4135 4214 1,91%

 Win64 4052 4520 11,55%
10 Win32 4214 1729 -58,97%

 Win64 4104 1875 -54,31%
100 Win32 3958 1604 -59,47%

 Win64 3958 1614 -59,22%
500 Win32 4098 1723 -57,96%

 Win64 5333 1791 -66,42%
1000 Win32 5927 2208 -62,75%

 Win64 8166 2229 -72,70%

Indy Server Windows

sgcWebSockets Enterprise Edition supports IOCP on Windows, this means that instead of creating 1 thread for
every connection a pool of threads handle all the connections. To enable IOCP, just set the IOHandler to IOCP.

IOHandlerOptions.IOHandlerType = iohIOCP

The property IOHandlerOptions.IOCP allows you to customize the IOCP properties.

IOCPThreads: these are the threads used to handle the connections, by default the value is zero which
means the threads will be calculated automatically using the number of processors (for Delphi 7 to Delphi
2007 this value is set to 32 because the CPU count function is not supported).
WorkOpThreads: set a value greater than zero if you want that the requests for every connection are han
dled always by the same thread. By default, IOCP requests are handled by random threads, if you want that
the connections are handled by always the same thread, set a value greater than zero. Example: if you set
WorkOpThreads = 32, the server will create 32 threads and every time there is a new request, if the connec
tion was already processed previously it will be queued in the same thread.

IOCP is recommended when you want to handle thousands of concurrent connections.

Indy Server Linux

sgcWebSockets Enterprise Edition support EPOLL on Linux, this means that instead of creating 1 thread for every
connection a pool of threads handle all the connections. To enable EPOLL, just set the IOHandler to EPOLL.

IOHandlerOptions.IOHandlerType = iohEPOLL

The property IOHandlerOptions.EPOLL allows to customize the EPOLL properties.

EPOLLThreads: these are the threads used to handle the connections, by default the value is zero which
means the threads will be calculated automatically using the number of processors.
WorkOpThreads: set a value greater than zero if you want that the requests for every connection are han
dled always by the same thread. By default, EPOLL requests are handled by random threads, if you want
that the connections are handled by always the same thread, set a value greater than zero. Example: if you
set WorkOpThreads = 32, the server will create 32 threads and every time there is a new request, if the con
nection was already processed previously it will be queued in the same thread.

EPOLL is recommended when you want to handle thousands of concurrent connections.

QUICKSTART

74

•
•

Server Based on HTTP.SYS

TsgcWebSocketServer_HTTPAPI component is based on Microsoft HTTP API and it's designed to work with IOCP,
so it's recommended when the server must handle thousands of connections but it has the limitation that can only
run on Windows.

The server can handle WebSocket and HTTP/2 protocols on the same port and can work with other implementa
tions because it can be configured to only handle some endpoints.
Example: you can configure this server to handle websocket connections with our sgcWebSockets library and let
other implementations / third-parties or whatever use other endpoints.

Endpoint: https://server/ws will handle connections that use WebSocket protocol using sgcWebSockets
Endpoint: https://server/other willl handle connection using other library.

Use latest FastMM5, you can download from: https://github.com/pleriche/FastMM5
 This is a new version from the same developer of FastMM4, support from Delphi XE3 Compiler and can used on
Windows32 and Windows64.
 FastMM5 is dual licensed, so there are 2 licenses: GPL and Commercial. So if you want use in commercial
projects, you must purchase a license
 Find below a grid which compares the performance between FastMM4 and FastMM5, doing 100.000 websocket
requests and responses using 1, 10, 100, 500 and 1000 concurrent clients. The performance under FastMM5 is
much better, in multithreaded applications, than using FastMM4.

Clients Win
dows FMM4 FMM5 Differ

ence
1 Win32 5364 5182 -3,39%

 Win64 5057 5026 -0,61%
10 Win32 4922 1744 -64,57%

 Win64 4958 1770 -64,30%
100 Win32 3359 1682 -49,93%

 Win64 3979 1536 -61,40%
500 Win32 2364 1890 -20,05%

 Win64 2901 1666 -42,57%
1000 Win32 3296 1968 -40,29%

 Win64 4469 1989 -55,49%

https://github.com/pleriche/FastMM5

QUICKSTART

75

•
•
•
•

Memory Manager
Recently a new version of FastMM, developed by Pierre le Riche, has been released, the new version is
called FastMM5 and has been rewritten to improve the performance on multi threaded applications, can be config
ured for better speed or less memory usage and more.

Support from Delphi XE3 Compiler and can used on Windows32 and Windows64.

FastMM5 is dual licensed, so there are 2 licenses: GPL and Commercial. So if you want use in commercial
projects, you must purchase a license. More details here

https://github.com/pleriche/FastMM5

FastMM4 has a new fork, called FastMM4-AVX, developed by Maxim Masiutin, which adds very interesting fea
tures like: more efficient synchronization, AVX instructions for faster memory copy, speed improvements and more.
FastMM4-AVX is dual licensed: MPL and GPL. More details here:

https://github.com/maximmasiutin/FastMM4-AVX

Configuration

In order to test the performance with our components, a new windows console application has been created, sgcBenchmark.exe
which will be used to measure the performance of every memory manager using our sgcWebSockets components.

The test is very simple, a client (or more than one client) connects to a server, sends a message to server and
server replies with the same message to client. This is repeated 100.000 times. The tests are repeated changing
the number of concurrent clients, first 1, then 10, 100... the measured time is the time elapsed between the first
message sent by client and the last message received from server (so the time used to connect to server is not
measured).

The benchmark will compare the performance using the Default Memory Manager that comes with Delphi 10.4.1,
FastMM5 and FastMM4-AVX

Benchmark Indy WebSocket Server

In the first Benchmark, the Server used is the Indy WebSocket Server, this server is based on Indy TCP Server, so
every connection creates 1 thread.

The values are measured in milliseconds, so for example, the first test that is done with 1 client in Windows32 plat
forms, using the default memory manager takes 4135 milliseconds, using FastMM5 takes 4214 milliseconds and
using FastMM4-AVX takes 4823 milliseconds. The percentage calculated is against the reference value, in this
case against the Default memory manager that comes with delphi, as much lower is the percentage, better perfor
mance has.

The Benchmark has been done 3 times and the values showed are the sum of the benchmarks / 3.

For the benchmark, the server used was:

Windows 2016 Server Datacenter
16 Virtual Processors
32 GB RAM
2.2 GHz

The Delphi version used was Delphi 10.4.1, and the latest FastMM5 and FastMM4-AVX versions from github
servers.

Find below the result of the benchmark.

https://github.com/pleriche/FastMM5
https://github.com/maximmasiutin/FastMM4-AVX
http://www.esegece.com/help/sgcWebSockets/#t=Components%2FTsgcWebSocketServer.htm

QUICKSTART

76

•
•
•
•

Clients Plat
form

Default
 (ms)

FMM5
(ms)

FMM5
(%)

FMM4-AVX
(ms)

FMM4-AVX
(%)

1 Win32 4135 4214 1.91% 4823 16.64%

1 Win64 4052 4520 11.55% 4328 6.81%

10 Win32 4214 1729 -58.97% 1828 -56.62%

10 Win64 4104 1875 -54.31% 1651 -59.77%

100 Win32 3958 1604 -59.47% 1583 -60.01%

100 Win64 3958 1614 -59.22% 1635 -58.69%

500 Win32 4098 1723 -57.96% 1854 -54.76%

500 Win64 5333 1791 -66.42% 1833 -65.63%

1000 Win32 5927 2208 -62.75% 2328 -60.72%

1000 Win64 8166 2229 -72.70% 2234 -72.64%

Benchmark HTTP.SYS Server

In the second Benchmark, the Server used is the HTTP.SYS WebSocket Server, this server is based on HTTP API
Microsoft Framework and the connections are handled by a pool of threads.

The values are measured in milliseconds, so for example, the first test that is done with 1 client in Windows32 plat
forms, using the default memory manager takes 5364 milliseconds, using FastMM5 takes 5182 milliseconds and
using FastMM4-AVX takes 5838 milliseconds. The percentage calculated is against the reference value, in this
case against the Default memory manager that comes with Delphi, as much lower is the percentage, better perfor
mance has.

The Benchmark has been done 3 times and the values showed are the sum of the benchmarks / 3.

For the benchmark, the server used was:

Windows 2016 Server Datacenter
16 Virtual Processors
32 GB RAM
2.2 GHz

The Delphi version used was Delphi 10.4.1, and the latest FastMM5 and FastMM4-AVX versions from github
servers.

Find below the result of the benchmark.

Clients Plat
form

Default
 (ms)

FMM5
(ms)

FMM5
(%)

FMM4-AVX
(ms)

FMM4-AVX
(%)

1 Win32 5364 5182 -3.39% 5838 8.84%

http://www.esegece.com/help/sgcWebSockets/#t=Components%2FTsgcWebSocketServer_HTTPAPI.htm

QUICKSTART

77

•

•
•
•

1 Win64 5507 5206 -0.61% 5135 1.54%

10 Win32 4922 1744 -64.57% 2088 -57.58%

10 Win64 4958 1770 -64.30% 1953 -60.61%

100 Win32 3359 1682 -49.93% 2244 -33.19%

100 Win64 3979 1536 -61.40% 1859 -53.28%

500 Win32 2364 1890 -20.05% 2344 -0.85%

500 Win64 2901 1666 -42.57% 1859 -35.92%

1000 Win32 3296 1968 -40.29% 2531 -23.21%

1000 Win64 4469 1989 -55.49% 2047 -54.20%

Comments about Benchmarks

Find below some comments about the results obtained after benchmark the 3 different memory managers:

Using in single threaded application, there are no big differences in performance between FastMM4, Fast
MM5 and FasMM4-AVX.
FastMM5 and FastMM4-AVX work much better in multithreaded applications.
The differences between FastMM5 and FastMM4AVX are small, at least doing these benchmarks.
Windows 32 benchmarks performs better than Windows 64 tests. Using FastMM5 or FastMM4AVX in a
Windows 64 applications improves performance more than in Windows 32.

The final decision to choose one memory manager or another depends of the project, I think there is no single
memory manager that works as the best in all conditions, so before choose one or another, test, test and test again
to see which performance better for your needs

QUICKSTART

78

•
•
•
•

•
•

OpenSSL
OpenSSL is a software library for applications that secure communications over computer networks against eaves
dropping or need to identify the party at the other end. It is widely used by Internet servers, including the majority of
HTTPS websites.

This library is required by components based on Indy Library when a secure connection is needed. If your applica
tion requires OpenSSL, you must have necessary files in your file system before deploying your application:

Currently, sgcWebSockets supports: 1.0.2, 1.1 and 3.0 to 3.2 openSSL versions.

Platform API 1.0 API 1.1 API 3.* Static/Dynamic
Linking

Windows (32-
bit and 64-bit)

libeay32.dll
and
ssleay32.dll

libcrypto-1_1.dll and
libssl-1_1.dll

libcrypto-3.dll and
libssl-3.dll Dynamic

OSX libcrypto.dylib,
libssl.dylib

libcrypto.1.1.dylib,
libssl.1.1.dylib

libcrypto.3.dylib,
libssl.3.dylib Dynamic

iOS Device
(32-bit and
64-bit)

libcrypto.a
and libssl.a

libcrypto.a and
libssl.a libcrypto.a and libssl.a Static

iOS Simulator libcrypto.dylib,
libssl.dylib

libcrypto.1.1.dylib,
libssl.1.1.dylib

libcrypto.3.dylib,
libssl.3.dylib Dynamic

Android De
vice

libcrypto.so,
libssl.so libcrypto.so, libssl.so libcrypto.so, libssl.so Dynamic

Find below how configure openSSL libraries for every Personality:

Windows
OSX
Android
iOS

openSSL Configurations

sgcWebSockets Indy based components allows to configure some openSSL properties. Access to the following
properties:

Server Components: SSLOptions.OpenSSL_Options.
Client Components: TLSOptions.OpenSSL_Options.

API Version

Standard Indy library only allow to load 1.0.2 openSSL libraries, these libraries have been deprecated and latest
openSSL releases use 1.1.1 API.
sgcWebSockets Enterprise allows to load 1.1.1 openSSL libraries, you can configure in this property which
openSSL API version will be loaded. Only one API version can be loaded by process (so you can't mix openSSL
1.0.2 and 1.1.1 libraries in the same application).

LibPath

This property allows to set the location of openSSL libraries. This is useful for Android or OSX projects, where the
location of the openSSL libraries must be set.

http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#32-bit_and_64-bit_Windows
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#iOS_Simulator.2C_OS_X_and_Android
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#32-bit_and_64-bit_iOS_Device
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#iOS_Simulator.2C_OS_X_and_Android
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#iOS_Simulator.2C_OS_X_and_Android

QUICKSTART

79

•
•

Accepts the following values:

oslpNone: this value doesn't set any library path value (is the value by default).
oslpDefaultFolder: this value sets the default folder of openSSL libraries. This path is different for every
personality (windows, osx...).

Self-Signed Certificates

You can use self-signed certificates for testing purposes, you only need to execute the following command to create
a self-signed certificate

openssl req -newkey rsa:2048 -new -nodes -x509 -days 3650 -keyout key.pem -out cert.pem

It will create 2 files: cert.pem (certificate) and key.pem (private key). You can combine both files in a single one.
Just create a new file and copy the content of both files on the new file. So you will have an structure like this:

-----BEGIN PRIVATE KEY-----
....
-----END PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
....
-----END CERTIFICATE-----

Common Errors

SSL_GET_RECORD: wrong version number

This error means that the server and the client are using a different version of SSL/TLS protocol, to fix it, try to set
the correct version in Server and/or client component

Server.SSLOptions.Version
Client.TLSOptions.Version

SSL3_GET_RECORD: decryption failed or bad record mac

Usually these error is raised when:

1. Check that you are using the latest OpenSSL version, if is too old, update to latest supported.
2. If this error appears randomly, usually is because more than one thread is accessing to the OpenSSL connec
tion. You can try to set NotifyEvents = neNoSync which means that the events: OnConnect, OnDisconnect, OnMes
sage... will be fired in the context of thread connection, this avoids some synchronization problems and provides
better performance. As a down side, if for example you are updating a visual control in a form when you receive a
message, you must implement your own synchronization methods because visual controls are not thread-safe.

QUICKSTART

80

•
•

•
•

•
•

•
•

•
•

OpenSSL | Windows
There is one version for 32 bits and another for 64 bits. You must copy these libraries in the same folder where is
your application or in your system path.
If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys
Wow64 folder.

API 1.0

Requires the following libraries:

libeay32.dll
ssleay32.dll

If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys
Wow64 folder.

You can download latest libraries from your account (libraries don't have external dependencies and are digitally
signed).

API 1.1

Requires the following libraries:

Windows 32

libcrypto-1_1.dll
libssl-1_1.dll

Windows 64

libcrypto-1_1-x64.dll
libssl-1_1-x64.dll

If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys
Wow64 folder.

You can download latest libraries from your account (libraries don't have external dependencies and are digitally
signed).

API 3.*

Requires the following libraries:

Windows 32

libcrypto-3.dll
libssl-3.dll

Windows 64

libcrypto-3-x64.dll
libssl-3-x64.dll

QUICKSTART

81

If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys
Wow64 folder.

You can download latest libraries from your account (libraries don't have external dependencies and are digitally
signed).

QUICKSTART

82

•
•
•
•

•
•

•
•

•
•

•
•

OpenSSL | OSX
Newer versions of OSX doesn't include openssl libraries or are too old, so you must deploy with your application.
Deploy these libraries using following steps:

Open Project/Deployment in your project.
Add required libraries.
Set RemotePath = 'Contents\Macos\'.
Configure the openSSL LibPath to default folder:

Client.TLSOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.
Server.SSLOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.

API 1.0

Requires the following libraries:

libcrypto.dylib
libssl.dylib

You can download latest libraries from your account.

API 1.1

Requires the following libraries:

libcrypto.1.1.dylib
libssl.1.1.dylib

There is one version for 32 bits and another for 64 bits. You must copy these libraries in the same folder where is
your application.
You can download latest libraries from your account.

API 3.0

Requires the following libraries:

libcrypto.3.dylib
libssl.3.dylib

Only 64bits version are provided. You must copy these libraries in the same folder where is your application
You can download latest libraries from your account.

If you include the openSSL libraries in a OSX application, after the application has been Notarized, the libraries will
be signed, you can check this using the following command:

codesign -dv --verbose=4 libcrypto.1.1.dylib

Check the following video which shows how Build a MacOSX64 Application with openSSL libraries

https://www.esegece.com/websockets/videos/delphi/quickstart/275-build-macosx64-application/file

https://www.esegece.com/websockets/videos/delphi/quickstart/275-build-macosx64-application/file

QUICKSTART

83

Errors

Clients should not load the unversioned libcrypto dylib as it does not have a stable ABI.

On MacOS Monterey+, you can get this error trying to load the openSSL libraries, the error happens when tries to
load first the openSSL libraries without version (libcrypto.dylib for example).
To fix this error set in the property OpenSSL_Options.UnixSymLinks the value oslsSymLinksDontLoad. This
avoids the loading of the openSSL libraries without version.

QUICKSTART

84

•
•
•
•

•
•

•
•

•
•

•
•

OpenSSL | Android
Newer versions of Android doesn't include openssl libraries or are too old, so you must deploy with your applica
tion. Deploy these libraries using following steps:

Open Project/Deployment in your project.
Add required libraries.
Set RemotePath = '.\assets\internal'.
Configure the openSSL LibPath to default folder:

Client.TLSOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.
Server.SSLOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.

API 1.0

Requires the following libraries:

libcrypto.so
libssl.so

You can download latest libraries from your account.

On Android 64bits, using TLS 1.2 may raise the following error:

 INT_RSA_VERIFY:bad signature

This is a openSSL error that it's fixed on API 1.1.
You can try to use TLS 1.0 or TLS 1.1 (if the server still supports these encryption methods to avoid this error).

API 1.1

Requires the following libraries:

libcrypto.so
libssl.so

You can download latest libraries from your account.

API 3.0

Requires the following libraries:

libcrypto.so
libssl.so

You can download latest libraries from your account.

QUICKSTART

85

•
•

OpenSSL | iOS
To install OpenSSL in a 64-bit iOS device, you must copy the libcrypto.a and libssl.a SSL library files to your sys
tem. Download the .zip iOS OpenSSL, extract it and find the .a files in the \lib directory. You must copy the
libcrypto.a and libssl.a SSL library files to these directories:

C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\debug
C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\release

Add sgcIdSSLOpenSSLHeaders_static (or IdSSLOpenSSLHeaders if your sgcWebSockets edition is not Enter
prise) unit to your uses clause.

If you need to deploy any file, you can set RemotePath = StartUp\Documents and to load the file use (requires add
System.IOUtils to uses clause):

TPath.GetDocumentsPath + PathDelim + <your filename>

The openSSL libraries must not be deployed using the menu Project/Deployment under iOS.

API 1.1

Modify IdCompilerDefines.inc and enable SGC_OPENSSL_API_1_1 in IOS section:

{$IFDEF IOS}
 {$DEFINE HAS_getifaddrs}
 {$DEFINE USE_OPENSSL}
 {$IFDEF CPUARM}
 // RLebeau: For iOS devices, OpenSSL cannot be used as an external library,
 // it must be statically linked into the app. For the iOS simulator, this
 // is not true. Users who want to use OpenSSL in iOS device apps will need
 // to add the static OpenSSL library to the project and then include the
 // IdSSLOpenSSLHeaders_static unit in their uses clause. It hooks up the
 // statically linked functions for the IdSSLOpenSSLHeaders unit to use...
 {$DEFINE STATICLOAD_OPENSSL}
// sgc--> enable for openssl API 1.1
{$DEFINE SGC_OPENSSL_API_1_1}
 {$ENDIF}
{$ENDIF}

You can download libraries from your account.

API 3.0

Modify IdCompilerDefines.inc and enable SGC_OPENSSL_API_1_1 and SGC_OPENSSL_API_3_0 in IOS sec
tion:

{$IFDEF IOS}
 {$DEFINE HAS_getifaddrs}
 {$DEFINE USE_OPENSSL}
 {$IFDEF CPUARM}
 // RLebeau: For iOS devices, OpenSSL cannot be used as an external library,
 // it must be statically linked into the app. For the iOS simulator, this
 // is not true. Users who want to use OpenSSL in iOS device apps will need
 // to add the static OpenSSL library to the project and then include the
 // IdSSLOpenSSLHeaders_static unit in their uses clause. It hooks up the
 // statically linked functions for the IdSSLOpenSSLHeaders unit to use...
 {$DEFINE STATICLOAD_OPENSSL}

QUICKSTART

86

 // sgc--> enable for openssl API 1.1
 {$DEFINE SGC_OPENSSL_API_1_1}
 // sgc--> enable for openssl API 3.0
 {$DEFINE SGC_OPENSSL_API_3_0}
 {$ENDIF}
{$ENDIF}

You can download libraries from your account.

QUICKSTART

87

OpenSSL Own CA Certificates
Github post

To create a certificate signed by your own CA and that can be trusted by Web Browsers (like Chrome) after adding
CA certificate to local machine.

1. Prepare the configuration files for creating certificates without prompts

CA.cnf

[req]

prompt = no

distinguished_name = req_distinguished_name

[req_distinguished_name]

C = US

ST = Localzone

L = localhost

O = Certificate Authority Local Center

OU = Develop

CN = develop.localhost.localdomain

emailAddress = root@localhost.localdomain

localhost.cnf

[req]

default_bits = 2048

distinguished_name = req_distinguished_name

req_extensions = req_ext

x509_extensions = v3_req

prompt = no

[req_distinguished_name]

countryName = US

stateOrProvinceName = Localzone

localityName = Localhost

organizationName = Certificate signed by my CA

commonName = localhost.localdomain

[req_ext]

subjectAltName = @alt_names

[v3_req]

subjectAltName = @alt_names

[alt_names]

IP.1 = 127.0.0.1

IP.2 = 127.0.0.2

IP.3 = 127.0.0.3

IP.4 = 192.168.0.1

IP.5 = 192.168.0.2

IP.6 = 192.168.0.3

DNS.1 = localhost

DNS.2 = localhost.localdomain

DNS.3 = dev.local

2. Generate a CA private key and Certificate (valid for 5 years)

openssl req -nodes -new -x509 -keyout CA_key.pem -out CA_cert.pem -days 1825 -config CA.cnf

3. Generate web server secret key and CSR

openssl req -sha256 -nodes -newkey rsa:2048 -keyout localhost_key.pem -out localhost.csr -config localhost.cnf

4. Create certificate and sign it by own certificate authority (valid 1 year)

https://stackoverflow.com/questions/66558788/how-to-create-a-self-signed-or-signed-by-own-ca-ssl-certificate-for-ip-address

QUICKSTART

88

•
•

•
•

•
•
•

•

openssl x509 -req -days 398 -in localhost.csr -CA CA_cert.pem -CAkey CA_key.pem -CAcreateserial -out localhost_cert

5. Output files will be:

CA.cnf → OpenSSL CA config file. May be deleted after certificate creation process.
CA_cert.pem → [Certificate Authority] certificate. This certificate must be added to the browser local authority
storage to make trust all certificates that created with using this CA.
CA_cert.srl → Random serial number. May be deleted after certificate creation process.
CA_key.pem → Must be used when creating new [localhost] certificate. May be deleted after certificate cre
ation process (if you do not plan reuse it and CA_cert.pem).
localhost.cnf → OpenSSL SSL certificate config file. May be deleted after certificate creation process.
localhost.csr → Certificate Signing Request. May be deleted after certificate creation process.
localhost_cert.pem → SSL certificate. Must be configured in SSLOptions.CertFile property of the serv
er.
localhost_key.pem → Secret key. Must be installed at SSLOptions.KeyFile proeprty of the server.

QUICKSTART

89

Indy
Indy library is an open source client/server communications library that supports TCP/UDP/RAW sockets, as well
as over 100 higher level protocols including SMTP, POP3, IMAP, NNTP, HTTP, FTP, and many more. Indy is written
in Delphi but is also available for C++Builder and FreePascal. sgcWebSockets uses Indy as a base for some com
ponents and the different sgcWebSockets Editions make a different use of the Indy library.

sgcWebSockets supports protocols like HTTP/2 which require the use of ALPN, can use TLS 1.3 using openSSL
1.1.1 or openSSL 3.0.0... all these features are not supported by standard Indy library, so sgcWebSockets Enter
prise edition includes a custom Indy library which supports this features. To avoid uninstall the standard Indy library
from the IDE, the required Indy files are renamed adding the prefix "sgc", so for example: the unit "IdGlobal" is re
named to "sgcIdGlobal". This way, both versions can coexist without problems.

Find below which Indy version is used by every sgcWebSockets Edition:

sgcWebSockets Edition Indy Version
STANDARD Standard
PROFESSIONAL Standard
ENTERPRISE Custom

Customers with a "Registered" licenses, are old licenses before the sgcWebSockets package was splitted, will find
the following sgcWebSockets package versions:

sgcWebSockets Edition Indy Version
sgcWebSockets Standard
sgcWebSockets min Standard
sgcWebSockets min Indy* Custom

*The sgcWebSockets_min_indy is the same that sgcWebSockets Enterprise edition.

The use of the custom indy version, is defined in the file "sgcVer.inc" located in the source folder. There is a compil
er define called "SGC_CUSTOM_INDY" which enables or disables the use of this indy version. If you have a Enter
prise Edition and want to disable the use of the custom indy, just delete the following compiler define:

{$DEFINE SGC_CUSTOM_INDY}

Of course, if you enable SGC_CUSTOM_INDY but you don't have in the source folder the required custom indy
version units, this compiler define won't work.

sgcIndy package

The use of the custom indy version is not limited to the sgcWebSockets components. Some customers want to
make use of the new features of this custom indy version, in standard Indy components like SMTP for example, so
they use TLS 1.3 when sending emails, using FTP servers... The sgcWebSockets Enterprise edition, provides an
additional full Indy package with all these features. This package, called "sgcIndy package", includes the full Indy li
brary with support for openSSL 1.1.1 and openSSL 3.0.0. So you first must uninstall your current Indy library in
stalled in your IDE and then install this version, the process to install the sgcIndy package it's exactly the same that
any Indy library (here the units are not renamed).

When you want to use openSSL libraries, just set the global variable OPENSSL_API_VERSION to the desired
opensSSL API Version before loading openSSL libraries. This global variable is in the unit IdSSLOpenSSLHeaders.

Example: to use the openSSL 1.1.1 libraries

OPENSSL_API_VERSION := opSSL_1_1;

QUICKSTART

90

How to use a Single sgcIndy package

When using sgcWebSockets Enterprise and sgcIndy package in a same application, the sources maybe duplicated
because the sgcWebSockets Enterprise version uses a custom indy version with the Indy units renamed, this
means that for example units like sgcIdGlobal.pas and IdGlobal.pas will be compiled in the same application (the
first is used when using any component of the sgcWebSockets Enterprise package and the second when using any
component of the sgcIndy package, like ftp, smtp...).

To avoid this behaviour, the sgcWebSockets package can be configured to use the sgcIndy installed version and
still make use of all the components. To do this, follow the instructions below:

1. Open the file sgcVer.inc, it's located in the folder Source of the sgcWebsockes package.
2. Disable the compiler directive: SGC_CUSTOM_INDY. This option tells the compiler, the files that start with
sgcId*.pas exist and must be used when compiling the sgcWebSockets Enterprise Package.
3. Enable the following compiler: SGC_INDY_LIB. This options tells the compiler, the sgcIndy package is installed
and must be used when compiling the package

{$DEFINE SGC_INDY_LIB}

Using the previous configuration, the sgcWebSockets Enterprise package will use the sgcIndy package that is in
stalled and all the features that make use of this package (like http/2, IOCP, openSSL 3.0...) will be enabled.

TOPICS

91

WebSocket Events
WebSocket connections have the following events:

OnConnect
The event raised when a new connection is established.

OnDisconnect

The event raised when a connection is closed.

OnError
The event raised when a connection has any error.

OnMessage
The event raised when a new text message is received.

OnBinary
The event raised when a new binary message is received.

By default, sgcWebSockets uses an asynchronous mechanism to raise these events, when any of these events is
raised internally, it queues this message and is dispatched by the operating system when is allowed. This behav
iour can be modified using a property called NotifyEvents, by default neAsynchronous is selected, if neNoSync
is checked then events will be raised without synchronizing with the main thread (if you need to update any VCL
control or access to shared resources, then you will need to implement your own synchronizing method).

neNoSync is recommended when:

1. You need to handle a lot of messages on a very short period of time.
2. Your project is built for command line (if you don't set neNoSync, you won't get any event).
3. Your project is a library.

If no, then you can set default property to neAsynchronous.

TOPICS

92

WebSocket Parameters Connection
Supported by

 TsgcWebSocketClient
 Java script

Sometimes is useful to pass parameters from client to server when a new WebSocket the connection is estab
lished. If you need to pass some parameters to the server, you can use the following property:

 Options / Parameters

By default, is set to '/', if you need to pass a parameter like id=1, you can set this property to '/?id=1'

On Server Side, you can handle client parameters using the following parameter:

void WSServerConnect(TsgcWSConnection *Connection);

{

 if (Connection->URL == "/?id=1")

 {

 HandleThisParameter;

 }

}

Using Javascript, you can pass parameters using connection url, example:

<script src="http://localhost/sgcWebSockets.js" type="text/javascript"></script>

<script type="text/javascript">var socket = new sgcWebSocket('ws://localhost/?id=1');</script>

TOPICS

93

Using inside a DLL
If you need to work with Dynamic Link Libraries (DLL) and sgcWebSockets (or console applications), NotifyEvents
property needs to be set to neNoSync.

TOPICS

94

WebBrowser Test
TsgcWebSocketServer implements a built-in Web page where you can test WebSocket Server connection with your
favourite Web Browser.

To access to this Test Page, you need to type this URL:

 http://host:port/sgcWebSockets.html

Example: if you have configured your WebSocket Server on IP 127.0.0.1 and uses port 80, then you need to type:

 http://127.0.0.1:80/sgcWebSockets.html

In this page, you can test the following WebSocket methods:

 Open
 Close
 Status
 Send

To disable WebBrowser HTML Test pages, just set in TsgcWebSocketServer.Options.HTMLFiles = false;

TOPICS

95

Custom Sub-Protocols
A client can request that the server use a specific subprotocol by including the subprotocol name in its handshake.
If it is specified, the server needs to include one of the selected subprotocol values in its response for the connec
tion to be established.

In order to create your own subprotocol, you must inherit from TsgcWSProtocol_Client_Base and
TsgcWSProtocol_Server_Base in order to create your custom subprotocols.

TOPICS

96

Authentication
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 Java script (*only URL Authentication is supported)

WebSockets Specification doesn't have any authentication method and Web Browsers implementation don't allow
to send custom headers on new WebSocket connections.

To enable this feature you need to access to the following property:

 Authentication/ Enabled

sgcWebSockets implements 3 different types of WebSocket authentication:

Session: client needs to do an HTTP GET passing username and password, and if authenticated, server re
sponse a Session ID. With this Session ID, client open WebSocket connection passing as a parameter. You
can use a normal HTTP request to get a session id using and passing user and password as parameters

http://host:port/sgc/req/auth/session/:user/:password

example: (user=admin, password=1234) --> http://localhost/sgc/req/auth/session/admin/1234

This returns a token that is used to connect to server using WebSocket connections:

 ws://localhost/sgc/auth/session/:token

URL: client open WebSocket connection passing username and password as a parameter.

 ws://host:port/sgc/auth/url/username/password

example: (user=admin, password=1234) --> http://localhost/sgc/auth/url/admin/1234

Basic: implements Basic Access Authentication, only applies to VCL Websockets (Server and Client) and
HTTP Requests (client Web Browsers don't implement this type of authentication). When a client tries to
connect, it sends a header using AUTH BASIC specification.

You can define a list of Authenticated users, using Authentication/ AuthUsers property. You need to define every
item following this schema: user=password. Example:

admin=admin
user=1234
....

There is an event called OnAuthentication where you can handle authentication if the user is not in AuthUsers list,
client doesn't send an authorization request... You can check User and Password params and if correct, then set
Authenticated variable to True. example:

void WSServerAuthentication(TsgcWSConnection *Connection, string aUser, string aPassword, ref bool Authenticated)

{

 if ((aUser == "John") and (aPassword == "1234"))

 {

TOPICS

97

 Authenticated = True;

 }

}

TOPICS

98

•
•

•

•

Secure Connections
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 Web Browsers

SSL support is based on Indy implementation, so you need to deploy openssl libraries in order to use this feature.
TsgcWebSocketClient supports Microsoft SChannel, so there is no need to deploy openssl libraries for windows 32
and 64 bits if SChannel option is selected in WebSocket Client.

Server Side

To enable this feature, you need to enable the following property:

SSL/ Enable

There are other properties that you need to define:

SSLOptions/ CertFile/ KeyFile/ RootCertFile: you need a certificate in .PEM format in order to encrypt
websocket communications.

SSLOptions/ Password: this is optional and only needed if the certificate has a password.

SSLOptions/ Port: port used on SSL connections.

Client Side

To enable this feature, you need to enable the following property:

TLS/ Enable

OpenSSL

By default, client and server components based on Indy make use of openSSL libraries when connect to secure
websocket servers.
Indy only supports 1.0.2 openssl API so API 1.1 is not supported. If you compile sgcWebSockets with our custom
Indy library you can make use of API 1.1 and select TLS 1.3 version. Just select in OpenSSL_Options properties
which openSSL API would you use:

oslAPI_1_0: it's default indy API, you can use standard Indy package with openssl 1.0.2 libraries.
oslAPI_1_1: only select if you are compiling sgcWebSockets with our custom Indy library (Enterprise Edi
tion). Will use openssl 1.1.1 libraries.
oslAPI_3_0: only select if you are compiling sgcWebSockets with our custom Indy library (Enterprise Edi
tion). Will use openssl 3.0.0 libraries.

ECDHE: allows to enable ECDHE for TLS 1.2 (more secure connections).

Events

There are 2 events which can be used to customize your SSL settings:

TOPICS

99

OnSSLGetHandler

This event is raised before SSL handler is created, you can create here your own SSL Handler (needs to be inherit
ed from TIdServerIOHandlerSSLBase or TIdIOHandlerSSLBase) and set the properties needed

properties needed

void OnServerSSLGetHandler(TObject *Sender, TwsSSLHandler aType, ref TIdServerIOHandlerSSLBase

*aSSLHandler)

{

 TCustomSSLHandler aSSLHandler = new TCustomSSLHandler();

 ...

}

OnSSLAfterCreateHandler

If no custom SSL object has been created, it creates by default using OpenSSL handler. You can access to SSL
Handler properties and modify if needed

void OnSSLAfterCreateHandler(TObject *Sender, TwsSSLHandler aType, TIdServerIOHandlerSSLBase

*aSSLHandler)

{

 dynamic_cast <tidserveriohandlesslopenssl>*(aSSLHandler)->SSLOptions->Method = sslvTLSv1_2;

}

Microsoft SChannel

From sgcWebSockets 4.2.6 you can use SChannel instead of openssl (only for windows from Windows 7+). This
means there is no need to deploy openssl libraries. TLS 1.0 is supported from windows 7 but if you need more
modern implementations like TLS 1.2 in Windows 7 you must enable TLS 1.1 and TLS 1.2 in Windows Registry.
Requires Delphi 2010 Professional Edition (or Enterprise Edition for Delphi 7, 2007 and 2009).

TOPICS

100

•
•

•

HeartBeat
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketServer_HTTPAPI
 TsgcWebSocketClient

On Server components, automatically sends a ping to all active WebSocket connections every x seconds.

On Client components, automatically sends a ping to the server every x seconds.

HeartBeat has the following properties:

Enabled: if true, sends a ping
Interval: is the value in seconds when a ping will be sent. Example: if value is 10, a ping will be sent every
10 seconds
Timeout: is the time will wait a response from server. Example: if value is 30, means will wait 30 seconds to
receive a response before close connection.

Customize HeartBeat

Client and server components allow customize HeartBeat to send custom pings and control that connection is still
alive. The event OnBeforeHeatBeat is built exactly for that, allows to send a custom message and/or not send stan
dard ping.

Example: send a message text as a ping every 30 seconds.

void OnBeforeHeartBeat(TObject *Sender; const TsgcWSConnection *Connection; ref bool Handled)

{

 Connection->WriteData("ping");

 Handled = true;

}

TOPICS

101

WatchDog
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketServer_HTTPAPI
 TsgcWebSocketClient

Server

On Server components, automatically restart server after unexpected shutdown. To check if server is active every
60 seconds, just set the following properties:

WatchDog.Enabled = true;
WatchDog.Interval = 60;
WatchDog.Attempts = 0;

WatchDog.Monitor allows to verify if new clients can connect to server, this is done by an internal client that tries to
open a WebSocket connection to server, if fails, it restart the server. To monitor if clients can connect to server with
a Time Out of 10 seconds, set the following properties:

WatchDog.Enabled = true;
WatchDog.Interval = 60;
WatchDog.Attempts = 0;
WatchDog.Monitor.Enabled = true;
WatchDog.Monitor.TimeOut = 10;

Client

On Client components, automatically reconnect to server after unexpected disconnection. To reconnect after a dis
connection every 10 seconds, just set the following properties:

WatchDog.Enabled = true;
WatchDog.Interval = 10;
WatchDog.Attempts = 0;

TOPICS

102

•
•

Logs
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient

This is a useful feature that allows debugging WebSocket connections, to enable this, you need to access to the
following property:

LogFile/ Enabled

Once enabled, every time a new connection is established it will be logged in a text file. On Server component, if
the file it's not created it will be created but with you can't access until the server is closed, if you want to open log
file while the server is active, log file needs to be created before start server.

Example:

127.0.0.1:49854 Stat Connected.

127.0.0.1:49854 Recv 09/11/2013 11:17:03: GET / HTTP/1.1

Upgrade: websocket

Connection: Upgrade

Host: 127.0.0.1:5414

Origin: http://127.0.0.1:5414

Pragma: no-cache

Cache-Control: no-cache

Sec-WebSocket-Key: 1n598ldHs9SdRfxUK8u4Vw==

Sec-WebSocket-Version: 13

Sec-WebSocket-Extensions: x-webkit-deflate-frame

127.0.0.1:49854 Sent 09/11/2013 11:17:03: HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: gDuzFRzwHBc18P1CfinlvKv1BJc=

127.0.0.1:49854 Stat Disconnected.

0.0.0.0:0 Stat Disconnected.

WebSocket Messages

WebSocket frames can be masked, which means that the message logged can not be read.
When the property LogFile.UnMaskFrames = True (by default it's true)

Messages sent by WebSocket Client are saved as unmasked.
Messages received by WebSocket Server are saved masked and unmasked (the reason is that when the
socket reads the buffer, it doesn't know if the protocol of the message, so it saves both).

TOPICS

103

HTTP
Supported by

 TsgcWebSocketHTTPServer

TsgcWebSocketHTTPServer is a component that allows handling WebSocket and HTTP connections using the
SAME port. Is very useful when you need to set up a server where only HTTP port is enabled (usually 80 port). This
component supports all TsgcWeBSocketServer features and allows to serve HTML pages.

You can serve HTML pages statically, using DocumentRoot property, example: if you save test.html in directory
"C:\inetpub\wwwroot", and you set DocumentRoot to "C:\inetpub\wwwroot". If a client tries to access to test.html, it
will be served automatically, example:

 http://localhost/test.html

Or you can serve HTML or other resources dynamically by code, to do this, there is an event called OnCom
mandGet that is fired every time a client requests a new HTML page, image, javascript file... Basically, you need to
check which document is requesting client (using ARequestInfo.Document) and send a response to client (using
AResponseInfo.ContentText where you send response content, AResponse.ContentType which is the type of re
sponse and a AResponseInfo.ResponseNo with a number of response code, usually is 200), example:

void WSServerCommandGet(TIdContext *AContext, TIdHTTPRequestInfo *ARequestInfo,

 TIdHTTPResponseInfo *AResponseInfo)

{

 if (ARequestInfo->Document == "/myfile.js")

 {

 AResponseInfo->ContentText = "<script type='text/javascript'>alert('Hello!');</script>";

 AResponseInfo->ContentType = "text/javascript";

 AResponseInfo->ResponseNo = 200;

 }

}

TOPICS

104

Broadcast and Channels
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketServer_HTTPAPI

Broadcast method by default send message to all clients connected, but you can use channels argument to fil
ter and only broadcast message to clients subscribed to a channel.

Example: your server has 2 types of connected clients, desktop and mobile devices, so you can create 2 channels
"desktop" and "mobile".

If you can identify in OnConnect event of server if a client is mobile, you can do something like following.

void OnServerConnect(TsgcWSConnection *Connection)

{

 if (desktop == true)

 {

 dynamic_cast(Connection)->DoSubscribe("desktop");

 }

}

First cast Connection to TsgcWSConnectionServer to access subscription methods and if fits your filter, will be sub
scribed to desktop channel. Subscription to a channel can be done in any event, example, you can ask to client to
tell you if it's mobile or not and send a message from client to server with info about client. Then you can only
broadcast to desktop connections:

Server->Broadcast("Your text message", "desktop");

If you have 100 connections and 30 are mobile, message will be only sent to other 70.

TOPICS

105

Bindings
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer

Usually, Servers have more than one IP, if you enable a WebSocket Server and set listening port to 80, when the
server starts, tries to listen port 80 of ALL IP, so if you have 3 IP, it will block port 80 of each IP's.

Bindings allow defining which exact IP and Port are used by the Server. Example, if you need to listen on port 80
for IP 127.0.0.1 (internal address) and 80.254.21.11 (public address), you can do this before the server is activated:

bind = WSServer->Bindings->Add();

{

 bind->Port = 80;

 bind->IP = "127.0.0.1";

}

bind = WSServer->Bindings->Add();

{

 bind->Port = 80;

 bind->IP = "80.254.21.11";

}

TOPICS

106

Post Big Files
Supported by

 TsgcWebSocketHTTPServer
 TsgcWebSocketServer_HTTPAPI

When a HTTP client sends a multipart/form-data stream, the stream is saved by server in memory. When the files
are big, the server can get an out of memory exception, to avoid these exceptions, the server has a property
called HTTPUploadFiles where you can configure how the POST streams are handled: in memory or as a file
streams. If the streams are handled as file streams, the streams received are stored directly in the hard disk so the
memory problems are avoided.

To configure your server to save multipart/form-data streams as file streams, follow the next steps:

1. Set the property HTTPUploadFiles.StreamType = pstFileStream. Using this setup, the server will store these
streams in the hard disk.
2. You can configure which is the minimum size in bytes where the files will be stored as file stream. By default
the value is zero, which means all streams will be stored as file stream.
3. The folder where the streams are stored using SaveDirectory, if not set, will be stored in the same folder where
the application is.
4. When a client sends a multipart/form-data, the content is encoded inside boundaries, if the property Remove
Boundaries is enabled, the content of boundaries will be extracted automatically after the full stream is received.

Sample Code

First create a new server instance and set the Streams are saved as File Streams.

TsgcWebSocketHTTPServer oServer = new TsgcWebSocketHTTPServer();

oServer->Port = 5555;

oServer->HTTPUploadFiles->StreamType = pstFileStream;

oServer->Active = true;

Then create a new html file with the following configuration

<html>
 <head><title>sgcWebSockets - Upload Big File</title></head>
 <body>
 <form action="http://127.0.0.1:5555/file" method="post" enctype="multipart/
form-data" accept-charset="UTF-8">
 <input type="file" name="file_1" />
 <input type="submit" />
 </form>
 </body>
</html>

Finally open the html file with a web browser and send a file to the server. The server will create a new file stream
with the extension ".sgc_ps" and when the stream is fully received, it will extract the file from the boundaries.

Events

There are 2 events which can be used to customize the upload file flow (requires the property
HTTPUploadFiles.RemoveBoundaries is enabled)

OnHTTPUploadBeforeSaveFile

This event is fired BEFORE the file is saved and allows to customize the name of the file received.

TOPICS

107

private void OnHTTPUploadBeforeSaveFileEvent(TObject *Sender, ref string aFileName, ref string aFilePath)

{

 if (aFileName == 'test.jpg')

 {

 aFileName = 'custom_test.jpg';

 }

}

OnHTTPUploadAfterSaveFile

This event is fired AFTER the file is saved and allows to know the name of the file saved.

private void OnHTTPUploadBeforeSaveFileEvent(TObject *Sender, string aFileName, string aFilePath)

{

 DoLog('File Received: ' + aFileName);

}

OnHTTPUploadReadInput

This event is fired when the decoder reads an input value received different from the file input (example: if the form
has some variables like name, date...).

private void OnHTTPUploadReadInputEvent(TObject *Sender, string aName, string aName)

{

 DoLog('Input value Received: ' + aName + ':' + aValue);

}

TOPICS

108

Compression
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 Web Browsers like Chrome

This is a feature that works very well when you need to send a lot of data, usually using a binary message, be
cause it compresses WebSocket message using protocol "PerMessage_Deflate" which is supported by some
browsers like Chrome.

To enable this feature, you need to activate the following property:

 Extensions/ PerMessage_Deflate / Enabled

When a client tries to connect to a WebSocket Server and this property is enabled, it sends a header with this prop
erty enabled, if Server has activated this feature, it sends a response to the client with this protocol activated and all
messages will be compressed, if Server doesn't have this feature, then all messages will be sent without compres
sion.

On Web Browsers, you don't need to do anything, if this extension is supported it will be used automatically, if not,
then messages will be sent without compression.

If WebSocket messages are small, is better don't enable this property because it consumes cpu cycle to compress/
decompress messages, but if you are using a big amount of data, you will notify and increase on messages ex
change speed.

TOPICS

109

Flash
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer

WebSockets are supported natively by a wide range of web browsers (please check http://caniuse.com/websockets),
but there are some old versions that don't implement WebSockets (like Internet Explorer 6, 7, 8 or 9). You can en
able Flash Fallback for all these browsers that don't implement WebSockets.

Almost all other or older browser support Flash installing Adobe Flash Player. To Support Flash connection, you
need to open port 843 on your server because Flash uses this port for security reasons to check for cross-domain-
access. If port 843 is not reachable, waits 3 seconds and tries to connect to Server default port.

Flash is only applied if the Browser doesn't support WebSockets natively. So, if you enable Flash Fallback on the
server side, and Web Browser supports WebSockets natively, it will still use WebSockets as transport.

To enable Flash Fallback, you need to access to FallBack / Flash property on the server and enable it. There are
2 properties more:

1. Domain: if you need to restrict flash connections to a single/multiple domains (by default all domains are al
lowed). Example: This will allow access to domain swf.example.com

swf.example.com

2. Ports: if you need to restrict flash connections to a single/multiple ports (by default all ports are allowed). Exam
ple: This will allow access to ports 123, 456, 457, and 458

123,456-458

Flash connections only support Text messages, binary messages are not supported.

http://caniuse.com/websockets

TOPICS

110

Custom Objects
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketServer_HTTPAPI
 TsgcWebSocketClient

Every time a new WebSocket connection is established, sgcWebSockets creates a TsgcWSConnection class
where you can access to some properties like identifier, bytes received/sent, client IP... and there is a property
called Data where you can store objects in memory like database access, session objects...

// You can create a new class called MyClass and create some properties, example:

class TMyClass

private:

 bool: FRegistered;

 string: FUser;

public

 __property bool Registered {read = FRegistered, write = FRegistered};

 __property string User {read = FRegistered, write FUser};

end;

// Then, when a new client connects, OnConnect Event, create a new TMyClass and Assign to Data:

void WSServerConnect(TsgcWSConnection *Connection)

begin

 Connection->Data = new TMyClass();

end;

// Every time a new message is received by the server, you can access your custom object using

// Connection.Data property.

void WSServerMessage(TsgcWSConnection *Connection, string Text)

{

 if (dynamic_cast<TMyClass*>(Connection->Data).Registered = true)

 {

 DoSomeStuff();

 }

}

// When a connection is closed, you may free your object:

void TfrmServerChat->WSServerDisconnect(TsgcWSConnection *Connection, int Code)

{

 TMyClass oMyClass = dynamic_cast<TMyClass*>(Connection->Data);

 if (oMyClass != 0)

 {

 oMyClass->Free

 Connection->Data = nil;

 }

}

TOPICS

111

Groups
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketServer_HTTPAPI

sgcWebSockets provides a powerful method for broadcasting messages to specified subsets of connected
clients. A group can have any number of clients, and a client can be a member of any number of groups. You don't
have to explicitly create groups. In effect, a group is automatically created the first time you specify its name in a
call to Groups.Add.

When you add a user to a group using the Groups.Add method, the user receives messages directed to that group
for the duration of the current connection.

Adding and removing users

To add or remove users from a group, you call the Add or Remove methods, and pass the Group Name and the Ts
gcWSConnection class. You do not need to manually remove a user from a group when the connection ends.

The following example shows the Groups.Add method.

void OnConnect(TsgcWSConnection *Connection)

{

 TsgcWebSocketServer1->Groups->Add("Room1", Connection);

}

Sending Messages to a Group

You can send a message to all members of a group as shown in the following example.

TsgcWebSocketServer1->Groups->Group["Room1"]->Broadcast("Hello Members of Room1");

Or you can send a message to all groups that start with "Room" (so if exists Room1, Room2, Room3... these users
will receive a message).

TsgcWebSocketServer1->Groups->Broadcast("Room*", "Hello Members of Room");

Events

There are 2 events that can be used to handle the Groups and Clients every time a new client is added to a group
or when is removed:

OnClientAdded
OnClientRemoved

Example, send a message to the group when a member leaves the group.

TOPICS

112

TsgcWebSocketServer1->Groups->OnClientRemoved() = OnClientRemovedEvent();

void OnClientRemovedEvent(TObject *Sender, const TsgcWSServerGroupItem *aGroup,

 const TsgcWSConnection *aConnection)

{

 aGroup->BroadCast("Client " + aConnection->Guid + " has disconnected");

}

TOPICS

113

IOCP
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer

*Requires custom Indy version.

IOCP for Windows is an API which allows handles thousands of connections using a limited pool of threads instead
of using a thread for connection like Indy by default does.
To enable IOCP for Indy Servers, Go to IOHandlerOptions property and select iohIOCP as IOHandler Type.

Server->IOHandlerOptions->IOHandlerType = iohIOCP;

Server->IOHandlerOptions->IOCP->IOCPThreads = 0;

Server->IOHandlerOptions->IOCP->WorkOpThreads = 0;

IOCPThreads are the threads used for IOCP asynchronous requests (overlapped operations), by default the value
is zero which means the number of threads are calculated using the number of processors (except for Delphi 7 and
2007 where the number of threads is set to 32 because the function cpucount is not supported).
WorkOpThreads only must be enabled if you want that connections are processed always in the same thread.
When using IOCP, the requests are processed by a pool of threads, and every request (for the same connection)
can be processed in different threads. If you want to handle every connection in the same thread set in
WorkOpThreads the number of threads used to handle these requests. This impacts in the performance of the
server and it's only recommended to set a value greater of zero only if you require this feature.

Enabling IOCP for windows servers is recommended when you need handle thousands of connections, if your
server is only handling 100 concurrent connections at maximum you can stay with default Indy Thread model.

OnDisconnect event not fired

IOCP works differently from default indy IOHandler. With default indy IOHandler, every connection runs in a thread
and these thread are running all the time and checking if connection is active, so if there is a disconnection, it's noti
fied in a short period of time.

IOCP works differently, there is a thread pool which handles all connections, instead of 1 thread = 1 connection like
indy does by default. For IOCP, the only way to detect if a connection is still alive is trying to write in socket, if there
is any error means that connection is closed. There are 2 options to detect disconnections:

1. If you use TsgcWebSocketClient, you can enable it in Options property, CleanDisconnect := True (by default
is disabled). If it's enabled, before the client disconnects it sends a message informing the server about disconnec
tion, so the server will receive this message and the OnDisconnect event will be raised.
2. You can enable heartbeat on the server side, for example every 60 seconds, so it will try to send a ping to all
clients connected and if there is any client disconnected, OnDisconnect will be called.

TOPICS

114

EPOLL
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer

*Requires sgcWebSockets Enterprise Edition.

EPOLL for Linux is an API which allows handles thousands of connections using a limited pool of threads instead of
using a thread for connection like Indy by default does.
To enable EPOLL for Indy Servers, Go to IOHandlerOptions property and select iohIEPOLL as IOHandler Type.

Server->IOHandlerOptions->IOHandlerType = iohEPOLL;

Server->IOHandlerOptions->EPOLL->EPOLLThreads = 0;

Server->IOHandlerOptions->EPOLL->WorkOpThreads = 0;

EPOLLThreads are the threads used for EPOLL asynchronous requests (overlapped operations), by default the
value is zero which means the number of threads are calculated using the number of processors (except for Delphi
7 and 2007 where the number of threads is set to 32 because the function cpucount is not supported). You can ad
just the number of threads manually.
WorkOpThreads only must be enabled if you want that connections are processed always in the same thread.
When using EPOLL, the requests are processed by a pool of threads, and every request (for the same connection)
can be processed in different threads. If you want to handle every connection in the same thread set in
WorkOpThreads the number of threads used to handle these requests. This impacts in the performance of the
server and it's only recommended to set a value greater of zero only if you require this feature.

Enabling EPOLL for Linux servers is recommended when you need handle thousands of connections, if your server
is only handling 100 concurrent connections at maximum you can stay with default Indy Thread model.

OnDisconnect event not fired

EPOLL works differently from default indy IOHandler. With default indy IOHandler, every connection runs in a
thread and these thread are running all the time and checking if connection is active, so if there is a disconnection,
it's notified in a short period of time.

EPOLL works differently, there is a thread pool which handles all connections, instead of 1 thread = 1 connection
like indy does by default. For EPOLL, the only way to detect if a connection is still alive is trying to write in socket, if
there is any error means that connection is closed. There are 2 options to detect disconnections:

1. If you use TsgcWebSocketClient, you can enable it in Options property, CleanDisconnect := True (by default
is disabled). If it's enabled, before the client disconnects it sends a message informing the server about disconnec
tion, so the server will receive this message and the OnDisconnect event will be raised.
2. You can enable heartbeat on the server side, for example every 60 seconds, so it will try to send a ping to all
clients connected and if there is any client disconnected, OnDisconnect will be called.

Linux Connections Limit

If you want to increase the number of concurrent open connections use the following command

ulimit -n 10000

The previous command sets the max number of open files descriptors to 10000

TOPICS

115

ALPN
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient

*Requires custom Indy version.

Application-Layer Protocol Negotiation (ALPN) is a Transport Layer Security (TLS) extension for application-layer
protocol negotiation. ALPN allows the application layer to negotiate which protocol should be performed over a se
cure connection in a manner that avoids additional round trips and which is independent of the application-layer
protocols. It is needed by secure HTTP/2 connections, which improves the compresslion of web pages and reduces
their latency compared to HTTP/1.x.

Client

You can configure in TLSOptions.ALPNProtocols, which protocols are supported by client. When client connects to
server, these protocols are sent on the initial TLS handshake 'Client Hello', and it lists the protocols that the client
supports, and server select which protocol will be used, if any.

You can get which protocol has been selected by server accessing to ALPNProtocol property of TsgcWSConnec
tionClient.

Server

When there is a new TLS connection, OnSSLALPNSelect event is called, here you can access to a list of protocols which are supported by client
and server can select which of them is supported.

If there is no support for any protocol, aProtocol can be left empty.

// Client

void OnClientConnect(TsgcWSConnection *Connection);

{

 string vProtocol = "";

 vProtocol = dynamic_cast<tsgcwsconnectionclient*>(Connection)->ALPNProtocol;

}

// Server

void OnSSLALPNSelect(TObject *Sender, TStringList *aProtocols, ref string aProtocol)

{

 (int i = 0; i count; i++)

 {

 if (aProtocols[i] == "h2")

 {

 aProtocol = "h2";

 break;

 }

 }

}

TOPICS

116

•
•

•

•
•
•

Forward HTTP Requests
Supported by

 TsgcWebSocketHTTPServer
 TsgcWebSocketServer_HTTPAPI
 TsgcWSHTTPWebBrokerBridgeServer
 TsgcWSHTTP2WebBrokerBridgeServer
 TsgcWSServer_HTTPAPI_WebBrokerBridge

You can configure the server to forward some HTTP requests to another server, this is very useful when you have
more than one server and only one server is listening on a public address.

Example: you can configure your server, to forward to another server all requests to /internal while all other re
quests are handled by sgcWebSockets server.

Use the event OnBeforeForwardHTTP to check if the URL requested must be forwarded and if it is, then set the
URL to forward.

Example: if you want to forward all requests to the document "/internal" to the server "localhost:8080", do the fol
lowing:

void OnBeforeForwardHTTP(TsgcWSConnection *Connection, TIdHTTPRequestInfo *ARequestInfo;

 TsgcWSServerForwardHTTP *aForward)

{

 if (ARequestInfo->Document == "/internal")

 {

 aForward->Enabled = true;

 aForward->URL = "http://localhost:8080";

 }

}

Other Options

When you want forward an HTTP request, you have the additional options:

1. By default, the request if forwarded using the original document. Example: if you forward the request http://local
host:8080/internal to the internal server http://localhost:5555, the forwarded URL will be http://localhost:5555/inter
nal. But you can modify the Document, using the Document property of Forward object (by default will use the
same of the original request).

aForward.Document = "/NewInternal"

2. If you forward a secure HTTP connection (HTTPs), you can customize the SSL/TLS options, in TLSOptions
property of Forward object. Example: set the TLS version

aForward.TLSOptions.Version = tls1_2

3. The following properties can be used to customize the HTTP request:

QueryParams: the parameters after the document example: 'id=1&user=2'.
Host: specifies the host and port number of the server to which the request is being sent. Example:
www.esegece.com:443
Origin: the origin (scheme, hostname, and port) that caused the request. Example: https://
www.esegece.com/document.
LogFilename: the name of the filename where the request/response will be stored.
NoCache: if the request must not use the web-browser cache, by default is enabled.
CustomHeaders: a List of custom headers to be added to the request. Example:
CustomHeaders.Add('X-ReverseProxy-Host: http://127.0.0.1:8888/test');

TOPICS

117

•
•

•

Quality Of Service
Supported by

 TsgcWSPServer_sgc
 TsgcWSPClient_sgc
 TsgcWSPClient_MQTT
 Java script

SGC Default Protocol and MQTT implements a QoS (Quality of Service) for message delivery, there are 3 different
types:

Level 0: "At most once", where messages are delivered according to the best efforts of the underlying TCP/
IP network. Message loss or duplication can occur. This level could be used, for example, with ambient sen
sor data where it does not matter if an individual reading is lost as the next one will be published soon after.

Level 1: "At least once", where messages are assured to arrive but duplicates may occur.

Level 2: "Exactly once", where message are assured to arrive exactly once. This level could be used, for ex
ample, with billing systems where duplicate or lost messages could lead to incorrect charges being applied.

Level 0

The message is delivered according to the best efforts of the underlying TCP/IP network. A response is not
expected and no retry semantics are defined in the protocol. The message arrives at the server either once
or not at all.

The table below shows the QoS level 0 protocol flow.

Client Message and direction Server

QoS = 0
PUBLISH
---------->

Action: Publish a message to subscribers

Level 1

The receipt of a message by the server is acknowledged by a ACKNOWLEDGEMENT message. If there is
an identified failure of either the communications link or the sending device or the acknowledgement mes
sage is not received after a specified period of time, the sender resends the message. The message arrives
at the server at least once.

A message with QoS level 1 has a Message ID in the message.

The table below shows the QoS level 1 protocol flow.

Client Message and direction Server

QoS = 1
Message ID = x
Action: Store message

PUBLISH
---------->

Actions:
Store message
Publish a message to sub
scribers
Delete message

Action: Discard message
ACKNOWLEDGEMENT

<----------

TOPICS

118

•

•

If the client does not receive an ACKNOWLEDGMENT message (either within a time period defined in the
application, or if a failure is detected and the communications session is restarted), the client may resend the
PUBLISH message.

Level 2

Additional protocol flows above QoS level 1 ensure that duplicate messages are not delivered to the receiv
ing application. This is the highest level of delivery, for use when duplicate messages are not acceptable.
There is an increase in network traffic, but it is usually acceptable because of the importance of the message
content.

A message with QoS level 2 has a Message ID in the message.

The table below shows the QoS level 2 protocol flow. There are two semantics available for how a PUBLISH
flow should be handled by the recipient.

Client Message and direction Server

QoS = 2
Message ID = x
Action: Store message

PUBLISH
---------->

Action: Store message

 PUBREC
<----------

Message ID = x

Message ID = x
PUBREL

---------->

Actions:
Publish a message to
subscribers
Delete message

Action: Discard message
ACKNOWLEDGEMENT

<----------
Message ID = x

If a failure is detected, or after a defined time period, the protocol flow is retried from the last unacknowl
edged protocol message. The additional protocol flows to ensure that the message is delivered to sub
scribers once only.

TOPICS

119

•
•

Queues
Supported by

 TsgcWSPServer_sgc
 TsgcWSPClient_sgc
 Java script

SGC Default Protocol implements Queues to add persistence to published messages (it's only available for Pub
lished messages)

Level 0: Messages are not queued on Server

Level 1: only last message is queued on Server, and is sent every time a client subscribes to a new channel
or connects to the server.

Level 2: All messages are queued on Server, and are sent every time a client subscribes to a new channel
or connects to the server.

Level 0

The message is not queued by Server

The table below shows the Queue level 0 protocol flow.

Client Message and direction Server

Queue = 0
PUBLISH
---------->

Action: Publish a message to subscribers

Level 1

A message with Queue level 1 is stored on the server and if there are other messages stored for this chan
nel, are deleted.

The table below shows the Queue level 1 protocol flow.

Client Message and direction Server

Queue = 1
PUBLISH
---------->

Actions:
Deletes All messages of this channel
Store last message by Channel

Action: Process
message

NOTIFY
<----------

Action: Every time a new client subscribes to
this channel, the last message is sent.

This is useful where publishers send messages on a "report by exception" basis, where it might be some

time between messages. This allows new subscribers to instantly receive data with the retained, or Last Known
Good, value.

Level 2

TOPICS

120

All messages with Queue level 2 are stored on the server.

The table below shows the Queue level 2 protocol flow.

Client Message and direction Server

Queue = 2
PUBLISH
---------->

Action: Store message

Action: Process
message

NOTIFY
<----------

Action: Every time a new client subscribes to
this channel, ALL Messages are sent.

TOPICS

121

Transactions
Supported by

 TsgcWSPServer_sgc
 TsgcWSPClient_sgc
 Java script

sgcWebSockets SGC Protocol supports transactional messaging, when a client commits a transaction, all mes
sages sent by the client are processed on the server side. There are 3 methods called by the client:

StartTransaction

 Creates a New Transaction on the server side and all messages that are sent from the client to the server after
this method, are queued on Server side, until the client calls to Commit or Rollback

Client
Message and di

rection
Server

Channel = X
STARTTRANSAC

TION
---------->

Action: Creates a new Queue to store all Mes
sages of the specified channel

Channel = X
PUBLISH

---------->
Action: Message is stored on Server Side.

Action: Client get
confirmation of
message sent

ACKNOWLEDGE
MENT

<----------

Action: Server returns an Acknowledgement to
the client because message is stored.

....

Commit

 When a client calls to commit, all messages queued by the server are processed.

Client Message and direction Server

Channel =
X

COMMIT
---------->

Action: Process all messages queued by Transac
tion

RollBack

 When a client calls to RollBack, all messages queued by the server are deleted and not processed on the server
side.

Client Message and direction Server

Channel = X
ROLLBACK
---------->

Action: Delete all messages queued by Transaction

TOPICS

122

TCP Connections
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient

By default, sgcWebSocket use WebSocket as protocol, but you can use plain TCP protocol in client and server
components.

Client Component
Disable WebSocket protocol.

Client->Specifications->RFC6455 = false;

Server Component
Handle event OnUnknownProtocol and set Transport as trpTCP and Accept the connection.

void OnUnknownProtocol(TsgcWSConnection *Connection, ref bool Accept)

{

 Connection->Transport = trpTCP;

 Accept = true;

}

Then when a client connects to the server, this connection will be defined as TCP and will use plain TCP protocol
instead of WebSockets. Plain TCP connections don't know if the message is text or binary, so all messages re
ceived are handle OnBinary event.

End of Message
If messages are big, sometimes can be received fragmented. There is a method to try to find end of message set
ting which bytes find. Example: STOMP protocol, all messages ends with byte 0 and 10

void OnWSClientConnect(TsgcWSConnection *Connection)

{

 Connection->TCPEndOfFrameScanBuffer = eofScanAllBytes;

 Connection->AddTCPEndOfFrame(0);

 Connection->AddTCPEndOfFrame(10);

}

TOPICS

123

SubProtocol
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 TsgcWebSocketServer_HTTPAPI

WebSocket provides a simple subprotocol negotiation, basically adds a header with protocols name supported by
request, these protocols are received and if the receiver supports one of them, sends a response with subprotocol
supported.

sgcWebSockets supports several SubProtocols: MQTT, WAMP... and more. You can implement your own subpro
tocols using a very easy method, just call RegisterProtocol and send SubProtocol Name as an argument.

Example: you need to connect to a server which implements subprotocol "Test 1.0"

Client = new TsgcWebSocketClient();

Client->Host = "server host";

Client->Port = server.port;

Client->RegisterProtocol("Test 1.0");

Client->Active = true;

To use more than 1 protocol in a single connection, you can use the Broker Protocol (Server and Client) com
ponents to handle it. Just put a Broker between the Client/Server and the protocols. Example: User SGC and Files
protocols using a single connection.

// ... server

TsgcWebSocketServer *oServer = new TsgcWebSocketServer();

TsgcWSPServer_Broker *oServerBroker = new TsgcWSPServer_Broker;

oServerBroker->Server = oServer;

TsgcWSPServer_sgc *oServerSGC = new TsgcWSPServer_sgc();

oServerSGC->Broker = oServerBroker;

TsgcWSPServer_files *oServerFiles = new TsgcWSPServer_files();

oServerFiles->Broker = oServerBroker;

// ... client

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSPClient_Broker *oClientBroker = new TsgcWSPClient_Broker;

oClientBroker->Client = oClient;

TsgcWSPClient_sgc *oClientSGC = new TsgcWSPClient_sgc();

oClientSGC->Broker = oClientBroker;

TsgcWSPClient_files *oClientFiles = new TsgcWSPClient_files();

oClientFiles->Broker = oClientBroker;

When a broker protocol is attached between the Server/Client and the protocol, the events OnConnect and
OnDisconnect are fired in the Broker component (instead of the Server or Client components).

TOPICS

124

Throttle
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient

Bandwidth Throttling is supported by Server and Client components, if enabled, can limit the number of bits per
second sent/received by the socket. Indy uses a blocking method, so if a client is limiting its reading, unread data
will be inside the client socket and the server will be blocked from writing new data to the client. As much slower is
client reading data, much slower is server writing new data.

TOPICS

125

•
•
•

Server-sent Events (Push Notifications)
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 Java script

SSE are not part of WebSockets, defines an API for opening an HTTP connection for receiving push notifications
from a server.

SSEs are sent over traditional HTTP. That means they do not require a special protocol or server implementation to
get working. In addition, Server-Sent Events have a variety of features that WebSockets lack by design such as au
tomatic reconnection, event IDs, and the ability to send arbitrary events.

Events

Open: when a new SSE connection is opened.
Message: when the client receives a new message.
Error: when there any connection error like a disconnection.

JavaScript API

To subscribe to an event stream, create an EventSource object and pass it the URL of your stream:

var sse = new EventSource('sse.html');

sse.addEventListener('message', function(e)

 {console.log(e.data);

}, false);

sse.addEventListener('open', function(e) {

 // Connection was opened.

}, false);

sse.addEventListener('error', function(e) {

 if (e.readyState == EventSource.CLOSED) {

 // Connection was closed.

 }

}, false);

When updates are pushed from the server, the onmessage handler fires and new data is available in its e.data
property. If the connection is closed, the browser will automatically reconnect to the source after ~3 seconds (this is
a default retry interval, you can change on the server side).

Fields

The following field names are defined by the specification:

event

The event's type. If this is specified, an event will be dispatched on the browser to the listener for the specified
event name; the web site would use addEventListener() to listen for named events. the onmessage handler is
called if no event name is specified for a message.

data

TOPICS

126

The data field for the message. When the EventSource receives multiple consecutive lines that begin with data:, it
will concatenate them, inserting a newline character between each one. Trailing newlines are removed.

id

The event ID to set the EventSource object's last event ID value to.

retry

The reconnection time to use when attempting to send the event. This must be an integer, specifying the reconnec
tion time in milliseconds. If a non-integer value is specified, the field is ignored.

All other field names are ignored.

For multi-line strings use #10 as line feed.

Examples of use:

If you need to send a message to a client, just use WriteData method.

// If you need to send a message to a client, just use WriteData method.

Connection->WriteData("Notification from server");

// To send a message to all Clients, use Broadcast method.

Connection->Broadcast("Notification from server");

// To send a message to all Clients using url 'sse.html', use Broadcast method and Channel parameter:

Connection->Broadcast("Notification from server", "/sse.html");

// You can send a unique id with an stream event by including a line starting with "id:":

Connection->WriteData("id: 1 \r data: Notification from server");

// If you need to specify an event name:

Connection->WriteData("event: notifications \r data: Notification from server");

javascript code to listen "notifications" channel:

 sse.addEventListener('notifications', function(e) {

 console.log('notifications:' + e.data);

 }, false);

TOPICS

127

LoadBalancing
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketLoadBalancerServer

Load Balancing allows distributing work between several back-end servers, every time a new client requests a con
nection, it connects to a load balancer server (which is connected to back-end servers) and returns a connection
string with information about the host, port... which is used by the client to connect to a server. If you have for ex
ample 4 servers, with this method all servers will have, more or less, the same number of connections, and work
load will be similar.

If a client wants to send a message to all clients of all servers, just use broadcast method, and this message will be
broadcast to all servers connected to Load Balancer Server.

To enable this feature:

1. Drop a TsgcWebSocketLoadBalancerServer component, set a listening port and set active to True.

2. Server and Client components, have a property called LoadBalancer, where you need to set host and port
of Load Balancer Server, and enabled True.

The Component allows to Load Balancing WebSocket and HTTP Protocols.

TOPICS

128

Files
Supported by

 TsgcWSPServer_sgc
 TsgcWSPClient_sgc

This protocol allows sending files from client to server and from server to client in an easy way. You can send from
really small files to big files using a low memory usage. You can set:

1. Packet size in bytes.
2. Use custom channels to send files to only subscribed clients.
3. The progress of file send and received.
4. Authorization of files received.
5. Acknowledgement of packets sent.

TOPICS

129

Proxy
Supported by

 TsgcWebSocketClient

Client WebSocket components support WebSocket connections through HTTP proxies, to enable proxy connection
you need to activate the following properties:

Proxy / Enabled

Once set to True, you can set up:

Host: Proxy server address
Port: Proxy server port
UserName/Password: Authentication to connect to proxy, only if required.

You can configure SOCKS proxies accessing to SOCKS property and set Enable to True.

TOPICS

130

Fragmented Messages
Supported by

 TsgcWebSocketServer
 TsgcWebSocketHTTPServer
 TsgcWebSocketClient
 TsgcWebSocketServer_HTTPAPI

By default, when a stream is sent using sgcWebSockets library, it sends all data in a single packet or buffers all
packets and when the latest packet is received, OnBinary message event is called.
This behaviour can be customized by Options.FragmentedMessages property, which accepts following values:

1. frgOnlyBuffer: this is the default value, means that packet messages will be buffered and only when all stream is
received, OnBinary message will be called.
2. frgOnlyFragmented: this means that OnFragmented event only will be called for every packet received.
3. frgAll: this means that OnFragmented event will be called for every packet received and when the full stream is
received.

OnFragmented event is useful when you must send big streams and receiver must show progress of the transfer.

Example: the client must send a stream of size 1.000.000 bytes to server and server wants show progress for
every 1000 bytes received

The client will send a stream using writedata method with a size for a packet of 1000

Client->WriteData(stream, 1000);

The server will set in Options.FragmentedMessages := frgAll and will handle OnFragmented event to receive
progress of streams

void OnFragmented(TsgcWSConnection *Connection, const TMemoryStream *Data, const TOpCode OpCode, const boolean Continuation)

{

 ShowProgress(Data->Size);

 if (Continuation == false)

 {

 SaveStream(Data);

 }

}

COMPONENTS

131

TsgcWebSocketClient
TsgcWebSocketClient implements Client WebSocket Component and can connect to a WebSocket Server. Follow
the next steps to configure this component:

1. Drop a TsgcWebSocketClient component onto the form

2. Set Host and Port (default is 80) to connect to an available WebSocket Server. You can set URL property and
Host, Port, Parameters... will be updated from URL. Example: wss://127.0.0.1:8080/ws/ will result:

oClient = new TsgcWebSocketClient();

oClient->Host = "127.0.0.1";

oClient->Port = 80;

oClient->TLS = true;

oClient->Options->Parameters = "/ws/";

3. You can select if you require TLS (secure connection) or not, by default is not Activated.

4. You can connect through an HTTP Proxy Server, you need to define proxy properties:

 Host: hostname of the proxy server.
 Port: port number of the proxy server.
 Username: user to authenticate, blank if anonymous.
 Password: password to authenticate, blank if anonymous.

5. If the server supports compression, you can enable compression to compress messages sent.

6. Set Specifications allowed, by default all specifications are allowed.

 RFC6455: is standard and recommended WebSocket specification.

 HIxie76: always is false

7. If you want, you can handle events

 OnConnect: when a WebSocket connection is established, this event is fired

 OnDisconnect: when a WebSocket connection is dropped, this event is fired

 OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired

 OnMessage: every time the server sends a text message, this event is fired

 OnBinary: every time the server sends a binary message, this event is fired

 OnFragmented: when receives a fragment from a message (only fired when Options.FragmentedMessages =
frgAll or frgOnlyFragmented).

 OnHandhake: this event is fired when handshake is evaluated on the client side.

 OnException: every time an exception occurs, this event is fired.

 OnSSLVerifyPeer: if verify certificate is enabled, in this event you can verify if server certificate is valid and ac
cept or not.

 OnBeforeHeartBeat: if HeartBeat is enabled, allows to implement a custom HeartBeat setting Handled parame
ter to True (this means, standard websocket ping won't be sent).

 OnBeforeConnect: before the client tries to connect to server, this event is called.

COMPONENTS

132

•
•
•
•
•
•
•
•

•
•
•
•
•

•
•
•

•
•
•

•
•

•
•
•
•
•

 OnBeforeWatchDog: if WatchDog is enabled, allows to implement a custom WatchDog setting Handled para
meter to True (this means, won't try to connect to server). You can change the Server Connection properties too
before try to reconnect, example: connect to a fallback server if first fails.

8. Set property Active = true to start a new websocket connection

Most common uses

Connection
How Connect WebSocket Server
Open a Client Connection
Close a Client Connection
Keep Connection active
Dropped Disconnections
Connect TCP Server
WebSocket Redirections

Secure Servers

Connect Secure Server
Certificates OpenSSL
Certificates SChannel
SChannel Get Connection Info

Send Messages

Send Text Message
Send Binary Message

Receive Messages

Receive Text Messages
Receive Binary Messages

Authentication

Client Authentication

Other
Client Exceptions
Client WebSocket HandShake
Client Register Protocol
Client Proxies

Methods

 WriteData: sends a message to a WebSocket Server. Could be a String or MemoryStream. If "size" is set, the
packet will be split if the size of the message is greater of size.

 Ping: sends a ping to a Server. If a time-out is specified, it waits for a response until a time-out is exceeded, if no
response, then closes the connection.

 Start: uses a secondary thread to connect to the server, this prevents your application freezes while trying to
connect.

 Stop: uses a secondary thread to disconnect from the server, this prevents your application freezes while trying
to disconnect.

 Connect: try to connect to the server and wait till the connection is successful or there is an error.

 Disconnect: try to disconnect from the server and wait till disconnection is successful or there is an error.

COMPONENTS

133

•

Properties

 Authentication: if enabled, WebSocket connection will try to authenticate passing a username and password.

 Implements 4 types of WebSocket Authentication

Session: client needs to do a HTTP GET passing username and password, and if authenticated, server re
sponse a Session ID. With this Session ID, client open WebSocket connection passing as a parameter.

URL: client open WebSocket connection passing username and password as a parameter.

Basic: uses basic authentication where user and password as sent as HTTP Header.

Token: sends a token as HTTP Header. Usually used for bearer tokens where token must be set in AuthTo
ken property.

OAuth: if a OAuth2 component is attached, before client connects to server, it requests a new Access
Token to Authorization server. OAuth2 Component.

 Host: IP or DNS name of the server.

 HeartBeat: if enabled try to keeps alive WebSocket connection sending a ping every x seconds.

Interval: number of seconds between each ping.

Timeout: max number of seconds between a ping and pong.

 TCPKeepAlive: if enabled, uses keep-alive at TCP socket level, in Windows will enable
SIO_KEEPALIVE_VALS if supported and if not will use keepalive. By default is disabled. Read about Dropped Dis
connections.

Time: if after X time socket doesn't sends anything, it will send a packet to keep-alive connection (value in
milliseconds).

Interval: after sends a keep-alive packet, if not received a response after interval, it will send another packet
(value in milliseconds).

 ConnectTimeout: max time in milliseconds before a connection is ready.

 LoadBalancer: it's a client which connects to Load Balancer Server to broadcast messages and get information
about servers.

Enabled: if enabled, it will connect to Load Balancer Server.

Host: Load Balancer Server Host.

Port: Load Balancer Server Port.

 Servers: here you can set manual WebSocket Servers to connect (if you don't make use of Load Balancer
Server get server connection methods), example:

http://127.0.0.1:80
http://127.0.0.2:8888

 Connected: returns true if the connection is active. Use this property carefully, because uses internal "connect
ed" Indy method, and this method may lock the thread and/or increment the use of cpu. If you want to know if the
client is connected, just use the Active property, which is safer.

 ReadTimeout: max time in milliseconds to read messages.

 WriteTimeOut: max time in milliseconds sending data to other peer, 0 by default (only works under Windows
OS).

 BoundPortMin: minimum local port used by client, by default zero (means there aren't limits).

COMPONENTS

134

 BoundPortMax: max local port used by client, by default zero (means there aren't limits).

 Port: Port used to connect to the host.

 LogFile: if enabled save socket messages to a specified log file, useful for debugging. The access to log file is
not thread safe if it's accessed from several threads.

Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.

FileName: full path to the filename.

UnMaskFrames: by default True, means that saves the websocket messages sent unmasked.

 NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

 Options: allows customizing headers sent on the handshake.

FragmentedMessages: allows handling Fragmented Messages

 frgOnlyBuffer: the message is buffered until all data is received, it raises OnBinary or OnMessage
event (option by default)
 frgOnlyFragmented: every time a new fragment is received, it raises OnFragmented Event.
 frgAll: every time a new fragment is received, it raises OnFragmented Event with All data received
from the first packet. When all data is received, it raises OnBinary or OnMessage event.

Parameters: define parameters used on GET.

Origin: customize connection origin.

RaiseDisconnectExceptions: enabled by default, raises an exception every time there is a disconnection
by protocol error.

ValidateUTF8: if enabled, validates if the message contains UTF8 valid characters, by default is disabled.

CleanDisconnect: if enabled, every time client disconnects from server, first sends a message to inform
server connection will be closed.

 QueueOptions: this property allows to queue the messages in an internal queue (instead of send directly) and
send the messages in the context of the connection thread, this prevents locks when several threads try to send a
message. For every message type: Text, Binary or Ping a queue can be configured, by default the value set is qm
None which means the messages are not queued. The other types, means different queue levels and the differ
ence between them are just the order where are processed (first are processed qmLevel1, then qmLevel2 and fi
nally qmLevel3).
Example: if Text and Binary messages have the property set to qmLevel2 and Ping to qmLevel1. The client will
process first the Ping messages (so the ping message is sent first than Text or Binary if they are queued at the
same time), and then process the Text and Binary messages in the same queue.

 Extensions: you can enable compression on messages sent.

 Protocol: if exists, shows the current protocol used

 Proxy: here you can define if you want to connect through a Proxy Server, you can connect to the following
proxy servers:

pxyHTTP: HTTP Proxy Server.
pxySocks4: SOCKS4 Proxy Server.
pxySocks4A: SOCKS4A Proxy Server.

COMPONENTS

135

pxySocks5: SOCKS5 Proxy Server.

 WatchDog: if enabled, when an unexpected disconnection is detected, tries to reconnect to the server automati
cally.

Interval: seconds before reconnects.

Attempts: max number of reconnects, if zero, then unlimited.

 Throttle: used to limit the number of bits per second sent/received.

 TLS: enables a secure connection.

 TLSOptions: if TLS enabled, here you can customize some TLS properties.

ALPNProtocols: list of the ALPN protocols which will be sent to server.
RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica
tion is performed for the X.509 certificate.
Version: by default negotiates all possible TLS versions from newer to lower. A specific TLS version can be
selected.

tlsUndefined: this is the default value, the client will try to negotiate all possible TLS versions (start
ing from newest to oldest), till connects successfully.
tls1_0: implements TLS 1.0
tls1_1:implements TLS 1.1
tls1_2: implements TLS 1.2
tls1_3: implements TLS 1.3

IOHandler: select which library you will use to connection using TLS.
iohOpenSSL: uses OpenSSL library and is the default for Indy components. Requires to deploy
openssl libraries (can be download from the private account of registered customers).
iohSChannel: uses Secure Channel which is a security protocol implemented by Microsoft for Win
dows, doesn't require to deploy openssl libraries. Only works in Windows 32/64 bits.

OpenSSL_Options: configuration of the openSSL libraries.
APIVersion: allows to define which OpenSSL API will be used.

oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

SChannel_Options: allows to use a certificate from Windows Certificate Store.
CertHash: is the certificate Hash. You can find the certificate Hash running a dir command in power
shell.
CipherList: here you can set which Ciphers will be used (separated by ":"). Example:
CALG_AES_256:CALG_AES_128
CertStoreName: the store name where is stored the certificate. Select one of below:

COMPONENTS

136

scsnMY (the default)
scsnCA
scsnRoot
scsnTrust

CertStorePath: the store path where is stored the certificate. Select one of below:
scspStoreCurrentUser (the default)
scspStoreLocalMachine

COMPONENTS

137

TsgcWebSocketClient | Connect WebSocket
Server
URL Property

The most easy way to connect to a WebSocket server is use URL property and call Active = true.

Example: connect to www.esegece.com using secure connection.

oClient = new TsgcWebSocketClient();

oClient->URL = "wss://www.esegece.com:2053";

oClient->Active = true;

Host, Port and Parameters

You can connect to a WebSocket server using Host and port properties.

Example: connect to www.esegece.com using secure connections

oClient = new TsgcWebSocketClient();

oClient->Host = "www.esegece.com";

oClient->Port = 2053;

oClient->TLS = true;

oClient->Active = true;

COMPONENTS

138

TsgcWebSocketClient | Client Open Connec
tion
Once your client is configured to connect to server, there are 3 different options to call Open a new connection.

Active Property

The most easy way to open a new connection is Set Active property to true. This will try to connect to server using
component configuration.
If you set Active property to false, will close connection if active.
This method is executed in the same thread that caller. So if you call in the Main Thread, method will be executed
in Main Thread of application.

Open Connection

oClient = new TsgcWebSocketClient();

...

oClient->Active = true;

When you call Active = true, you can't still send any data to server because client maybe is still connecting, you
must first wait to OnConnect event is fired and then you can start to send messages to server.

Close Connection

oClient->Active = false;

When you call Active = false, you cannot be sure that connection is already closed just after this code, so you
must wait to OnDisconnect event is fired.

Start/Stop methods

When you call Start() or Stop() to connect/disconnect from server, is executed in a secondary thread, so it doesn't
blocks the thread where is called. Use this method if you want connect to a server and let your code below contin
ue.

Open Connection

oClient = new TsgcWebSocketClient();

...

oClient->Start();

When you call Start(), you can't still send any data to server because client maybe is still connecting, you must
first wait to OnConnect event is fired and then you can start to send messages to server.

Close Connection

oClient->Stop();

When you call Stop(), you cannot be sure that connection is already closed just after this code, so you must
wait to OnDisconnect event is fired.

COMPONENTS

139

Connect/Disconnect methods

When you call Connect() or Disconnect() to open/close connection from server, this is executed in the same thread
where is called, but it waits till process is finished. You must set a Timeout to set the maximum time to wait till
process is finished (by default 10 seconds)

Example: connect to server and wait till 5 seconds

oClient = new TsgcWebSocketClient();

...

if (oClient->Connect(5000) == true)

{

 oClient->WriteData("Hello from client");

}

else

{

 Error();

}

If after calling Connect() method, the result is successful, you can already send a message to server because con
nection is alive.

Example: connect to server and wait till 10 seconds

if (oClient->Disconnect(10000) == true)

{

 ShowMessage("Disconnected");

}

else

{

 ShowMessage("Not Disconnected");

}

If after calling Disconnect() event the result is successful, this means that connection is already closed.

OnBeforeConnect event can be used to customize the server connection properties before the client tries to con
nect to it.

COMPONENTS

140

TsgcWebSocketClient | Client Close Con
nection
Connection can be closed using Active property, Stop or Disconnect methods, read more from Client Open Con
nection.

CleanDisconnect

When connection is closed, you can notify other peer that connection is closed sending a message about close
connection, to enable this feature, Set Options.CleanDisconnect property to true.
If this property is enabled, before connection is closed, a Close message will be sent to server to notify that client is
closing connection.

Disconnect

TsgcWSConnection has a method called Disconnect(), that allows to disconnect connection at socket level. If you
call this method, socket will be disconnected directly without waiting any response from server. You can send a
Close Code with this method.

Close

TsgcWSConnection has a method called Close(), which allows to send a message to server requesting to close
connection, if server receives this message, must close the connection and client will receive a notification that con
nection is closed. You can send a Close Code with this method.

COMPONENTS

141

TsgcWebSocketClient |Client Keep Connec
tion Open
Once your client has connected to server, sometimes connection can be closed due to poor signal, connection er
rors... there are 2 properties which helps to keep connection active.

HeartBeat

HeartBeat property allows to send a Ping every X seconds to maintain connection alive. Some servers, close
TCP connections if there is no data exchanged between peers. HeartBeat solves this problem, sending a ping
every a specific interval. Usually this is enough to maintain a connection active, but you can set a TimeOut interval
if you want to close connection if a response from server is not received after X seconds.

Example: send a ping every 30 seconds

oClient = new TsgcWebSocketClient();

oClient->HeartBeat->Interval := 30;

oClient->HeartBeat->Timeout := 0;

oClient->HeartBeat->Enabled := true;

oClient->Active = true;

There is an event called OnBeforeHeartBeat which allows to customize HeartBeat behaviour. By default, if Heart
Beat is enabled, client will send a websocket ping every X seconds set by HeartBeat.Interval property.
OnBeforeHeartBeat has a parameter called Handled, by default is false, which means the flow is controlled by Ts
gcWebSocketClient component. If you set the value to True, then ping won't be sent, and you can send your cus
tom message using Connection class.

WatchDog

If WatchDog is enabled, when client detects a disconnection, WatchDog try to reconnect again every X seconds
until connection is active again.

Example: reconnect every 10 seconds after a disconnection with unlimited attempts.

oClient = new TsgcWebSocketClient();

oClient->WatchDog->Interval := 10;

oClient->WatchDog->Attempts := 0;

oClient->WatchDog->Enabled := true;

oClient->Active = true;

You can use OnBeforeWatchDog event to change the Server where the client will try to connect. Example: after 3
retries, if the client cannot connect to a server, will try to connect to a secondary server.
The Handled property, if set to True, means that the client won't try to reconnect.

COMPONENTS

142

•

•
•

•

TsgcWebSocketClient | Dropped Disconnec
tions
Once the connection has been established, if no peer sends any data, then no packets are sent over the net. TCP
is an idle protocol, so it assumes that the connection is active.

Disconnection reasons

Application closes: when a process is finished, usually sends a FIN packet which acknowledges the other
peer that connection has been closed. But if a process crashes there is no guarantee that this packet will be
sent to other peer.
Device Closes: if devices closes, most probably there won't be any notification about this.
Network cable unplugged: if network cable is unplugged it's the same that a router closes, there is no data
being transferred so connection is not closed.
Loss signal from router: if application loses signal from router, connection will still be alive.

Detect Half-Open Disconnections

You can try to detect disconnections using the following methods

Second Connection

You can try to open a second connection and try to connect but this has some disadvantages, like you are consum
ing more resources, create new threads... and if other peer has rebooted, second connection will work but first
won't.

Ping other peer

If you try to send a ping or whatever message with a half-open connection, you will see that you don't get any error.

Enable KeepAlive at TCP Socket level

A TCP keep-alive packet is simply an ACK with the sequence number set to one less than the current sequence
number for the connection. A host receiving one of these ACKs responds with an ACK for the current sequence
number. Keep-alives can be used to verify that the computer at the remote end of a connection is still available.
TCP keep-alives can be sent once every TCPKeepAlive.Time (defaults to 7,200,000 milliseconds or two hours) if
no other data or higher-level keep-alives have been carried over the TCP connection. If there is no response to a
keep-alive, it is repeated once every TCPKeepAlive.Interval seconds. KeepAliveInterval defaults to 1000 millisec
onds.

You can enable per-connection KeepAlive and allow that TCP protocol check if connection is active or not. This is
the preferred method if you want to detect dropped disconnections (for example: when you unplug a network ca
ble).

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TCPKeepAlive->Enabled = true;

TCPKeepAlive->Time = 5000;

TCPKeepAlive->Interval = 1000;

COMPONENTS

143

TsgcWebSocketClient | Connect TCP Server
TsgcWebSocketClient can connect to WebSocket servers but can connect to plain TCP Servers too.

URL Property

The most easy way to connect to a WebSocket server is use URL property and call Active = true.

Example: connect to 127.0.0.1 port 5555

oClient = new TsgcWebSocketClient();

oClient->URL = "tcp://127.0.0.1:5555";

oClient->Active = true;

Host, Port and Parameters

You can connect to a TCP server using Host and port properties.

Example: connect to 127.0.0.1 port 5555

oClient = new TsgcWebSocketClient();

oClient->Specifications->RFC6455 = false;

oClient->Host = "127.0.0.1";

oClient->Port = 5555;

oClient->Active = true;

COMPONENTS

144

TsgcWebSocketClient | Connections
TIME_WAIT
When a client initiates a disconnection from server, there is an exchange between client and server to inform about
the state of disconnection. When the process is finished, the client socket connection states as TIME_WAIT during
a variable time. This is a normal behavior, in windows operating systems, this time defaults to about 4 minutes.

You can reduce or eliminate this behaviour, do with careful, using the following alternatives.

REGEDIT

You can reduce the TIME_WAIT value using the Windows Regedit

1. Open Regedit and access to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\TCPIP\Parameters registry subkeys.
2. Create a new REG_DWORD value named TcpTimedWaitDelay
3. Set the value in Seconds. Example: if you set a value of 5, means that TIME_WAIT will waits as max as 5 sec
onds.
4. Save and restart the system.

LINGER

Another option to avoid TIME_WAIT state, is use the socket option SO_LINGER, if enabled, instead of closing the
connection gracefully, the client resets the connection so the TIME_WAIT state is avoided.
You can enable this option using LingerState property, by default has a value of -1. If you set a value of zero, the
connection will be reset when disconnecting from socket without Timeout.
This options is probably the less recommended and only use as a last option.

COMPONENTS

145

1.
2.
3.

1.
2.
3.

TsgcWebSocketClient | WebSocket Redirec
tions
When the client connects to a WebSocket server, the server can return an HTTP Response Code 30x. If the Re
sponse code it's a 301, means that the location has been moved permanently, and the new url is informed in the
Location HTTP Header.

The WebSocket client, handle redirections automatically, so if detects the Server Response contains a redirection,
it will disconnect the actual connection and try to connect with then new Location URL.

Example

Client first tries to connect to url ws://127.0.0.1:5000
Server returns a Response Code of 301 and contains a Header Location with the value ws://80.50.1.2:3000
Client reads the Response from server, detects that it's a redirection and reads the Location

First Disconnects the actual connection.
Update the URL property with the value of Location Header (ws://80.50.1.2:3000)
Connects to the new server.

COMPONENTS

146

TsgcWebSocketClient | Connect Secure
Server
TsgcWebSocketClient can connect to WebSocket servers using secure and none-secure connections.

You can configure a secure connection, using URL property or Host / Port properties, see Connect to WebSocket
Server.

TLSOptions

In TLSOptions property there are the properties to customize a secure connection. The most important property
is version, which specifies the version of TLS protocol. Usually setting TLS property to true and
TLSOptions.Version to tlsUndefined is enough for the wide majority of WebSocket Servers.

TLSOptions.Version allows to set the TLS version used to connect to server or let the client negotiate the TLS ver
sion from all available (this is the default when value is tlsUndefined).

If you get an error trying to connect to a server about TLS protocol, most probably this server requires a TLS
version newer than you set.

If TLSOptions.IOHandler is set to iohOpenSSL, you need to deploy OpenSSL libraries (which are the libraries
that handle all TLS stuff), check the following article about OpenSSL.
If TLSOptions.IOHandler is set to iohSChannel, then there is no need to deploy any library (only windows is
supported).

COMPONENTS

147

•
•
•
•

TsgcWebSocketClient | Certificates
OpenSSL
When the server requires that client connects using a SSL Certificate, use the TLSOptions property of TsgcWeb
SocketClient to set the certificate files. The certificate must be in PEM format, so if the certificate has a different for
mat, first must be converted to PEM.

Connection through OpenSSL libraries requires that TLSOptions.IOHandler = iohOpenSSL.

Configure the following properties:

CertFile: is the path to the certificate in PEM format.
KeyFile: is the path to the private key of the certificate.
RootCertFile: is the path to the root of the certificate.
Password: if certificate is protected by a password, set here the secret.

COMPONENTS

148

TsgcWebSocketClient | Certificates SChan
nel
When the server requires that client connects using a SSL Certificate, use the TLSOptions property of TsgcWeb
SocketClient to set the certificate files.

Connection through SChannel requires that TLSOptions.IOHandler = iohSChannel.

SChannel support 2 types of certificate authentication:

1. Using a PFX certificate
2. Setting the Hash Certificate of an already installed certificate in the windows system.

PFX Certificate

PFX Certificate is a file that contains the certificate and private key, sometimes you have a certificate in PEM for
mat, so before use it, you must convert to PFX.
Use the following openssl command to converte a PEM certificate to PFX

openssl pkcs12 -inkey certificate-pem.key -in certificate-pem.crt -export -out certificate.pfx

Once the certificate has PFX format, you only need to deploy the certificate and set in the TLSOptions.Certificate
property the path to it.

TLSOptions.IOHandler = iohSChannel

TLSOptions.CertFile = <certificate path>

TLSOptions.Password = <certificate optional password>

Hash Certificate

If the certificate is already installed in the windows certificate store, you only need to know the certificate thumbprint
and set in the TLSOptions.SChannel_Options property.

Finding the hash of a certificate is as easy in powershell as running a dir command on the certificates container.

dir cert:\localmachine\my

The hash is the hexadecimal Thumbprint value.

Directory: Microsoft.PowerShell.Security\Certificate::localmachine\my

Thumbprint Subject

---------- -------

C12A8FC8AE668F866B48F23E753C93D357E9BE10 CN=*.mydomain.com

Once you have the Thumbprint value, you must to set in the TLSOptions.SChannel_Options property the hash
and where is located the certificate.

TLSOptions.IOHandler = iohSChannel

TLSOptions.SChannel_Options.CertHash = <certificate thumbprint>

TLSOptions.SChannel_Options.CertStoreName = <certificate store name>

COMPONENTS

149

TLSOptions.SChannel_Options.CertStorePath = <certificate store path>

TLSOptions.Password = <certificate optional password>

COMPONENTS

150

TsgcWebSocketClient | SChannel Get Con
nection Info
Once the client has connected to the secure server, you can request info about which Version is using (TLS 1.2,
TLS 1.3...), the cipher used, strength... and more.

Call the function GetInfo of the SChannel Handler to access this info. You can access to the SSL Handler, using
the method OnSSLAfterCreateHandler, which is called after the SChannel Handler is created. After the client con
nects to server and if the SSL Handler is assigned, call the function GetInfo and if successful, will return the con
nection data.

oClient = new TsgcWebSocketClient();

oClient->URL = "wss://www.esegece.com:2053";

oClient->TLSOptions->Version := tls1_2;

oClient->TLSOptions->IOHandler = iohSChannel;

oClient->OnSSLAfterCreateHandler = OnSSLAfterCreateHandlerEvent();

oClient->OnConnect = OnConnectEvent();

oClient->Active = true;

void OnSSLAfterCreateHandlerEvent(TObject *Sender, TwsSSLHandler aType,

 TIdSSLIOHandlerSocketBase *aSSLHandler)

{

 if (aSSLHandler->ClassType == TsgcIdSSLIOHandlerSocketSChannel)

 {

 SSL = TsgcIdSSLIOHandlerSocketSChannel(aSSLHandler);

 }

}

void OnConnectEvent(TsgcWSConnection *Connection)

{

 if (SSL nil)

 {

 TsgcSChannelConnectionInfo oInfo = SSL->GetInfo();

 if (oInfo->Protocol <> tls1_2)

 {

 raise Exception->Create("Client cannot connect using TLS 1.2");

 }

 }

}

COMPONENTS

151

TsgcWebSocketClient | Client Send Text
Message
Once client has connected to server, it can send Text Messages to server. To send a Text Message, just call Write
Data() method and send your text message.

Send a Text Message

Call To WriteData() method and send a Text message. This method is executed on the same thread that is called.

TsgcWebSocketClient1->WriteData("My First sgcWebSockets Message!.");

If QueueOptions.Text has a different value from qmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

COMPONENTS

152

TsgcWebSocketClient | Client Send Binary
Message
Once client has connected to server, it can send Binary Messages to server. To send a Text Message, just call
WriteData() method and send your binary message.

Send a Binary Message

Call To WriteData() method and send a Binary message. This method is executed on the same thread that is
called.

TMemoryStream oStream = new TMemoryStream();

...

TsgcWebSocketClient1->WriteData(oStream);

oStream.Free();

If QueueOptions.Binary has a different value from qmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

COMPONENTS

153

TsgcWebSocketClient | Client Send a Text
and Binary Message
WebSocket protocol only allows to types of messages: Text or Binary. But you can't send a binary with text in the
same message.
One way to solve this, is add a header to binary message before is sent and decode this binary message when is
received.

There are 2 functions in sgcWebSocket_Helpers which can be used to set a short description of binary packet, ba
sically adds a header to stream which is used to identify binary packet.

Before send a binary message, call method to encode stream.

sgcWSStreamWrite("00001", oStream);

TsgcWebSocketClient1->WriteData(oStream);

When binary message is received, call method to decode stream.

sgcWSStreamRead(oStream, vID);

The only limitation is that text used to identify binary message, has a maximum length of 10 characters (this can be
modified if you have access to source code).

COMPONENTS

154

TsgcWebSocketClient | Receive Text Mes
sages
When client receives a Text Message, OnMessage event is fired, just read Text parameter to know the string of
message received.

void OnMessage(TsgcWSConnection *Connection, const string Text)

{

 ShowMessage("Message Received from Server: " + Text);

}

By default, client uses neAsynchronous method to dispatch OnMessage event, this means that this event is exe
cuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your client receives lots of messages or you need to control the synchronization with other threads, set Noti
fyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec
tion thread, so if you require to update any control of a form or access shared objects, you must implement your
own synchronization methods.

COMPONENTS

155

TsgcWebSocketClient | Receive Binary Mes
sages
When client receives a Binary Message, OnBinary event is fired, just read Data parameter to know the binary mes
sage received.

void OnBinary(TsgcWSConnection *Connection, const TMemoryStream *Data)

{

 oBitmap = new TBitmap();

 oBitmap->LoadFromStream(Data);

 Image1->Picture->Assign(oBitmap);

 Log(

 "#image uncompressed size: " + IntToStr(Data->Size) +

 ". Total received: " + IntToStr(Connection->RecBytes));

 oBitmap.Free();

}

By default, client uses neAsynchronous method to dispatch OnMessage event, this means that this event is exe

cuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your client receives lots of messages or you need to control the synchronization with other threads, set

NotifyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec

tion thread, so if you require to update any control of a form or access shared objects, you must implement

your own synchronization methods.

COMPONENTS

156

•

•

•

•

TsgcWebSocketClient | Client Authentication
TsgcWebSocket client supports 4 types of Authentications:

Basic: sends an HTTP Header during WebSocket HandShake with User and Password encoded as Basic
Authorization.
Token: sends a Token as HTTP Header during WebSocket HandShake, just set in
Authentication.Token.AuthToken the required token by server.
Session: first client request an HTTP session to server and if server returns a session this is passed in GET
HTTP Header of WebSocket HandShake. (* own authorization method for sgcWebSockets library).
URL: client request authorization using GET HTTP Header of WebSocket HandShake. (* own authorization
method for sgcWebSockets library).

Authorization Basic

Is a simple authorization method where user and password are encoded and passes as an HTTP Header. Just set
User and Password and enable only Basic Authorization type to use this method.

oClient = new TsgcWebSocketClient();

oClient->Authorization->Enabled = true;

oClient->Authorization->Basic->Enabled = true;

oClient->Authorization->User = "your user";

oClient->Authorization->Password = "your password";

oClient->Authorization->Token->Enabled = false;

oClient->Authorization->URL->Enabled = false;

oClient->Authorization->Session->Enabled = false;

oClient->Active = true;

Authorization Token

Allows to get Authorization using JWT, requires you obtain a Token using any external tool (example: using an
HTTP connection, OAuth2...).
If you Attach an OAuth2 component, you can obtain this token automatically. Read more about OAuth2.
Basically you must set your AuthToken and enable Token Authentication.

oClient = new TsgcWebSocketClient();

oClient->Authorization->Enabled = true;

oClient->Authorization->Token->Enabled = true;

oClient->Authorization.Token.AuthToken = "your token";

oClient->Authorization->Basic->Enabled = false;

oClient->Authorization->URL->Enabled = false;

oClient->Authorization->Session->Enabled = false;

oClient->Active = true;

Authorization Session

First client connects to server using an HTTP connection requesting a new Session, if successful, server returns a
SessionId and client sends this SessionId in GET HTTP Header of WebSockets HandShake.
Requires to set UserName and Password and set Session Authentication to True.

oClient = new TsgcWebSocketClient();

oClient->Authorization->Enabled = true;

oClient->Authorization->Session->Enabled = true;

oClient->User = "your user";

oClient->Password = "your password";

COMPONENTS

157

oClient->Authorization->Basic->Enabled = false;

oClient->Authorization->URL->Enabled = false;

oClient->Authorization->Token->Enabled = false;

oClient->Active = true;

Authorization URL

This Authentication method, just passes username and password in GET HTTP Header of WebSockets Hand
Shake.

oClient = new TsgcWebSocketClient();

oClient->Authorization->Enabled = true;

oClient->Authorization->URL->Enabled = true;

oClient->Authorization->User = "your user";

oClient->Authorization->Password = "your password";

oClient->Authorization->Basic->Enabled = false;

oClient->Authorization->Session->Enabled = false;

oClient->Authorization->Token->Enabled = false;

oClient->Active = true;

COMPONENTS

158

TsgcWebSocketClient | Client Exceptions
Sometimes there are some errors in communications, server can disconnect a connection because it's not autho
rized or a message hasn't the correct format... there are 2 events where errors are captured

OnError

This event is fired every time there is an error in WebSocket protocol, like invalid message type, invalid utf8 string...

void OnError(TsgcWSConnection *Connection, const string Error)

{

 WriteLn("#error: " + Error);

}

OnException

This event is fired every time there is an exception like write a socket is not active, access to an object that not ex
ists

void OnException(TsgcWSConnection *Connection, Exception *E)

{

 WriteLn("#exception: " + E.Message);

}

By default, when connection is closed by server, an exception will be fired, if you don't want that these excep
tions are fired, just disable in Options.RaiseDisconnectExceptions.

COMPONENTS

159

TsgcWebSocketClient | WebSocket Hand
Shake
WebSocket protocol uses an HTTP HandShake to upgrade from HTTP Protocol to WebSocket protocol. This hand
shake is handled internally by TsgcWebSocket Client component, but you can add your custom HTTP headers if
server requires some custom HTTP Headers info.

Example: if you need to add this HTTP Header "Client: sgcWebSockets"

void OnHandshake(TsgcWSConnection *Connection, ref TStringList *Headers)

{

 Headers->Add("Client: sgcWebSockets");

}

You can check HandShake string before is sent to server using OnHandShake event too.

COMPONENTS

160

TsgcWebSocketClient | Client Register Pro
tocol
By default, TsgcWebSocketClient doesn't make use of any SubProtocol, basically websocket sub-protocol are built
on top of websocket protocol and defines a custom message protocol, example of websocket sub-protocols can be
MQTT, STOMP...

WebSocket SubProtocol name is sent as an HTTP Header in WebSocket HandShake, this header is processed by
server and if server supports this subprotocol will accept connection, if is not supported, connection will be closed
automatically

Example: connect to a websocket server with SubProtocol name 'myprotocol'

Client = new TsgcWebSocketClient();

Client->Host = "server host";

Client->Port = server.port;

Client->RegisterProtocol("myprotocol");

Client->Active = true;

COMPONENTS

161

TsgcWebSocketClient | Client Proxies
TsgcWebSocket client support connections through proxies, to configure a proxy connection, just fill the Proxy
properties of TsgcWebSocket client.

Client = new TsgcWebSocketClient();

Client->Proxy->Enabled = true;

Client->Proxy->Username = "user";

Client->Proxy->Password = "secret";

Client->Proxy->Host = "80.55.44.12";

Client->Proxy->Port = 8080;

Client->Active = true;

COMPONENTS

162

TsgcWebSocketServer
TsgcWebSocketServer implements Server WebSocket Component and can handle multiple threaded client connec
tions. Follow the next steps to configure this component:

1. Drop a TsgcWebSocketServer component onto the form

2. Set Port (default is 80). If you are behind a firewall probably you will need to configure it.

3. Set Specifications allowed, by default all specifications are allowed.

 RFC6455: is standard and recommended WebSocket specification.

 Hixie76: it's a draft and it's only recommended to establish Hixie76 connections if you want to provide support to
old browsers like Safari 4.2

4. The following events are available:

 OnConnect: every time a WebSocket connection is established, this event is fired.

 OnDisconnect: every time a WebSocket connection is dropped, this event is fired.

 OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired.

 OnMessage: every time a client sends a text message and it's received by server, this event is fired.

 OnBinary: every time a client sends a binary message and it's received by server, this event is fired.

 OnHandhake: this event is fired after the handshake is evaluated on the server side.

 OnException: every time an exception occurs, this event is fired.

 OnAuthentication: if authentication is enabled, this event is fired. You can check user and password passed by
the client and enable/disable Authenticated Variable.

 OnUnknownProtocol: if WebSocket protocol is not detected (because the client is using plain TCP protocol for
example), in this event connection can be accepted or rejected.

 OnStartup: raised after the server has started.

 OnShutdown: raised after the server has stopped.

 OnTCPConnect: public event, is called AFTER the TCP connection and BEFORE Websocket handshake. Is
useful when your server accepts plain TCP connections (because OnConnect event is only fired after first message
sent by client).

 OnBeforeHeartBeat: if HeartBeat is enabled, allows to implement a custom HeartBeat setting Handled parame
ter to True (this means, standard websocket ping won't be sent).

 OnSSLGetHandler: This event is raised before SSL handler is created, you can create here your own SSL Han
dler (needs to be inherited from TIdServerIOHandlerSSLBase or TIdIOHandlerSSLBase) and set the properties
needed.

 OnSSLAfterCreateHandler: This event is called after the SSL Handler is created. Can be used to customize
some of the properties of the IOHandler.

 OnSSLALPNSelect: When the connection is using ALPN this event is raised to set which protocol will be used.

 OnSSLVerifyPeer: When the property VerifyCertificate is set to True and the client is using a certificate, this
event will be raised with the certificate data and the option to accept or not the connection.

COMPONENTS

163

•
•
•
•
•

•
•
•
•
•

•
•

•
•
•

•
•
•

5. Create a procedure and set property Active = True.

Most common uses

Start
Server Start
Server Bindings
Server Startup - Shutdown
Server Keep Active

Connections

Server Keep Connections Alive
Server Plain TCP
Server Close Connection
Client Connections

Authentication

Server Authentication

Send Messages
Server Send Text Message
Server Send Binary Message

Receive Messages

Server Receive Text Message
Server Receive Binary Message

Methods

 Broadcast: sends a message to all connected clients.

Message / Stream: message or stream to send to all clients.

Channel: if you specify a channel, the message will be sent only to subscribers.

Protocol: if defined, the message will be sent only to a specific protocol.

Exclude: if defined, list of connection guid excluded (separated by comma).

Include: if defined, list of connection guid included (separated by comma).

 WriteData: sends a message to a single or multiple clients. Every time a Client establishes a
WebSocket connection, this connection is identified by a Guid, you can use this Guid to send a mes
sage to a client.

 Ping: sends a ping to all connected clients. If a time-out is specified, it waits a response until a
time-out is exceeded, if no response, then closes the connection.

 DisconnectAll: disconnects all active connections.

 Start: uses a secondary thread to connect to the server, this prevents your application freezes
while trying to connect.

 Stop: uses a secondary thread to disconnect from the server, this prevents your application
freezes while trying to disconnect.

COMPONENTS

164

•

Properties

 Authentication: if enabled, you can authenticate WebSocket connections against a username and password.

Authusers: is a list of authenticated users, following spec:

user=password

 Implements 3 types of WebSocket Authentication

Session: client needs to do an HTTP GET passing username and password, and if authenticated, server re
sponse a Session ID. With this Session ID, client open WebSocket connection passing as a parameter.

URL: client open Websocket connection passing username and password as a parameter.

Basic: implements Basic Access Authentication, only applies to VCL Websockets (Server and Client) and
HTTP Requests (client web browsers don't implement this type of authentication).

CustomHeaders: here you can add the custom headers that will be sent if there si any authentication
error.

 Bindings: used to manage IP and Ports.

 Connections: contains a list of all clients connections.

 Count: Connections number count.

 LogFile: if enabled save socket messages to a specified log file, useful for debugging.

Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.

FileName: full path to the filename.

UnMaskFrames: by default True, means that saves the websocket messages received unmasked.

 Extensions: you can enable compression on messages sent (if client don't support compression, messages will
be exchanged automatically without compression).

 FallBack: if WebSockets protocol it's not supported natively by the browser, you can enable the following fall
backs:

 Flash: if enabled, if the browser hasn't native WebSocket implementation and has flash enabled, it uses Flash
as a Transport.

 ServerSentEvents: if enabled, allows to send push notifications from the server to browser clients.

 Retry: interval in seconds to try to reconnect to server (3 by default).

 HeartBeat: if enabled try to keeps alive Websocket client connections sending a ping every x seconds.

Interval: number of seconds between each ping.

Timeout: max number of seconds between a ping and pong.

 TCPKeepAlive: if enabled, uses keep-alive at TCP socket level, in Windows will enable
SIO_KEEPALIVE_VALS if supported and if not will use keepalive. By default is disabled.

Interval: in milliseconds.

Timeout: in milliseconds.

COMPONENTS

165

 HTTP2Options: by default HTTP/2 protocol is not enabled, it uses HTTP 1.1 to handle HTTP requests. Enabled
this property if you want use HTTP/2 protocol if client supports it.

Enabled: if true, HTTP/2 protocol is supported. If client doesn't supports HTTP/2, HTTP 1.1 will be used as
fallback.

Settings: Specifies the header values to send to the HTTP/2 server.

EnablePush: by default enabled, this setting can be used to avoid server push content to client.

HeaderTableSize: Allows the sender to inform the remote endpoint of the maximum size of the head
er compression table used to decode header blocks, in octets. The encoder can select any size equal
to or less than this value by using signaling specific to the header compression format inside a header
block. The initial value is 4,096 octets.

InitialWindowSize: Indicates the sender’s initial window size (in octets) for stream-level flow control.
The initial value is 65,535 octets. This setting affects the window size of all streams.

MaxConcurrentStreams: Indicates the maximum number of concurrent streams that the sender will
allow. This limit is directional: it applies to the number of streams that the sender permits the receiver
to create. Initially, there is no limit to this value.

MaxFrameSize: Indicates the size of the largest frame payload that the sender is willing to receive, in
octets. The initial value is 16,384 octets.

MaxHeaderListSize: This advisory setting informs a peer of the maximum size of header list that the
sender is prepared to accept, in octets. The value is based on the uncompressed size of header
fields, including the length of the name and value in octets plus an overhead of 32 octets for each
header field.

 IOHandlerOptions: by default uses normal Indy Handler (every connection runs in his own thread)

iohDefault: default indy IOHandler, every new connection creates a new thread.

iohIOCP: only for windows and requires sgcWebSockets Enterprise Edition, a thread pool handles all con
nections. Read more about IOCP.

iohEPOLL: only for linux and requires sgcWebSockets Enterprise Edition, a thread pool handles all connec
tions. Read more about EPOLL.

 LoadBalancer: it's a client which connects to Load Balancer Server to broadcast messages and send informa
tion about the server.

 AutoRegisterBindings: if enabled, sends automatically server bindings to load balancer server.

 AutoRestart: time to wait in seconds after a load balancer server connection has been dropped and tries to re
connect; zero means no restart (by default);

 Bindings: here you can set manual bindings to be sent to Load Balancer Server, example:

WS://127.0.0.1:80
WSS://127.0.0.2:8888

Enabled: if enabled, it will connect to Load Balancer Server.

Guid: used to identify server on Load Balancer Server side.

Host: Load Balancer Server Host.

Port: Load Balancer Server Port.

 MaxConnections: max connections allowed (if zero there is no limit).

 NotifyEvents: defines which mode to notify WebSocket events.

COMPONENTS

166

•
•
•

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

 Options:

FragmentedMessages: allows handling Fragmented Messages

 frgOnlyBuffer: the message is buffered until all data is received, it raises OnBinary or OnMessage
event (option by default)
 frgOnlyFragmented: every time a new fragment is received, it raises OnFragmented Event.
 frgAll: every time a new fragment is received, it raises OnFragmented Event with All data received
from the first packet. When all data is received, it raises OnBinary or OnMessage event.

HTMLFiles: if enabled, allows to request Web Browser tests, enabled by default.

JavascriptFiles: if enabled, allows to request Javascript Built-in libraries, enabled by default.

RaiseDisconnectExceptions: enabled by default, raises an exception every time there is a disconnection
by protocol error.

ReadTimeOut: time in milliseconds to check if there is data in socket connection, 10 by default.

WriteTimeOut: max time in milliseconds sending data to other peer, 0 by default (only works under Win
dows OS).

ValidateUTF8: if enabled, validates if the message contains UTF8 valid characters, by default is disabled.

Software: contains the value of the HTTP Header Server. The default value if the library name and version.

 QueueOptions: this property allows to queue the messages in an internal queue (instead of send directly) and
send the messages in the context of the connection thread (QueueOptions only works on Indy based servers
where every connection runs in his own thread), this prevents locks when several threads try to send a message
using the same connection. For every message type: Text, Binary or Ping a queue can be configured, by default
the value set is qmNone which means the messages are not queued. The other types, means different queue lev
els and the difference between them are just the order where are processed (first are processed qmLevel1, then
qmLevel2 and finally qmLevel3).
Example: if Text and Binary messages have the property set to qmLevel2 and Ping to qmLevel1. The server will
process first the Ping messages (so the ping message is sent first than Text or Binary if they are queued at the
same time), and then process the Text and Binary messages in the same queue. QueueOptions is not supported
when IOHandlerOptions = iohIOCP

 ReadEmptySource: max number of times an HTTP Connection is read and there is no data received, 0 by de
fault (means no limit). If the limit is reached, the connection is closed.

 SecurityOptions:

OriginsAllowed: define here which origins are allowed (by default accepts connections from all origins), if
the origin is not in the list closes the connection. Examples:

Allow all connections to IP 127.0.0.1 and port 5555. OriginsAllowed = "http://127.0.0.1:5555"
Allow all connections to IP 127.0.0.1 and all ports. OriginsAllowed = "http://127.0.0.1:*"
Allow all connections from any IP. OriginsAllowed = ""

 SSL: enables secure connections.

 SSLOptions: used to define SSL properties: certificates filenames, password...

COMPONENTS

167

RootCertFile: path to root certificate file.
CertFile: path to certificate file in PEM format.
KeyFile: path to certificate key file in PEM format.
Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyCertificate_Options:

FailfIfNoCertificate: if the client did not return a certificate, the TLS/SSL handshake is immediately
terminated with a "handshake failure" alert.
VerifyClientOnce: only request a client certificate on the initial TLS/SSL handshake. Do not ask for a
client certificate again in case of a renegotiation.

VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica
tion is performed for the X.509 certificate.
Version: by default negotiates all possible TLS versions from newer to lower. A specific TLS version can be
selected.

tlsUndefined: this is the default value, the client will try to negotiate all possible TLS versions (start
ing from newest to oldest), till connects successfully.
tls1_0: implements TLS 1.0
tls1_1:implements TLS 1.1
tls1_2: implements TLS 1.2
tls1_3: implements TLS 1.3

OpenSSL_Options:

APIVersion: allows to define which OpenSSL API will be used.

oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

ECDHE: if enabled, uses ECDHE instead of RSA as key exchange. Recommended to enable ECD
HE if you use OpenSSL 1.0.2.
CipherList: leave blank to use the default ciphers, if you want to customize the cipher list, set the val
ue in this property. Example: ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256
CurveList: leave blank to use the default curves. You can set your own curve list names, for
example: P521:P384:P256:brainpoolP256r1

 ThreadPool: if enabled, when a thread is no longer needed this is put into a pool and marked as inactive (do
not consume CPU cycles), it's useful if there are a lot of short-lived connections. The ThreadPool is not compatible
with IOCP, so please don't enable it when IOCP is enabled.

MaxThreads: max number of threads to be created, by default is 0 meaning no limit. If max number is
reached then the connection is refused.

PoolSize: size of ThreadPool, by default is 32.

 WatchDog: if enabled, restart the server after unexpected disconnection.

COMPONENTS

168

Interval: seconds before reconnects.

Attempts: max number of reconnects, if zero, then unlimited.

 Throttle: used to limit the number of bits per second sent/received.

COMPONENTS

169

TsgcWebSocketServer | Start Server
The first you must set when you want start a Server is set a Listening Port, by default, this is set to port 80 but you
can change for any port.
Once the port is set, there are 2 methods to start a server.

Active Property

If you set Active property to true, server will start to listening all incoming connection on port set.

oServer = new TsgcWebSocketServer();

oServer->Port = 80;

oServer->Active = true;

If you set Active property to false, server will stop and close all active connections.

oServer->Active = false;

Start / Stop methods

While if you call Active property the process of start / stop server is done in the same thread, calling Start and Stop
methods will be executed in a secondary thread.

oServer = new TsgcWebSocketServer();

oServer->Port = 80;

oServer->Start();

If you call Stop() method, server will stop and close all active connections.

oServer->Stop();

You can use the method ReStart, to Stop and Start server in a secondary thread.

If you change the Port after closing a server, to start listening on a different port, call the method Bindings.Clear()
after closing the server to delete all previous bindings. Otherwise the server will try to bind to the previous bindings.

COMPONENTS

170

TsgcWebSocketServer | Server Bindings
By default, if you only fill Port property, server binds listening port of ALL IPs, so if for example, you have 3 IP:
127.0.0.1, 80.5411.22 and 12.55.41.17. Your server will bind this port on 3 IPs.
Usually is recommended only binding to needed IPs, here is where you can user Bindings property.
Instead of use Port property, just use Binding property and fill with IP and Port required.

Example: bind Port 5555 to IP 127.0.0.1 and IP 80.58.25.40

oServer = new TsgcWebSocketServer();

binding = oServer->Bindings->Add();

binding->IP = "127.0.0.1";

binding->Port = 5555;

binding = oServer->Bindings->Add();

binding->IP = "80.58.25.40";

binding->Port = 5555;

oServer->Active = true;

If you change the Port after closing a server, to start listening on a different port, call the method Bindings.Clear()
after closing the server to delete all previous bindings. Otherwise the server will try to bind to the previous bindings.

COMPONENTS

171

TsgcWebSocketServer | Server Startup
Shutdown
Once you have set all required configurations of your server, there are 2 useful events to know when server has
started and when has stopped.

OnStartup

This event is fired when server has started and can process new connections.

void OnStartup(TObject *Sender)

{

 WriteLn("#server started");

}

OnShutdown

This event is fired after server has stopped and no more connections are accepted.

void OnShutdown(TObject *Sender)

{

 WriteLn("#server stopped");

}

COMPONENTS

172

TsgcWebSocketServer | Server Keep Active
Once server is started and OnShutdown event is fired, sometimes server can stopped for any reason. If you want
to restart server after an unexpected close, you can use WatchDog property

WatchDog

If WatchDog is enabled, when server detects a Shutdown, WatchDog try to restart again every X seconds until
server is active again.

Example: restart every 10 seconds after an unexpected stop with unlimited attempts.

oServer = new TsgcWebSocketServer();

oServer->WatchDog->Interval := 10;

oServer->WatchDog->Attempts := 0;

oServer->WatchDog->Enabled := true;

oServer->Active = true;

COMPONENTS

173

TsgcWebSocketServer | Server SSL
Server can be configured to use SSL Certificates, in order to get a Production Server with a server certificate, you
must purchase a Certificate from a well known provider: Namecheap, godaddy, Thawte... For testing purposes
you can use a self-signed certificate (check out in Demos/Chat which uses a self-signed certificate).

Certificate must be in PEM format, PEM (from Privacy Enhanced Mail) is defined in RFCs 1421 through 1424, this
is a container format that may include just the public certificate (such as with Apache installs, and CA certificate
files /etc/ssl/certs), or may include an entire certificate chain including public key, private key, and root certificates.
To create a single pem certificate, just open your private key file, copy the contents and paste on certificate file.

Example:

certificate.crt

-----BEGIN CERTIFICATE-----
.....
-----END CERTIFICATE-----

certificate.key

-----BEGIN PRIVATE KEY-----
.....
-----END PRIVATE KEY-----

certificate.pem

-----BEGIN PRIVATE KEY-----
.....
-----END PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
.....
-----END CERTIFICATE-----

To enable SSL, just enable SSL property and configure the paths to CertFile, KeyFile and RootFile. If certificate
contains entire certificate (public key, private key...) just set all paths to the same certificate.

Another property you must set is SSLOptions.Port, this is the port used for secure connections.

Simple SSL Configuration

Example: configure SSL in IP 127.0.0.1 and Port 443

oServer = new TsgcWebSocketServer()

oServer->SSL = true;

oServer->SSLOptions->CertFile = "c:\certificates\mycert.pem";

oServer->SSLOptions->KeyFile = "c:\certificates\mycert.pem";

oServer->SSLOptions->RootCertFile = "c:\certificates\mycert.pem";

oServer->SSLOptions->Port = 443;

oServer->Port = 443;

oServer->Active = true;

SSL and None SSL

You can allow to server, to listening more than one IP and Port, check Binding article which explains how works.
Server can be configured to allow SSL connections and None SSL connections at the same time (of course listen

COMPONENTS

174

ing on different ports). You only need to bind to 2 different ports and configure port for ssl connections and port for
none ssl connections.

Example: configure server in IP 127.0.0.1, port 80 (none encrypted) and 443 (SSL)

oServer = new TsgcWebSocketServer()

bind = oServer->Bindings->Add();

bind->IP = "127.0.0.1";

bind->Port = 80;

bind = oServer->Bindings->Add();

bind->IP = "127.0.0.1";

bind->Port = 443;

oServer->Port = 80;

oServer->SSL = true;

oServer->SSLOptions->CertFile = "c:\certificates\mycert.pem";

oServer->SSLOptions->KeyFile = "c:\certificates\mycert.pem";

oServer->SSLOptions->RootCertFile = "c:\certificates\mycert.pem";

oServer->SSLOptions->Port = 443;

oServer->Active = true;

COMPONENTS

175

1.

•

TsgcWebSocketServer | Server Verify Certifi
cate
By default, the server doesn't verify the peer certificates. To configure the server to verify the client certificate imple
ment the next steps:

Set the property SSLOptions.VerifyCertificate = true

Handle the event OnSSLVerifyPeer and implement the following code to be notified every time a client connects
with a certificate.

void OnSSLSSLVerifyPeer(System::TObject* Sender, TIdX509* Certificate, bool &Accept)

{

 // ... validate the certificate

 if (Certificate_OK)

 Accept = true;

 else

 Accept = false;

}

Note that the event OnSSLVerifyPeer is only called if the client provides a certificate, if a client doesn't pro
vides a certificate, the event is not fired.

You can configure the server that only allow SSL connections using a certificate, to do this, set the property

SSLOptions.VerifyCertificate_Options.FailIfNoCertificate = true

If the client doesn't provide a certificate, the connection will be closed in the SSL Handshake.

COMPONENTS

176

TsgcWebSocketServer | Server Keep Con
nections Alive
Once your client has connected to server, sometimes connection can be closed due to poor signal, connection er
rors... use Heartbeat to keep connection alive.

HeartBeat

HeartBeat property allows to send a Ping every X seconds to maintain connection alive. Some servers, close
TCP connections if there is no data exchanged between peers. HeartBeat solves this problem, sending a ping
every a specific interval. Usually this is enough to maintain a connection active, but you can set a TimeOut interval
if you want to close connection if a response from client is not received after X seconds.

Example: send a ping to all connected clients every 30 seconds

oServer = new TsgcWebSocketServer();

oServer->HeartBeat->Interval := 30;

oServer->HeartBeat->Timeout := 0;

oServer->HeartBeat->Enabled := true;

oServer->Active = true;

COMPONENTS

177

TsgcWebSocketServer | Server Plain TCP
WebSocket server accepts WebSocket, HTTP, SSE... protocols, but can work too with plain tcp connections. Read
more about TCP Connections.

There are 2 events, which can be used to handle TCP connections better.

OnTCPConnect

This event is called after a client connects to server and before any handshake between client and server. OnCon
nect event is only fired after client sends a message (to allow server detect which is the protocol to be used).

This event allows to know that a new client is trying to connect to server and server can accept or not the connec
tion. By default, server always accept connection.

OnUnknownProtocol

This event is called when server receives a first message from client but cannot detect if is any of known protocols.
In this event, server can accept or not protocol

OnEvent

This event is fired after a successful and complete connection, if connection is plain TCP, is fired after protocol is
accepted in OnUnknownProtocol event.

COMPONENTS

178

TsgcWebSocketServer | Server Close Con
nection
A single Connection can be closed using Close or Disconnect methods.

Disconnect

TsgcWSConnection has a method called Disconnect(), that allows to disconnect connection at socket level. If you
call this method, socket will be disconnected directly without waiting any response from client. You can send a
Close Code with this method.

Close

TsgcWSConnection has a method called Close(), which allows to send a message to server requesting to close
connection, if client receives this message, must close the connection and server will receive a notification that con
nection is closed. You can send a Close Code with this method.

DisconnectAll

Disconnects all active connections. This method is called automatically before server stops listening, but you can
call this method at any time.

COMPONENTS

179

TsgcWebSocketServer | Client Connections
To access to the active client connections, you can use the Connections property to iterate through the list and ac
cess to the client connection class. The Connections properties access to a threaded list, so first lock the list and
when you finish, unlock the list.

void DoClientIPAddresses() {

 TList *oList;

 TsgcWSConnectionServer *oConnection;

 oList = TsgcWebSocketHTTPServer1->LockList();

 try {

 for (int i = 0; i < oList->Count; ++i) {

 oConnection = dynamic_cast<TsgcWSConnectionServer*>(static_cast<TIdContext*>(oList->Items[i])->Data);

 ShowMessage(oConnection->IP + ":" + IntToStr(oConnection->Port));

 }

 } __finally {

 TsgcWebSocketHTTPServer1->UnlockList();

 }

}

COMPONENTS

180

•

•

•

TsgcWebSocketServer | Server Authentica
tion
TsgcWebSocket server supports 3 types of Authentications:

Basic: read an HTTP Header during WebSocket HandShake with User and Password encoded as Basic
Authorization.
Session: first client request an HTTP session to server and if server returns a session this is passed in GET
HTTP Header of WebSocket HandShake. (* own authorization method for sgcWebSockets library).
URL: read request authorization using GET HTTP Header of WebSocket HandShake. (* own authorization
method for sgcWebSockets library).

You can set a list of Authenticated users, using AuthUsers property, just set your users with the following format:
user=password

OnAuthentication

Every time server receives an Authentication Request from a client, this event is called to return if user is authenti
cated or not.
Use Authenticated parameter to accept or not the connection.

void OnAuthentication(TsgcWSConnection *Connection, string aUser, string aPassword,

 ref bool Authenticated)

{

 if ((aUser == "user") && (aPassword == "secret"))

 {

 Authenticated = true;

 }

 else

 {

 Authenticated = false;

 }

}

OnUnknownAuthentication

If Authentication is not supported by default, like JWT, still you can use this event to accept or not the connection.
Just read the parameters and accept or not the connection.

void OnUnknownAuthentication(TsgcWSConnection *Connection, string AuthType, string AuthData,

 ref string aUser, ref string aPassword, ref bool Authenticated)

{

 if (AuthType == "Bearer")

 {

 if (AuthData == "jwt_token")

 {

 Authenticated = true;

 }

 else

 {

 Authenticated = false;

 }

 }

 else

 {

 Authenticated = false;

 }

}

COMPONENTS

181

COMPONENTS

182

TsgcWebSocketServer | Server Send Text
Message
Once client has connected to server, server can send text messages. To send a Text Message, just call WriteData()
method to send a message to a single client or use Broadcast to send a message to all clients.

Send a Text Message

Call To WriteData() method and send a Text message.

TsgcWebSocketClient1->WriteData("guid", "My First sgcWebSockets Message!.");

If QueueOptions.Text has a different value from qmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

QueueOptions doesn't work if the property IOHandlerOptions.IOHandlerType = iohIOCP (due to the IOCP architec
ture, this feature is not supported).

You can call to WriteData() method from TsgcWSConnection too, example: send a message to client when con
nects to server.

void OnConnect(TsgcWSConnection *Connection);

{

 Connection->WriteData("Hello From Server");

}

Send a message to ALL connected clients

Call To Broadcast() method to send a Text message to all connected clients.

TsgcWebSocketServer1->Broadcast("Hello From Server");

COMPONENTS

183

TsgcWebSocketServer | Server Send Binary
Message
Once client has connected to server, server can send binary messages. To send a Binary Message, just call Write
Data() method to send a message to a single client or use Broadcast to send a message to all clients.

Send a Text Message

Call To WriteData() method and send a Binary message.

TsgcWebSocketClient1->WriteData("guid", new TMemoryStream());

If QueueOptions.Binary has a different value from qmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

QueueOptions doesn't work if the property IOHandlerOptions.IOHandlerType = iohIOCP (due to the IOCP architec
ture, this feature is not supported).

You can call to WriteData() method from TsgcWSConnection too, example: send a message to client when con
nects to server.

void OnConnect(TsgcWSConnection *Connection);

{

 Connection->WriteData(new TMemoryStream());

}

Send a message to ALL connected clients

Call To Broadcast() method to send a Binary message to all connected clients.

TsgcWebSocketServer1->Broadcast(new TMemoryStream());

COMPONENTS

184

TsgcWebSocketServer | Server Receive Text
Message
When server receives a Text Message, OnMessage event is fired, just read Text parameter to know the string of
message received.

void OnMessage(TsgcWSConnection *Connection, const string Text)

{

 ShowMessage("Message Received from Client: " + Text);

}

By default, server uses neAsynchronous method to dispatch OnMessage event, this means that this event is ex
ecuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your server receives lots of messages or you need to control the synchronization with other threads, set Noti
fyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec
tion thread, so if you require to update any control of a form or access shared objects, you must implement your
own synchronization methods.

COMPONENTS

185

TsgcWebSocketServer | Server Receive Bi
nary Message
When server receives a Binary Message, OnBinary event is fired, just read Data parameter to know the binary
message received.

void OnBinary(TsgcWSConnection *Connection, const TMemoryStream *Data)

{

 oBitmap = new TBitmap();

 oBitmap->LoadFromStream(Data);

 Image1->Picture->Assign(oBitmap);

 Log(

 "#image uncompressed size: " + IntToStr(Data->Size) +

 ". Total received: " + IntToStr(Connection->RecBytes));

 oBitmap.Free();

}

By default, server uses neAsynchronous method to dispatch OnMessage event, this means that this event is ex
ecuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your server receives lots of messages or you need to control the synchronization with other threads, set Noti
fyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec
tion thread, so if you require to update any control of a form or access shared objects, you must implement your
own synchronization methods.

COMPONENTS

186

TsgcWebSocketServer | Server Read Head
ers from Client
When client connects to WebSocket server, sends a list of headers with information about client connection. In
order to read these client headers, you can OnHandshake event of Server component, which is called when server
receives the headers from client and before sends a response to client.
Client headers are stores in HeadersRequest property of TsgcWSConnectionServer.

void OnServerHandshake(TsgcWSConnection *Connection; var TStringList *Headers);

begin

 ShowMessage(dynamic_cast<TsgcWSConnectionServer*>(Connection)->HeadersRequest->Text);

end;

COMPONENTS

187

TsgcWebSocketHTTPServer
TsgcWebSocketHTTPServer implements Server WebSocket Component and can handle multiple threaded client
connections as TsgcWebSocketServer, and allows to server HTML pages using a built-in HTTP Server, sharing the
same port for WebSocket connections and HTTP requests.

Follow the next steps to configure this component:

1. Drop a TsgcWebSocketHTTPServer component in the form

2. Set Port (default is 80). If you are behind a firewall probably you will need to configure it.

3. Set Specifications allowed, by default all specifications are allowed.

 RFC6455: is standard and recommended WebSocket specification.

 Hixie76: it's a draft and it's only recommended to establish Hixie76 connections if you want to provide support to
old browsers like Safari 4.2

4. The following events are available:

 OnConnect: every time a WebSocket connection is established, this event is fired.

 OnDisconnect: every time a WebSocket connection is dropped, this event is fired.

 OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired.

 OnMessage: every time a client sends a text message and it's received by server, this event is fired.

 OnBinary: every time a client sends a binary message and it's received by server, this event is fired.

 OnHandhake: this event is fired after handshake is evaluated on the server side.

 OnCommandGet: this event is fired when HTTP Server receives a GET, POST or HEAD command requesting a
HTML page, an image... Example:

AResponseInfo.ContentText := '<HTML><HEADER>TEST</HEAD><BODY>Hello!</BODY></
HTML>';

 OnCommandOther: this event is fired when HTTP Server receives a command different of GET, POST or
HEAD.

 OnCreateSession: this event is fired when HTTP Server creates a new session.

 OnInvalidSession: this event is fired when an HTTP request is using an invalid/expiring session.

 OnSessionStart: this event is fired when HTTP Server starts a new session.

 OnCommandOther: this event is fired when HTTP Server closes a session.

 OnException: this event is fired when HTTP Server throws an exception.

 OnAuthentication: if authentication is enabled, this event if fired. You can check user and password passed by
the client and enable/disable Authenticated Variable.

 OnUnknownProtocol: if WebSocket protocol is not detected (because the client is using plain TCP protocol for
example), in this event connection can be accepted or rejected.

 OnBeforeHeartBeat: if HeartBeat is enabled, allows to implement a custom HeartBeat setting Handled parame
ter to True (this means, standard websocket ping won't be sent).

file:/C:/Users/Sergio/AppData/Local/Temp/RHTMP/CBUILDER%20PDFoHWjf4/TsgcWebSocketHTTPServer.htm

COMPONENTS

188

•
•
•
•
•
•
•
•
•

•
•

 OnBeforeForwardHTTP: allows to forward a HTTP request to another HTTP server. Use forward property to en
able this and set the destination URL.

 OnHTTPUploadBeforeSaveFile: the event is fired when a new file has been uploaded and before is saved to
disk file, allows to modify the filename where will be saved.

 OnHTTPUploadAfterSaveFile: the event is fired after a new file has been uploaded and saved to disk file.

 OnHTTPUploadReadInput: the event is fired when the form post reads an input variable different from the file.

 OnSSLGetHandler: This event is raised before SSL handler is created, you can create here your own SSL Han
dler (needs to be inherited from TIdServerIOHandlerSSLBase or TIdIOHandlerSSLBase) and set the properties
needed.

 OnSSLAfterCreateHandler: This event is called after the SSL Handler is created. Can be used to customize
some of the properties of the IOHandler.

 OnSSLALPNSelect: When the connection is using ALPN this event is raised to set which protocol will be used.

 OnSSLVerifyPeer: When the property VerifyCertificate is set to True and the client is using a certificate, this
event will be raised with the certificate data and the option to accept or not the connection.

* In some cases, you may get a high consume of cpu due to unsolicited connections, in these cases, just return an
error 500 if it's a HTTP request or close connection for Unknown Protocol requests.

5. Create a procedure and set property Active = true.

Most common uses

HTTP
HTTP Server Requests
HTTP Dispatch Files
HTTP/2 Server
HTTP/2 Server Push
HTTP/2 Alternate Service
HTTP/2 Server Threads
HTTP Post Big Files
HTTP 404 Error without Response Body

Other

HTTP Server Sessions

Methods

 Broadcast: sends a message to all connected clients.

Message / Stream: message or stream to send to all clients.

Channel: if you specify a channel, the message will be sent only to subscribers.

Protocol: if defined, the message will be sent only to a specific protocol.

Exclude: if defined, list of connection guid excluded (separated by comma).

Include: if defined, list of connection guid included (separated by comma).

COMPONENTS

189

•

•

•

 WriteData: sends a message to a single or multiple clients. Every time a Client establishes a
WebSocket connection, this connection is identified by a Guid, you can use this Guid to send a mes
sage to a client.

 Ping: sends a ping to all connected clients.

 DisconnectAll: disconnects all active connections.

Properties

 Connections: contains a list of all clients connections.

 Bindings: used to manage IP and Ports.

 DocumentRoot: here you can define a directory where you can put all html files (javascript, HTML, CSS...) if a
client sends a request, the server automatically will search this file on this directory, if it finds, it will be served.

 Extensions: you can enable compression on messages sent (if client don't support compression, messages will
be exchanged automatically without compression).

 MaxConnections: max connections allowed (if zero there is no limit).

 Count: Connections number count.

 AutoStartSession: if SessionState is active, when the server gets a new HTTP request, creates a new session.

 SessionState: if active, enables HTTP sessions.

 KeepAlive: if enabled, connection will stay alive after the response has been sent.

 ReadStartSSL: max. number of times an HTTPS connection tries to start.

 SessionList: read-only property used as a container for TIdHTTPSession instances created for the HTTP serv
er.

 SessionTimeOut: timeout of sessions.

 HTTP2Options: by default HTTP/2 protocol is not enabled, it uses HTTP 1.1 to handle HTTP requests. Enabled
this property if you want use HTTP/2 protocol if client supports it.

Enabled: if true, HTTP/2 protocol is supported. If client doesn't supports HTTP/2, HTTP 1.1 will be used as
fallback.

FragmentedData: this property allows to configure how handle the fragments received.

h2fdOnlyBuffer: it's the default option, the response is dispatched only when has been received the
latest packet.
h2fdAll: the response is dispatched for every packet received (one or more) on the event
OnHTTP2ResponseFragment and on the event OnHTTP2Response when the latest packet has been
received.
h2fdOnlyFragmented:: the response is only dispatched in the event OnHTTP2ResponseFragment
for every packet received (one response can be compound of 1 or multiple packets).

Settings: Specifies the header values to send to the HTTP/2 server.

EnablePush: by default enabled, this setting can be used to avoid server push content to client.

HeaderTableSize: Allows the sender to inform the remote endpoint of the maximum size of the head
er compression table used to decode header blocks, in octets. The encoder can select any size equal

COMPONENTS

190

to or less than this value by using signaling specific to the header compression format inside a header
block. The initial value is 4,096 octets.

InitialWindowSize: Indicates the sender’s initial window size (in octets) for stream-level flow control.
The initial value is 65,535 octets. This setting affects the window size of all streams.

MaxConcurrentStreams: Indicates the maximum number of concurrent streams that the sender will
allow. This limit is directional: it applies to the number of streams that the sender permits the receiver
to create. Initially, there is no limit to this value.

MaxFrameSize: Indicates the size of the largest frame payload that the sender is willing to receive, in
octets. The initial value is 16,384 octets.

MaxHeaderListSize: This advisory setting informs a peer of the maximum size of header list that the
sender is prepared to accept, in octets. The value is based on the uncompressed size of header
fields, including the length of the name and value in octets plus an overhead of 32 octets for each
header field.

Events: here you can configure if you want be notified when there is a new HTTP/2 connection or not.

OnConnect: if enabled when there is a new HTTP/2 connection, OnConnect event will be called (by
default is disabled).

OnDisconnect: if enabled when there is a new HTTP/2 disconnection, OnDisconnect event will be
called (by default is disabled).

 HTTPUploadFiles: by default when a client sends a file using a POST stream, the file is saved in memory. If you
want to save these streams directly as files to avoid memory problems, you set the StreamType to pstFileStream
and the files will be saved in the hard disk. Read more about Post Big Files.

MinSize: Minimum size in bytes of the stream to be saved as a file stream. By default is zero, which means
all streams will be saved as FileStreams (if StreamType = pstFileStream).

RemoveBoundaries: the files uploaded using POST multipart/form-data, are encapsulated in boundaries, if
this property is enabled, the files will be extracted from boundaries and saved in the hard disk.

SaveDirectory: the folder where the files will be saved. If empty, will be saved in the same folder where is
the application.

StreamType: the type of the stream where the stream will be saved, by default memory.

pstMemoryStream: as memory stream.
pstFileStream: as file stream.

COMPONENTS

191

•

•
•
•
•

TsgcWebSocketHTTPServer | HTTP Server
Requests
Use OnCommandGet to handle HTTP client requests. Use the following parameters:

RequestInfo: contains HTTP request information.

ResponseInfo: is the HTTP response to HTTP Request.
ContentText: is the response in text format.
ContentType: is the type of Content-Type.
ResponseNo: number of HTTP response, example: 200.

void OnCommandGet(TIdContext *AContext, TIdHTTPRequestInfo *ARequestInfo,

 TIdHTTPResponseInfo *AResponseInfo)

{

 if (ARequestInfo->Document == "/")

 {

 AResponseInfo->ContentText = "<html><head><title>Test Page</title></head><body></body></html>";

 AResponseInfo->ContentType = "text/html";

 AResponseInfo->ResponseNo = 200;

 }

}

COMPONENTS

192

TsgcWebSocketHTTPServer | HTTP Dis
patch Files
When a client request a file, OnCommandGet event is fired, but you can use DocumentRoot property to dispatch
automatically files.

Example: if you set DocumentRoot to c:/www/files. Every time a new file is requested, will search in this folder if
file exists and if exists, will be dispatched automatically.

COMPONENTS

193

TsgcWebSocketHTTPServer | HTTP/2 Server
sgcWebSockets HTTP Server allows to handle HTTP/1.1 and HTTP/2.0 requests, you can enable HTTP/2 protocol
using HTTP2Options of Server.

Set HTTP2Options.Enabled = true to allow the server to accept HTTP/2 protocol requests. The requests can be
processed by user exactly equal than with HTTP/1.1 protocol, read more.

When HTTP/2 protocol is enabled, server will still support HTTP/1.1 requests.

By default, OnConnect and OnDisconnect events won't be called when there is a new HTTP/2 connection, but this
can be modified accessing to properties HTTP2Options.Events, here you can customize if you want be notified
every time there is a new HTTP/2 connection and/or disconnection.

COMPONENTS

194

TsgcWebSocketHTTPServer | HTTP/2 Server
Push
HTTP usually works with Request/Response pattern, where client REQUEST a resource to SERVER and SERVER
sends a RESPONSE with the resource requested or an error. Usually the client, like a browser, makes a bunch of
requests for those assets which are provided by the server.

The main problem of this approach is that first client must send a request to get the resource, example: index.html,
wait till server sends the response, the client reads the content and then make all other requests, example:
styles.css

HTTP/2 server push tries to solve this problem, when the client requests a file, if server thinks that this file needs
another file/s, those files will be PUSHED to client automatically.

In the prior screenshot, first client request index.html, server reads this request and sends as a response 2 files:
index.html and styles.css, so it avoids a second request to get styles.css

Configure Server Push

Following the prior screenshots, you can configure your server so every time there is a new request for /index.html
file, server will send index.html and styles.css

Use the method PushPromiseAddPreLoadLinks, to associate every request to a push promise list.

TsgcWebSocketHTTPServer *server = new TsgcWebSocketHTTPServer(this);

TStringList *oLinks = new TStringList();

try

{

 oLinks->Add("/styles.css");

 server->PushPromiseAddPreLoadLinks("/index.html", oLinks);

COMPONENTS

195

}

__finally

{

 oLinks->Free();

}

void OnCommandGet(TIdContext *AContext, TIdHTTPRequestInfo *ARequestInfo, TIdHTTPResponseInfo *AResponseInfo)

{

 if (ARequestInfo->Document == "/index.html")

 {

 AResponseInfo->ContentText = "";

 AResponseInfo->ContentType = "text/html";

 AResponseInfo->ResponseNo = 200;

 }

 else if (ARequestInfo->Document == "/styles.css")

 {

 AResponseInfo->ContentText = "";

 AResponseInfo->ContentType = "text/css";

 AResponseInfo->ResponseNo = 200;

 }

}

Using the chrome developer tool, you can view how the styles.css file is pushed to client.

COMPONENTS

196

TsgcWebSocketHTTPServer | HTTP/2 Alter
nate Service
The Alt-Svc HTTP header is used to inform the clients that the same resource can be reached from another
service or protocol, this is useful if you want inform the HTTP clients that your server supports HTTP/2 for exam
ple.

Example: if your server is running on a local IP 127.0.0.1 and is listening on 2 ports: 80 (non encrypted) and 443
(encrypted). You can inform the clients, that HTTP/2 is supported on port 443 using the following HTTP header

Alt-Svc: h2=":443"

When HTTP/2 is enabled, automatically adds this header if the connection is not running on HTTP/2 protocol.
You can enable or disable this feature using the property HTTP2Options.AltSvc.

COMPONENTS

197

•

•

TsgcWebSocketHTTPServer | HTTP/2 Server
Threads
See below the differences between HTTP 1.1 and HTTP 2.0:

HTTP 1.1

In traditional HTTP behavior, when making multiple requests over the same connection, the client has to wait for
the response of each request before sending the next one. This sequential approach significantly increases the
load time of a website's resources. To address this issue, HTTP/1.1 introduced a feature called pipelining, allowing
a client to send multiple requests without waiting for the server's responses. The server, in turn, responds to the
client in the same order as it received the requests.

While pipelining appeared to be a solution, it faced challenges:

Server Ignorance or Response Corruption: Some servers either ignored pipelined requests or corrupted
the responses, leading to unreliable communication.

Head-of-Line Blocking: The first request in the pipeline could block subsequent requests, causing a delay
in the processing of other requests. This phenomenon, known as head-of-line blocking, resulted in slower
page loading times.

In an effort to optimize page loading from servers supporting HTTP/1.1, the Web-Browsers implemented a
workaround. It opens six-eight parallel connections to the server, enabling the simultaneous transmission of multi
ple requests. This parallelism aims to mitigate the issues associated with pipelining and improve overall page load
times.

The choice of six-eight parallel connections by the Web-Browsers is based on optimization considerations. The
specific reasons behind selecting this number may involve a trade-off between resource utilization, network efficien
cy, and avoiding potential bottlenecks.

HTTP 2.0

In response to the constraints encountered in pipelining, HTTP/2 introduced a feature called multiplexing. Multi
plexing allows for more efficient communication between the client and server by enabling the concurrent
transmission of multiple requests and responses over a single connection.

HTTP/2 utilizes a binary framing mechanism, which means that HTTP messages are broken down into smaller, in
dependent units called frames. These frames can be interleaved and sent over the connection independently of
one another. At the receiving end, the frames are reassembled to reconstruct the original HTTP message.

This binary framing mechanism is fundamental to achieving multiplexing in HTTP/2. It enables the browser to send
multiple requests over the same connection without encountering blocking issues. As a result, browsers like
Chrome utilize the same connection ID for HTTP/2 requests, allowing for efficient and uninterrupted communication
between the client and server.
In essence, HTTP/2's multiplexing feature, enabled by the binary framing mechanism, enhances the efficiency and
speed of data exchange between clients and servers by facilitating concurrent transmission of multiple requests
and responses over a single connection.

COMPONENTS

198

•

•

TsgcWebSocketHTTPServer

To improve the performance of the HTTP/2 protocol, the requests are dispatched by default in a Pool Of Threads
(by default 32) every time a new HTTP/2 request is received by the server, this avoid waits when a single connec
tion sends a lot of concurrent requests which will require processing sequentially (in the context of the connection
thread) in the absence of this pool of threads.

The behaviour of the PoolOfThreads can be configured in the following properties.

HTTP2Options.PoolOfThreads.Enabled: (by default false) enable to dispatch the http/2 requests in the
pool of threads instead of the connection thread.
HTTP2Options.Threads: (by default 32) the number of threads used to handle the HTTP/2 requests. Set a
number according the number of processors of your server.

To fine-tune the requests, selecting which must be processed in the Pool Of Threads (because are time consum
ing) while others can be processed in the connection thread, you can use the event
OnHttp2BeforeAsyncRequest, this event is raised before queue the request in the pool of threads, use the para
meter Async to set if the request is threaded or not.

void __fastcall TForm1::OnHTTP2BeforeAsyncRequest(TObject *Sender, TsgcWSConnection *Connection, const TIdHTTPRequestInfo &ARequestInfo,

{

 if (ARequestInfo.Document == "/fast-request")

 Async = false;

}

COMPONENTS

199

TsgcWebSocketHTTPServer | 404 Error with
out Response Body
By default, the Indy library adds some content body in HTTP responses if there is no ContentText or ContentStream
assigned, if you want to return an empty Response body, because of 404 error or similar, you can use the following
trick.

Create a new TStringStream without content and Assign to ContentStream property of HTTP Response, this way
the HTTP Response will be sent without the HTML Tags used by default.

Example

private void OnCommandGet(TIdContext *AContext, TIdHTTPRequestInfo *ARequestInfo,

 TIdHTTPResponseInfo *AResponseInfo)

{

 AResponseInfo->ContentStream := new TStringStream("");

 AResponseInfo->ContentType = "text/html";

 AResponseInfo->ResponseNo = 404;

}

COMPONENTS

200

TsgcWebSocketHTTPServer | Sessions
HTTP is state-less protocol (at least till HTTP 1.1), so client request a file, server sends a response to client and
connection is closed (well, you can enable keep-alive and then connection is not closed immediately, but this is far
beyond the purpose of this article). The use of the sessions, allows to store some information about client, this can
be used during a client login for example. You can use whatever session unique ID, search in the list of sessions if
already exists and if not exists, create a new session. Session can be destroyed after some time without using it or
manually after client logout.

Configuration

There are some properties in TsgcWebSocketHTTPServer which enables/disables sessions in server component.
Let's see the most important:

Property Description

SessionState
This is the first property which has to be enabled in order to use Sessions. Without this property en
abled, sessions won't work

SessionTimeout Here you must set a value greater than zero (in milliseconds) for max time session will be active.

AutoStartSession
Sessions can be created automatically (AutoStartSession = true) or manually (AutoStartSession =
false). If Sessions are created automatically, server will use RemoteIP as unique identifier to see if
there is an active session stored.

TsgcWebSocketHTTPServer1->SessionState = true;

TsgcWebSocketHTTPServer1->SessionTimeout = 600000;

AutoStartSession = False;

Create Session

In order to create a new session, we must create a new session id which is unique, you can use whatever, exam
ple: if client is authenticating, you can use user + password + remoteip as session id.
Then, we search in Session list if already exists, if not exists, we create a new one.

When a new session is create OnSessionStart event is called and when session is closed, OnSessionEnd event
is raised.

void OnCommandGet(TIdContext *AContext, TIdHTTPRequestInfo *ARequestInfo,

 TIdHTTPResponseInfo *AResponseInfo)

{

 if (ARequestInfo->Document == "/")

 {

 AResponseInfo->ServeFile(AContext, "yourpathhere\index.html");

 }

 else

 {

 // check if user is valid

 if (((ARequestInfo->AuthUsername == "user") && (ARequestInfo->AuthPassword == "pass")) == false)

 {

 AResponseInfo->AuthRealm = "Authenticate";

 }

 else

 {

 // create a new session id with authentication data

 string vID = ARequestInfo->AuthUsername + "_" + ARequestInfo->AuthPassword + "_" + ARequestInfo->RemoteIP;

 // search session

 TIdHTTPSession oSession = TsgcWebSocketHTTPServer1->SessionList->GetSession(vID, ARequestInfo->RemoteIP);

COMPONENTS

201

 // create new session if not exists

 if (oSession != null)

 {

 oSession = TsgcWebSocketHTTPServer1->SessionList->CreateSession(ARequestInfo->RemoteIP, vID);

 }

 AResponseInfo->ContentText = "<html><head></head><body>Authenticated</body></html>";

 AResponseInfo->ResponseNo = 200;

 }

 }

}

COMPONENTS

202

•
•
•

TsgcWebSocketServer_HTTPAPI
The HTTP Server API enables applications to communicate over HTTP without using Microsoft Internet Information
Server (IIS). Applications can register to receive HTTP requests for particular URLs, receive WebSocket requests,
and send WebSocket responses. The HTTP Server API includes SSL support so that applications can exchange
data over secure HTTP connections without IIS. It is also designed to work with I/O completion ports.

The server supports the following protocols:

WebSockets (Requires Windows 8 or later)
HTTP 1.1
HTTP/2 (Requires Windows 2016+ or Windows 10+).

By default, this component requires that your application run as Administrator mode, for URL registration.
If the URL have already be registered using an external tool like netsh, you can run without Admin rights,
disable the property BindingOptions.ConfigureSSLCertificate to allow start the application without admin
rights.
Set FastMM4/FastMM5 as the first unit of your project.

Follow the next steps to configure this component:

1. Drop a TsgcWebSocketServer_HTTPAPI component in the form

2. Define the listening address and port:

Server->Host = "127.0.0.1";

Server->Port = 80;

3. Set Specifications allowed, by default all specifications are allowed.

 RFC6455: is standard and recommended WebSocket specification.

 Hixie76: it's a draft and it's only recommended to establish Hixie76 connections if you want to provide support to
old browsers like Safari 4.2

4. If you want, you can handle events:

 OnConnect: every time a WebSocket connection is established, this event is fired.

 OnDisconnect: every time a WebSocket connection is dropped, this event is fired.

 OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired.

 OnMessage: every time a client sends a text message and it's received by server, this event is fired.

 OnBinary: every time a client sends a binary message and it's received by server, this event is fired.

 OnHandhake: this event is fired after the handshake is evaluated on the server side.

 OnException: this event is fired when HTTP Server throws an exception.

 OnAuthentication: if authentication is enabled, this event is fired. You can check user and password passed by
the client and enable/disable Authenticated Variable.

 OnUnknownProtocol: this event doesn't work at the moment of write this document.

 OnBeforeHeartBeat: if HeartBeat is enabled, allows to implement a custom HeartBeat setting Handled parame
ter to True (this means, standard websocket ping won't be sent).

COMPONENTS

203

•
◦

•
•

•
•
•

•

 OnAsynchronous: every time an asynchronous event has been completed, this event is called.

 OnBeforeForwardHTTP: allows to forward a HTTP request to another HTTP server. Use forward property to en
able this and set the destination URL.

 OnAfterForwardHTTP: allows to know the result of the forwarded request.

 OnTCPConnect: public event, is called AFTER the TCP connection and BEFORE Websocket handshake.

5. Create a procedure and set property Active = true

URL Reservation

The HTTP.SYS server uses URL reservation to assign which URL endpoints will be used by the HTTP.SYS server.

Basic URL Reservation

This is the most easy simple mode to configure the Server, basically you only set the Host and Port that the
HTTP.SYS server will handle.
Example: if your server runs on the IP 127.0.0.1 and Port 80, just set the following properties

Server->Host = "127.0.0.1";

Server->Port = 80;

If the server runs in more than one IP and you want bind to multiple IPS, use the NewBinding Method. First clear
the Host and Bindings property and then use the NewBinding method to define all Server Bindings.

Server->Host = "";

Server->Bindings->Clear;

Server->Bindings->NewBinding("127.0.0.1", 80, "");

Server->Bindings->NewBinding("80.50.55.11", 80, "");

If the server requires SSL connections, do the following to define the Host and Port which will be used to handle
SSL connections.

Server->Host = "127.0.0.1";

Server->Port = 443;

Server->SSL = true;

Server->SSLOptions->Hash = "CERTIFICATE_HASH";

If the server requires SSL connections with multiple IP Addresses, first clear the Host and Bindings property and
the register the new Bindings.

Server->Host = '';

Server->Bindings->Clear;

Server->Bindings->NewBinding("127.0.0.1", 443, "", true, "CERTIFICATE_HASH1");

Server->Bindings->NewBinding("80.50.55.11", 443, "", true, "CERTIFICATE_HASH2");

Most common uses

Configuration
URL Reservation

Connection
OnDisconnect not fired

SSL
HTTPAPI Server SSL
Self-Signed Certiifcates

HTTP

COMPONENTS

204

•
•
•
•

•
•

Custom Headers
Send Text Response
Send File Response
Post Big Files

HTTP/2
Disable HTTP/2

Properties

Host: if the property has a value, it will be used to register the URL. If you use the Bindings property to de
fine the server bindings, clear the value of this property.

Port: the default listening port, if the Host property has a value, the Host + Port will be used to register the
URL.

Timeouts: allows overriding default timeouts of HTTP API Server.

EntityBody: the time, in seconds, allowed for the request entity body to arrive.
DrainEntityBody: The time, in seconds, allowed for the HTTP Server API to drain the entity body on
a Keep-Alive connection.
RequestQueue: The time, in seconds, allowed for the request to remain in the request queue before
the application picks it up.
IdleConnection: The time, in seconds, allowed for an idle connection.
HeaderWait: The time, in seconds, allowed for the HTTP Server API to parse the request header.
MinSendRate: The minimum sends rate, in bytes-per-second, for the response. The default response
sends rate is 150 bytes-per-second.

MaxConnections: maximum number of connections (zero means unlimited, value by default).

MaxBandwidth: maximum allowed bandwidth rate in bytes per second (zero means unlimited, value by de
fault).

ThreadPoolSize: by default 32 (maximum allowed is 64), allows setting number of threads of HTTP API
Server.

ReadBufferSize: by default 16384, allows to modify the size of the buffer size when read socket data.

WriteTimeOut: only applies when Asynchronous = False, the value is measured in milliseconds. When this
property is greater than zero, if the time to send a message is greater than the value set in the property, the
request is cancelled and the connection is closed. By default, is zero, so there is no timeout writing a mes
sage. The internal thread that handles the timeouts, by default uses an interval of 10 seconds, so it means
that every 10 seconds checks if there is any message that have exceeded the timeout. You can modify the
value of the interval setting the value in the property WriteTimeoutInterval (in seconds, the value must be
greater or equal to 5 seconds).

Asynchronous: by default is disabled, if enabled, messages sent don't wait till completed. You can check
when asynchronous is completed OnAsynchronous event.

SSLOptions: here you can customize ssl properties.

CertStoreName: (optional) allows to set the name of certificate store where is certificate. If no value
is set, 'MY' is assumed as default name.
Hash: this is the hexadecimal thumbprint value of certificate and is required by server to retrieve cer
tificate. You can find hash of certificate using powershell, running a "dir" comand on the certificates
store, example: dir cert:\localmachine\my.

Methods

 Broadcast: sends a message to all connected clients.

COMPONENTS

205

Message / Stream: message or stream to send to all clients.

Channel: if you specify a channel, the message will be sent only to subscribers.

Protocol: if defined, the message will be sent only to a specific protocol.

Exclude: if defined, list of connection guid excluded (separated by comma).

Include: if defined, list of connection guid included (separated by comma).

 WriteData: sends a message to a single or multiple clients. Every time a Client establishes a
WebSocket connection, this connection is identified by a Guid, you can use this Guid to send a mes
sage to a client.

 Ping: sends a ping to all connected clients.

 DisconnectAll: disconnects all active connections.

 HTTPUploadFiles: by default when a client sends a file using a POST stream, the file is saved in memory. If you
want to save these streams directly as files to avoid memory problems, you set the StreamType to pstFileStream
and the files will be saved in the hard disk. Read more about Post Big Files.

MinSize: Minimum size in bytes of the stream to be saved as a file stream. By default is zero, which means
all streams will be saved as FileStreams (if StreamType = pstFileStream).

RemoveBoundaries: the files uploaded using POST multipart/form-data, are encapsulated in boundaries, if
this property is enabled, the files will be extracted from boundaries and saved in the hard disk.

SaveDirectory: the folder where the files will be saved. If empty, will be saved in the same folder where is
the application.

StreamType: the type of the stream where the stream will be saved, by default memory.

pstMemoryStream: as memory stream.
pstFileStream: as file stream.

COMPONENTS

206

•

◦
◦
◦

•
◦
◦

HTTPAPI | URL Reservation
HTTP.SYS URL reservation is a feature in the Windows operating system that allows a user to reserve a specific
Uniform Resource Locator (URL) for their application or service. When a URL is reserved using HTTP.SYS, the op
erating system will intercept any incoming HTTP requests for that URL and route them to the specified application
or service.

To reserve a URL using HTTP.SYS, an application or service must first register the URL with the HTTP.SYS driver
by making a call to the HTTP API. The application or service specifies the URL, the HTTP method (e.g., GET,
POST), and any additional settings such as authentication requirements.

Once the URL is registered, HTTP.SYS will intercept any incoming HTTP requests for that URL and look up the
registered application or service based on the URL and method. If a matching application or service is found, the
HTTP.SYS driver will pass the request to that application or service for processing.

NETSH Commands

Register an URL
In this example, the URL http://example.com:80/ is being registered for the user DOMAIN\user. You can replace this
with your desired URL and user.

netsh http add urlacl url=http://example.com:80/ user=DOMAIN\user

Delete an URL
In this example, the URL http://example.com:80/ is being deleted. You can replace this with the URL you want to
delete.

netsh http delete urlacl url=http://example.com:80/

Show All URLs
This command will display a list of all registered URL reservations on the system.

netsh http show urlacl

TsgcWebSocketServer_HTTPAPI

The HTTP.SYS server, register the URLs automatically when it's started. This is done using the following parame
ters and methods.

Host and Port: if Host not empty and the Port is different from zero, the server will try to register the URL.
Example: the URL https://127.0.0.1:5000 will be registered using the following properties

Host = '127.0.0.1';
Port = 5000
SSL = True

NewBinding: use this method to register one or multiple URLs.
Register the url https://127.0.0.1:5000 --> NewBinding('127.0.0.1', 5000, '/', True)
Register the url http://+:5000/ws/ --> NewBinding('+', 5000, '/ws/')

The URL registration requires admin privileges in the following cases:

COMPONENTS

207

•
•

•
◦

•
◦

•
◦

•
◦

Port Number is below 1024
The host is a wildcard "+", instead of an ip address.

If you want to register the port 443 for all IP Addresses of the server and listen only on the endpoint "/ws/" but you
don't want to run the server with admin rights, do the following steps:

Register the URL using netsh
netsh http add urlacl url=https://+:443/ws/ user=DOMAIN\user

Configure the server with the following binding
NewBinding('+', 443, '/ws/', True);

Disable the property ConfigureSSLCertificate
TsgcWebSocketServer_HTTPAPI.BindingOptions.ConfigureSSLCertificate = false;

Configure the SSL Certificate
HTTPAPI Server SSL

COMPONENTS

208

TsgcWebSocketServer_HTTPAPI | HTTPAPI
Server SSL
Server can be configured to use SSL Certificates, in order to get a Production Server with a server certificate, you
must purchase a Certificate from a well known provider: Namecheap, godaddy, Thawte... For testing purposes
you can use a self-signed certificate (check out in Demos/Chat which uses a self-signed certificate). Read the fol
lowing article How Create a Self-signed certificate.

Once you have your certificate, you must configure in Server which certificate will use to encrypt connections.

Certificate Hash

First you need to know which is the Hash of your certificate. Finding the hash of a certificate is as easy in power
shell as running a dir command on the certificates container.

dir cert:\localmachine\my

The hash is the hexadecimal Thumbprint value.

Directory: Microsoft.PowerShell.Security\Certificate::localmachine\my

Thumbprint Subject

---------- -------

C12A8FC8AE668F866B48F23E753C93D357E9BE10 CN=*.mydomain.com

Once you have the Thumbprint value, just set in TsgcWebSocketServer_HTTPAPI.TLSOptions.Hash property.

Once you have set hash, just set TsgcWebSocketServer_HTTPAPI.SSL = true and your server is know ready to get
started.

COMPONENTS

209

TsgcWebSocketServer_HTTPAPI | Self-
Signed Certificates
If you require some certificate for your own testings, you can create a self-signed certificate in your testing ma
chine, follow the next steps:

1. Run Powershell as Administrator.
2. Run the following command to create the certificate:

New-SelfSignedCertificate -DnsName localhost -CertStoreLocation "cert:\LocalMachine\My"

If successful, you will get a confirmation about new certificate created. Just copy Thumbprint and paste on
TsgcWebSocketServer_HTTPAPI.TLSOptions.Hash property.

3. Optional, you can add your self-signed certificate as a trusted certificate authority

Run MMC -32 as administrator

3.1. Select File / Add or Remove Snap-in

3.2. Select Certificate and then click Add

3.3. Select computer account and press Next.

3.4. Select Local computer and press Ok. You will now your Certificates.

4.5. Select your certificate from Personal / Certificates and Paste on Trusted Root Certificates Authorities /
Certificates.

COMPONENTS

210

•
•

•

•
•

•

TsgcWebSocketServer_HTTPAPI | Disable
HTTP/2
HTTP/2 protocol is enabled by default in Server 2016+ and Windows 10+ OS. In some old browsers or HTTP
clients, you might encounter an error because protocol is not fully supported. You can prevent these errors by dis
abling HTTP/2 protocol.

How Disable HTTP/2

Open the Window Registry Editor
Go to the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\HTTP\Parameters

Add the following DWORD values and set both values to zero.

EnableHttp2Tls
EnableHttp2Cleartext

Reboot the computer.

COMPONENTS

211

TsgcWebSocketServer_HTTPAPI | Custom
Headers
You can customize the response of HTTP.SYS server using the CustomHeaders property of response object.

Just set the value of CustomHeaders with the Header Name + Header Value separated by NewLine Characters.

Example: if you want to add the following headers, find below a sample code

Access-Control-Allow-Origin: *
Acces-Control-Allow-Methods: GET, POST, OPTIONS, PUT, PATCH, DELETE

private void OnHTTPRequest(TsgcWSConnection_HTTPAPI *aConnection, const THttpServerRequest *aRequestInfo,

 ref THttpServerResponse *aResponseInfo)

{

 aResponseInfo->ResponseNo = 200;

 aResponseInfo->CustomHeaders = "Access-Control-Allow-Origin: *" + #13#10 + "Acces-Control-Allow-Methods: " +

 "GET, POST, OPTIONS, PUT, PATCH, DELETE'";

}

COMPONENTS

212

•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•
•

•
•
•

TsgcWebSocketServer_HTTPAPI | Send Text
Response
Use the event OnHTTPRequest to handle the HTTP Requests.

The class THttpServerRequest contains the HTTP Request Data.

Document: the Document the peer is trying to access.
Method: the HTTP Method ('GET', POST'...)
Headers: the Headers of HTTP request.
AcceptEncoding: accept encoding variable, example: "gzip, deflate, br".
ContentType: example: "text/html"
Content: content of request if exists.
QueryParams: the query parameters.
Cookies: the cookies if exists.
ContentLength: size of the content.
AuthExists, AuthUsername, AuthPassword: authentication request data.
Stream: if the http request has a body, this is the stream of the body.

The class THttpServerResponse contains the HTTP response Data.

ContentText: is the response as text.
ContentType: example: "text/html". If you want encode the ContentText with UTF8, set the charset='utf-8'.
Example: text/html; charset=utf-8
CustomHeaders: if you need to send your own headers use this variable
AuthRealm: if the server requires authentication, set this variable.
ResponseNo: the HTTP response number, example: 200 means the response if correct.
ContentStream: if the response contains a stream, set here (don't free the stream, it will be freed automati
cally).
FileName: if the response is a filename, set here the full path to the filename.
Date, Expires, LastModified: datetime variables of the response.
CacheControl: allows to customize the cache behaviour.

Example: if the server receives a GET request to the document "/test.html" send a OK response, otherwise send a
404 if it's a GET request or error 500 if it's another method.

procedure OnHTTPRequest(TsgcWSConnection_HTTPAPI *aConnection,

 const THttpServerRequest *aRequestInfo,

 var THttpServerResponse *aResponseInfo)

{

 if (aRequestInfo->Method == "GET")

 {

 if aRequestInfo->Document == '/test.html' then

 {

 aResponseInfo->ResponseNo = 200;

 aResponseInfo->ContentText = "OK";

 aResponseInfo->ContentType = "text/html; charset=UTF-8";

 }

 else

 {

 aResponseInfo->ResponseNo = 404;

 }

 }

 else

 {

 aResponseInfo->ResponseNo = 500;

 }

}

COMPONENTS

213

TsgcWebSocketServer_HTTPAPI | Send File
Response
Use the FileName property of THttpServerResponse object if you want to send a filename as a response to a
HTTP request.

procedure OnHTTPRequest(TsgcWSConnection_HTTPAPI *aConnection,

 const THttpServerRequest *aRequestInfo,

 var THttpServerResponse *aResponseInfo)

{

 if (aRequestInfo->Method == "GET")

 {

 if aRequestInfo->Document == '/test.zip' then

 {

 aResponseInfo->ResponseNo = 200;

 aResponseInfo->ContentText = "c:\download\test.zip";

 aResponseInfo->ContentType = "application/zip";

 }

 else

 {

 aResponseInfo->ResponseNo = 404;

 }

 }

 else

 {

 aResponseInfo->ResponseNo = 500;

 }

}

COMPONENTS

214

TsgcWebSocketServer_HTTPAPI | OnDis
connect not fired
First times working with HTTPAPI Server, it's very common that you will see that OnDisconnect event is not fired
just when client closes connection. The reason is that HTTPAPI Server works a bit differently than other servers like
Indy. In Indy server there is a thread for every connection and this thread is checking every x milliseconds if
connection is active. The HTTPAPI Server uses a thread-pool that handles all connections and it's not check
ing for every connection if it's active or not.

In order to get notified when client closes connection, do the following configuration:

1. If you use a TsgcWebSocketClient, set Options.CleanDisconnect := True. This means that before the connec
tion is closed, the client will try to send a notification to server that connection will be closed. If the server receives
this message, OnDisconnect event will be called.

2. For the others disconnections, the only solution is write something to the socket and if fails means the connec
tion is disconnected. Enable HeartBeat on HTTPAPI server, and send an interval of 60 seconds for example and a
timeout of 0. This configuration means that every 60 seconds all connections will be ping and if any is disconnect
ed, OnDisconnect event will be fired. You can put a lower value of HeartBeat.Interval, but don't put it too low (1
second for example it's too low) because the performance of the server will be affected.

COMPONENTS

215

TsgcWebSocketClient_WinHTTP
TsgcWebSocketClient implements Client VCL WebSocket Component and can connect to a WebSocket Server, it's
based on WinHTTP API and requires Windows 8 or higher. Follow the next steps to configure this component:

1. Drop a TsgcWebSocketClient_WinHTTP component in the form

2. Set Host and Port (default is 80) to connect to an available WebSocket Server. You can set URL property and
Host, Port, Parameters... will be updated from URL. Example: wss://127.0.0.1:8080/ws/ will result:

oClient = new TsgcWebSocketClient_WinHTTP();

oClient->Host = "127.0.0.1";

oClient->Port = 80;

oClient->TLS = true;

oClient->Options->Parameters = "/ws/";

3. You can select if you want TLS (secure connection) or not, by default is not Activated.

4. The following events can be used to customize the websocket client flow:

 OnConnect: when a WebSocket connection is established, this event is fired

 OnDisconnect: when a WebSocket connection is dropped, this event is fired

 OnError: every time there is a WebSocket error (like mal-formed handshake), this event is fired

 OnMessage: every time the server sends a text message, this event is fired

 OnBinary: every time the server sends a binary message, this event is fired

 OnFragmented: when receives a fragment from a message (only fired when Options.FragmentedMessages =
frgAll or frgOnlyFragmented).

 OnException: every time an exception occurs, this event is fired.

 OnBeforeConnect: before the client tries to connect to server, this event is called.

 OnBeforeWatchDog: if WatchDog is enabled, allows to implement a custom WatchDog setting Handled para
meter to True (this means, won't try to connect to server). You can change the Server Connection properties too
before try to reconnect, example: connect to a fallback server if first fails.

8. Create a procedure and set property Active = True.

Methods

 WriteData: sends a message to a WebSocket Server. Could be a String or TStream.

 Start: uses a secondary thread to connect to the server, this prevents your application freezes while trying to
connect.

 Stop: uses a secondary thread to disconnect from the server, this prevents your application freezes while trying
to disconnect.

 Connect: try to connect to the server and wait till the connection is successful or there is an error.

 Disconnect: try to disconnect from the server and wait till disconnection is successful or there is an error.

COMPONENTS

216

Properties

 Authentication: if enabled, WebSocket connection will try to authenticate passing a username and password.

 Implements 1 type of WebSocket Authentication

Basic: client open WebSocket connection passing username and password inside the header.

 Asynchronous: by default, requests are synchronous, execution of your application stops when you make new
requests and resumes when you get a response. If you don't want that requests stop your application, enable this
property.

 Host: IP or DNS name of the server.

 HeartBeat: if enabled try to keeps alive a WebSocket connection sending a ping every x seconds.

Interval: number of seconds between each ping.

Timeout: max number of seconds between a ping and pong.

 ReadTimeout: max time in milliseconds to read messages.

 Port: Port used to connect to the host.

 NotifyEvents: defines which mode to notify websocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

 Options: allows customizing headers sent on the handshake.

Parameters: define parameters used on GET.

Origin: customize connection origin.

FragmentedMessages: allows handling Fragmented Messages

 frgOnlyBuffer: the message is buffered until all data is received, it raises OnBinary or OnMessage
event (option by default)
 frgOnlyFragmented: every time a new fragment is received, it raises OnFragmented Event.
 frgAll: every time a new fragment is received, it raises OnFragmented Event with All data received
from the first packet. When all data is received, it raises OnBinary or OnMessage event.

 Protocol: if exists, shows the current protocol used

 Proxy: here you can define if you want to connect through an HTTP Proxy Server.

 WatchDog: if enabled, when an unexpected disconnection is detected, tries to reconnect to the server automati
cally.

Interval: seconds before reconnects.

Attempts: max number of reconnects, if zero, then unlimited.

 TLS: enables a secure connection.

COMPONENTS

217

•
◦
◦

•
◦
◦

•
•
•
•
•

•

•

•

•

•

•

•

TsgcWebSocketLoadBalancerServer
The component TsgcWebSocketLoadBalancerServer allows to Load Balancing WebSocket and HTTP Proto
cols. For websockedt protocol allows to distributing messages across a group of servers and distributes clients con
nections using a random sequence or fewer connections algorithm.

The Load Balancer Server, inherits all methods and properties from TsgcWebSocketHTTPServer.

Load Balancer Configuration

The Load Balancer server it's a descendant of TsgcWebSocketHTTPServer, so read the documentation about the
TsgcWebSocketHTTPServer to know how to configure it.

Additionally, the Load Balancer has the property LoadBalancer, which has the following properties:

LoadBalancing: configure here how distribute the connections
lbRandom: (default) every time a new client request a new connection, it will return a random server.
lbConnections: every time a new client request a new connection, it will return server with fewer
clients connected.

Protocols: configure which protocols are enabled
WebSocket: if true, the websocket connections will be handled by the Load Balancer Server.
HTTP: if true, the http connections will be handled by the Load Balancer Server.

Backup Server Configuration

The Backup Servers (the servers behind the load balancer) can be a TsgcWebSocketServer, TsgcWebSock
etHTTPServer or a Datasnap Server.
Those servers have a property called LoadBalancer where you can configure the connection between the Load
Balancer Server and the Backup Servers.

Enabled: set to true if you want to use as a backup server.
Host: the host were is the LoadBalancer.
Port: the listening port of the LoadBalancer.
Guid: unique id that identifies this server.
Bindings: the public addresses accessible were the connections will be forwarded. Example: if the Backup
WebSocket server is listening on port 8000 and the ip address is 1.1.1.1, use the following: ws://
1.1.1.1:8000;
AutoRegisterBindings: if enabled, the LoadBalancer Server will use the Bindings property of the backup
server to configure the public bindings.
AutoRestart: in seconds, if greater than zero, the load balancer client of the backup server will enable an in
ternal watchdog that every x seconds, will check if the connection is alive, if it's closed, it will try to recon
nect.

Events

OnBeforeSendServerBinding: raised before binding is sent to a new client connection.

OnClientConnect: every time a client connection is stablished, this event is fired.

OnClientDisconnect: every time a client connection is dropped, this event is fired.

OnClientMessage: raised when a new text message is received from the server.

OnClientBinary: raised when a new binary message is received from the server.

https://www.esegece.com/help/sgcWebSockets/#t=Components%2FDatasnap%2FDatasnap.htm

COMPONENTS

218

•

•

•

•

•

•

OnClientFragmented: raised when a new fragmented message is received from the server.

OnServerConnect: raised when a new server connects to LoadBalancerServer.

OnServerDisconnect: raised when a server disconnects from LoadBalancerServer.

OnServerReady: raised when a server is ready to accept messages.

OnLoadBalancerHTTPRequest: the event is called when there is a new HTTP Request and before it's for
warded to a backup server.

OnLoadBalancerHTTPResponse: the event is called with the HTTP Response sent by the backup server.

COMPONENTS

219

TsgcWebSocketProxyServer
TsgcWebSocketProxyServer implements a WebSocket Server Component which listens to client WebSocket con
nections and forwards data connections to a normal TCP/IP server. This is especially useful for browser connec
tions because allows a browser to virtually connect to any server.

COMPONENTS

220

TsgcIWWebSocketClient
TsgcIWWebSocketClient implements Intraweb WebSocket Component and can connect to a WebSocket Server.
Follow the next steps to configure this component:

1. Drop a TsgcIWWebSocketClient component in the form

2. Set Host and Port (default is 80) to connect to an available WebSocket Server. You can set URL property and
Host, Port, Parameters... will be updated from URL. Example: wss://127.0.0.1:8080/ws/ will result:

3. You can select if you want TLS (secure connection) or not, by default is not Activated.

4. Set Transports allowed.

 WebSockets: it will use standard WebSocket implementation

 Emulation: if browser doesn't support WebSockets, then it will use a loop AJAX callback connection

5. If you want, you can handle events

 OnAsyncConnect: when a WebSocket connection is established, this event is fired

 OnAsyncDisconnect: when a WebSocket connection is dropped, this event is fired

 OnAsyncError: every time there is a WebSocket error (like mal-formed handshake), this event is fired

 OnAsyncMessage: every time the server sends a message, this event is fired

 OnAsyncEmulation: this event is fired on every loop of emulated connection

6. Create an Async Procedure and set property Active := True

Methods

 Open: Opens a WebSocket Connection.

 Close: Closes a WebSocket Connection.

 WriteData: sends a message to WebSocket Server.

oClient = new TsgcIWWebSocketClient();

oClient->Host = "127.0.0.1";

oClient->Port = 80;

oClient->TLS = true;

oClient->Options->Parameters = "/ws/";

COMPONENTS

221

Properties

 Connected: is a read-only variable and returns True if the connection is Active, otherwise returns False.

 JSOpen: here you can include JavaScript Code on the client side when a connection is opened.

 JSClose: here you can include JavaScript Code on the client side when a connection is closed.

 JSMessage: here you can include JavaScript Code on the client side when clients receive a message from

the server. You can get Message String, using Javascript variable "text".

 JSError: here you can include JavaScript Code on the client side when an error is raised. You can get

Message Error, using Javascript variable "text".

COMPONENTS

222

TsgcWSConnection
TsgcWSConnection is a wrapper of client WebSocket connections, you can access to this object on Server or
Client Events.

Methods

 WriteData: sends a message to the client.

 Close: sends a close message to other peer. A "CloseCode" can be specified optionally. By default, the value sent
is NORMAL close code. If you send a Negative Close code, the reason of closing won't be sent.

 Disconnect: close client connection from the server side. A "CloseCode" can be specified optionally.

 Ping: sends a ping to the client.

 AddTCPEndOfFrame: if connection is plain TCP, allows to set which byte/s define the end of message. Message
is buffered till is received completely.

 Subscribed: returns if the connection is subscribed to a custom channel.

 Subscribe: subscribe this connection to a channel. Later you can Broadcast a message from server component
to all connections subscribed to this channel.

 UnSubscribe: unsubscribe this from connection from a channel.

Properties

 Protocol: returns sub-protocol used on this connection.

 IP: returns Peer IP Address.

 Port: returns Peer Port.

 LocalIP: returns Host IP Address.

 LocalPort: returns Host Port.

 URL: returns URL requested by the client.

 Guid: returns connection ID.

 HeadersRequest: returns a list of Headers received on Request.

 HeadersResponse: returns a list of Headers sent as Response.

 RecBytes: number of bytes received.

 SendBytes: number of bytes sent.

 Transport: returns the transport type of connection:

trpRFC6455: a normal WebSocket connection.

trpHixie76: a WebSocket connection using draft WebSocket spec.

trpFlash: a WebSocket connection using Flash as FallBack.

COMPONENTS

223

trpSSE: a Server-Sent Events connection.

trpTCP: plain TCP connection.

TCPEndOfFrameScanBuffer: allows to define which method use to find end of message (if using trpTCP as tans
port).

eofScanNone: every time a new packet arrive, OnBinary event is called.

eofScanLatestBytes: if latest bytes are equal to bytes added with AddTCPEndOfFrame method, OnBinary
message is called, otherwise this packet is buffered

eofScanAllBytes: search in all packet if find bytes equal to bytes added with AddTCPEndOfFrame method.
If true, OnBinary message is called, otherwise this packet is buffered

 Data: user session data object, here you can pass an object and access this every time you need, for example:
you can pass a connection to a database, user session properties...

COMPONENTS

224

Protocols
With WebSockets, you can implement Sub-protocols allowing to create customized communications, for example
you can implement a sub-protocol over WebSocket protocol to communicate a customized application using JSON
messages, and you can implement another sub-protocol using XML messages.

When a connection is open on the Server side, it will validate if sub-protocol sent by the client is supported by the
server, if not, then it will close the connection. A server can implement several sub-protocols, but only one can be
used on a single connection.

Sub-protocols are very useful to create customized applications and be sure that all clients support the same com
munication interface.

Although the protocol name is arbitrary, it's recommended to use unique names like "dataset.esegece.com"

With sgcWebSockets package, you can build your own protocols and you can use built-in sub-protocols provided:

1. Protocol MQTT: MQTT is a Client Server publish/subscribe messaging transport protocol. It is lightweight, open,
simple, and designed so as to be easy to implement.

2. Protocol AppRTC: is a webrtc demo application developed by Google and Mozilla, it enables both browsers to
“talk” to each other using the WebRTC API.

3. Protocol WebRTC: open source project aiming to enable the web with Real-Time Communication (RTC) capa
bilities.

4. Protocol Files: implemented using binary messages, provides support for send files: packet size, authorization,
QoS, message acknowledgement and more.

5. Protocol SGC: implemented using JSON-RPC 2.0 messages, provides the following patterns: RPC, PubSub,
Transactional Messages, Messages Acknowledgment and more.

6. Protocol Dataset: inherits from Default Protocol, can send dataset changes (new record, save record or delete
a record) from the server to clients.

7. Protocol Presence: allows to know who is subscribed to a channel, example: chat rooms, collaborators on a
document, people viewing the same web page, competitors in a game...

8. Protocol WAMP 1.0: open WebSocket subprotocol that provides two asynchronous messaging patterns: RPC
and PubSub.

9. Protocol WAMP 2.0: open WebSocket subprotocol that provides two asynchronous messaging patterns: RPC
and PubSub.

10. Protocol STOMP: STOMP is the Simple (or Streaming) Text Orientated Messaging Protocol. STOMP provides
an interoperable wire format so that STOMP clients can communicate with any STOMP message broker to provide
easy and widespread messaging interoperability among many languages, platforms and brokers.

10.1 STOMP for RabbitMQ: client for RabbitMQ Broker.

10.2 STOMP for ActiveMQ: client for ActiveMQ Broker.

11. Protocol AMQP: Advanced Message Queuing Protocol (AMQP 0.9.1) is created as an open standard protocol
that allows messaging interoperability between systems, regardless of message broker vendor or platform used.

12. Protocol AMQP1: Advanced Message Queuing Protocol (AMQP 1.0.0) is created as an open standard proto
col that allows messaging interoperability between systems, regardless of message broker vendor or platform
used.

COMPONENTS

225

If you need to use more than one protocol using a single connection (example: you may need to use default
protocol to handle Remote Procedure Calls and Dataset protocol to handle database connections) you can as
sign a "Broker" to each protocol component and all messages will be exchanged using this intermediary protocol
(you can check "Tickets Demo" to get a simple example of this).

Protocols can be registered at runtime, just call Method RegisterProtocol and pass protocol component as a pa
rameter.

Javascript Reference

Here you can get more information about common javascript library used on sgcWebSockets.

COMPONENTS

226

•

•

•

Protocols Javascript
Default Javascript sgcWebSockets uses sgcWebSocket.js file.

Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con
figure your access to sgcWebSocket.js file as:

<script src="http://www.example.com:80/sgcWebSockets.js"></script>

Open Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script>

 var socket = new sgcWebSocket('ws://{%host%}:{%port%}');

</script>

sgcWebSocket has 3 parameters, only first is required:

sgcWebSocket(url, protocol, transport)

URL: WebSocket server location, you can use "ws:" for normal WebSocket connections and "wss:" for
secured WebSocket connections.

sgcWebSocket('ws://127.0.0.1')

sgcWebSocket('wss://127.0.0.1')

Protocol: if the server accepts one or more protocol, you can define which is the protocol you want to
use.

sgcWebSocket('ws://127.0.0.1', 'esegece.com')

Transport: by default, first tries to connect using WebSocket connection and if not implemented by
Browser, then tries Server Sent Events as Transport.

Use WebSocket if implemented, if not, then use Server Sent Events:

sgcWebSocket('ws://127.0.0.1')

Only use WebSocket as transport:

sgcWebSocket('ws://127.0.0.1', '', ['websocket'])

Only use Server Sent as transport:

sgcWebSocket('ws://127.0.0.1', '', ['sse'])

Open Connection With Authentication

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script>

 var socket = new sgcWebSocket({"host":"ws://{%host%}:{%port%}","user":"admin","password":"1234"});

</script>

COMPONENTS

227

Send Message

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script>

 var socket = new sgcWebSocket('ws://{%host%}:{%port%}');

 socket.send('Hello sgcWebSockets!');

</script>

Show Alert with Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script>

 var socket = new sgcWebSocket('ws://{%host%}:{%port%}');

 socket.on('message', function(event)

 {

 alert(event.message);

 }

</script>

Binary Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script>

 var socket = new sgcWebSocket('ws://{%host%}:{%port%}');

 socket.on('stream', function(event)

 {

 document.getElementById('image').src = URL.createObjectURL(event.stream);

 event.stream = "";

 }

</script>

Binary (Header + Image) Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script>

 var socket = new sgcWebSocket('ws://{%host%}:{%port%}');

 socket.on('stream', function(event)

 {

 sgcWSStreamRead(evt.stream, function(header, stream) {

 document.getElementById('text').innerHTML = header;

 document.getElementById('image').src = URL.createObjectURL(event.stream);

 event.stream = "";

 }

 }

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script>

 var socket = new sgcWebSocket('ws://{%host%}:{%port%}');

COMPONENTS

228

 socket.on('open', function(event)

 {

 alert('sgcWebSocket Open!');

 };

 socket.on('close', function(event)

 {

 alert('sgcWebSocket Closed!');

 };

 socket.on('error', function(event)

 {

 alert('sgcWebSocket Error: ' + event.message);

 };

</script>

Close Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script>

 socket.close();

</script>

Get Connection Status

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script>

 socket.state();

</script>

COMPONENTS

229

•
•

•
•

•
•
•
•

•
•
•
•
•

•
•
•
•
•

Protocol MQTT
MQTT is a Client-Server publish/subscribe messaging transport protocol. It is light weight, open, simple, and de
signed so as to be easy to implement. These characteristics make it ideal for use in many situations, including con
strained environments such as for communication in Machine to Machine (M2M) and the Internet of Things (IoT)
contexts where a small code footprint is required and/or network bandwidth is at a premium.

The protocol runs over TCP/IP, or over other network protocols that provide ordered, lossless, bi-directional con
nections. Its features include:

· Use of the publish/subscribe message pattern which provides one-to-many message distribution and decou
pling of applications.

· A messaging transport that is agnostic to the content of the payload.

· Three qualities of service for message delivery:

· "At most once", where messages are delivered according to the best efforts of the operating environ
ment. Message loss can occur. This level could be used, for example, with ambient sensor data where it
does not matter if an individual reading is lost as the next one will be published soon after.
· "At least once", where messages are assured to arrive but duplicates can occur.
· "Exactly once", where message are assured to arrive exactly once. This level could be used, for ex
ample, with billing systems where duplicate or lost messages could lead to incorrect charges being applied.

· A small transport overhead and protocol exchanges minimized to reduce network traffic.

· A mechanism to notify interested parties when an abnormal disconnection occurs.

Features

Supports 3.1.1 and 5.0 MQTT versions.
Publish/subscribe message pattern to provide one-to-many message distribution and decoupling of appli
cations.
Acknowledgment of messages sent.
Implements QoS (Quality of Service) for message delivery (all levels: At most once, At least once and Exact
ly once)
Last Will Testament.
Secure connections.
HeartBeat and Watchdog.
Authentication to server.

Components

 TsgcWSPClient_MQTT: MQTT Client Component.

Most common uses

Connection
Client MQTT Connect
Connect Mosquitto MQTT Servers
Client MQTT Sessions
Client MQTT Version

Publish & Subscribe

MQTT Publish Subscribe
MQTT Topics
MQTT Subscribe
MQTT Publish Message

COMPONENTS

230

•
•

•
•

MQTT Receive Messages
MQTT Publish and Wait Response

Other

MQTT Clear Retained Messages

COMPONENTS

231

•

•

•

•

•
•

•

•
•

•

•

•

TsgcWSPClient_MQTT
The MQTT component provides a lightweight, fully-featured MQTT client implementation with support for versions
3.1.1 and 5.0. The component supports plaintext and secure connections over both standard TCP and WebSock
ets.

Connection to a MQTT server is simple, you need to drop this component in the form and select a TsgcWebSocket
Client Component using Client Property. Set host and port in TsgcWebSocketClient and set Active := True to con
nect.

MQTT v5.0 is not backward compatible (like v3.1.1). Obviously too many new things are introduced so existing im
plementations have to be revisited.

According to the specification, MQTT v5.0 adds a significant number of new features to MQTT while keeping much
of the core in place.

The Clean Session flag functionality is divided into 2 properties to allow for finer control over session state
data: the CleanStart parameter and the new SessionExpInterval.
Server disconnect: Allow DISCONNECT to be sent by the Server to indicate the reason the connection is
closed.
All response packets (CONNACK, PUBACK, PUBREC, PUBREL, PUBCOMP, SUBACK, UNSUBACK, DIS
CONNECT) now contain a reason code and reason string describing why operations succeeded or failed.
Enhanced authentication: Provide a mechanism to enable challenge/response style authentication including
mutual authentication. This allows SASL style authentication to be used if supported by both Client and
Server, and includes the ability for a Client to re-authenticate within a connection.
The Request / Response pattern is formalized by the addition of the ResponseTopic.
Shared Subscriptions: Add shared subscription support allowing for load balanced consumers of a subscrip
tion.
Topic Aliases can be sent by both client and server to refer to topic filters by shorter numerical identifiers in
order to save bandwidth.
Servers can communicate what features it supports in ConnectionProperties.
Server reference: Allow the Server to specify an alternate Server to use on CONNACK or DISCONNECT.
This can be used as a redirect or to do provisioning.
More: message expiration, Receive Maximums and Maximum Packet Sizes, and a Will Delay interval are all
supported.

Methods

 Connect: this method is called automatically after a successful WebSocket connection.

 Ping: Sends a ping to the server, usually to keep the connection alive. If you enable HeartBeat property, ping will
be sent automatically by a defined interval.

 Subscribe: subscribe client to a custom channel. If the client is subscribed, OnMQTTSubscribe event will be
fired.

SubscribeProperties: (New in MQTT 5.0)

SubscriptionIdentifier: MQTT 5 allows clients to specify a numeric subscription identifier which will
be returned with messages delivered for that subscription. To verify that a server supports subscrip
tion identifiers, check the "SubscriptionIdentifiersAvailable"
UserProperties: This property is intended to provide a means of transferring application layer name-
value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

Example:

TsgcWSMQTTSubscribe_Properties *oProperties = new TsgcWSMQTTSubscribe_Properties();

try

COMPONENTS

232

•

•

•

•

•
•

{

 oProperties->SubscriptionIdentifier = 16385;

 MQTT->Subscribe("myChannel", mtqsAtMostOnce, oProperties);

}

__finally

{

 FreeAndNil(oProperties);

}

 Unsubscribe: unsubscribe client to a custom channel. If the client is unsubscribed, OnMQTTUnsubscribe event
will be fired.

UnsubscribeProperties: (New in MQTT 5.0)

UserProperties: This property is intended to provide a means of transferring application layer name-
value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

Example:

TsgcWSMQTTUnsubscribe_Properties *oProperties = new TsgcWSMQTTUnsubscribe_Properties();

try

{

 oProperties->UserProperties->Add("Temp=21");

 oProperties->UserProperties->Add("Humidity=55");

 MQTT->UnSubscribe("myChannel", mtqsAtMostOnce, oProperties);

}

__finally

{

 FreeAndNil(oProperties);

}

 Publish: sends a message to all subscribed clients. There are the following parameters:

Topic: is the channel where the message will be published.
Text: is the text of the message.
QoS: is the Quality Of Service of published message. There are 3 possibilities:

mtqsAtMostOnce: (by default) the message is delivered according to the best efforts of the underly
ing TCP/IP network. A response is not expected and no retry semantics are defined in the protocol.
The message arrives at the server either once or not at all.
mtqsAtLeastOnce: the receipt of a message by the server is acknowledged by an ACKNOWLEDG
MENT message. If there is an identified failure of either the communications link or the sending de
vice or the acknowledgement message is not received after a specified period of time, the sender re
sends the message. The message arrives at the server at least once. A message with QoS level 1
has an ID param in the message.
mtqsExactlyOnce: where message are assured to arrive exactly once. This level could be used, for
example, with billing systems where duplicate or lost messages could lead to incorrect charges being
applied. If there is an identified failure of either the communications link or the sending device, or the
acknowledgement message is not received after a specified period of time, the sender resends the
message.

Retain: if True, Server MUST store the Application Message and its QoS, so that it can be delivered to fu
ture subscribers whose subscriptions match its topic name. By default is False.
PublishProperties: (New in MQTT 5.0)

PayloadFormat: select payload format from: mqpfUnspecified (which is equivalent to not sending a
Payload Format Indicator) or mqpfUTF8 (Message s UTF-8 Encoded Character Data).
MessageExpiryInterval: Length of time after which the server must stop delivery of the publish mes
sage to a subscriber if not yet processed.
TopicAlias: is an integer value that is used to identify the Topic instead of using the Topic Name. This
reduces the size of the PUBLISH packet, and is useful when the Topic Names are long and the same
Topic Names are used repetitively within a Network Connection.
ResponseTopic: is used as the Topic Name for a response message.
CorrelationData: The Correlation Data is used by the sender of the Request Message to identify
which request the Response Message is for when it is received.

COMPONENTS

233

•

•

•

•
•

•
•

•
•
•

•

1.

2.

•
•

•
•

•
•
•

UserProperties: This property is intended to provide a means of transferring application layer name-
value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.
SubscriptionIdentifier: A numeric subscription identifier included in SUBSCRIBE packet which will
be returned with messages delivered for that subscription.
ContentType: String describing content of message to be sent to all subscribers receiving the mes
sage.

 PublishAndWait: is the same method than Publish, but in this case, if QoS is [mtqsAtLeastOnce, mtqsExactly
Once] waits till server processes the message, this way, if you get a positive result, means that message has been
received by server. There is a timeout of 10 seconds by default, if after the timeout there is no response from serv
er, the response will be false.

 Disconnect: disconnects from MQTT server.

ReasonCode: code identifies reason why disconnects.(New in MQTT 5.0)
DisconnectProperties (New in MQTT 5.0)

SessionExpiryInterval: Session Expiry Interval in seconds.
ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client including diagnostic information.
ServerReference: can be used by the Client to identify another Server to use.

 Auth: is sent from Client to Server or Server to Client as part of an extended authentication exchange, such as
challenge / response authentication. (New in MQTT 5.0)

ReAuthenticate: if True Initiate a re-authentication, otherwise continue the authentication with another step.
AuthProperties

AuthenticationMethod: contains the name of the authentication method.
AuthenticationData: contains authentication data.
ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client including diagnostic information.

Events

 OnMQTTBeforeConnect: this event is fired before a new connection is established. There are 2 parameters:
CleanSession: if True (by default), the server must discard any previous session and start a new session. If
false, the server must resume communication.
ClientIdentifier: every new connection needs a client identifier, this is set automatically by component, but
can be modified if needed.

 OnMQTTConnect: this event is fired when the client is connected to MQTT server. There are 2 parameters:

Session:
If client sends a connection with CleanSession = True, then Server Must respond with Session =
False.
If client sends a connection with CleanSession = False:

If the Server has stored Session state, Session = True.
If the Server does not have stored Session state, Session = False

ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
ConnectProperties: (New in MQTT 5.0)

SessionExpiryInterval: Session Expiry Interval in seconds.
ReceiveMaximum: number of QoS 1 and QoS 2 publish messages, the server will process concur
rently for the client.
MaximumQoS: maximum accepted QoS of PUBLISH messages to be received by the server.
RetainAvailable: indicates whether the client may send PUBLISH packets with Retain set to True.
MaximumPacketSize: maximum packet size in bytes the server is willing to accept.

COMPONENTS

234

•

•

•

•
•
•
•
•
•
•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

AssignedClientIdentifier: the Client Identifier which was assigned by the Server when client didn't
send any.
TopicAliasMaximum: indicates the hishest value that the server will accept as a Topic Alias sent by
the client.
ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client including diagnostic information.
WildcardSubscriptionAvailable: indicates whether the server supports wildcard subscriptions.
SubscriptionIdentifiersAvailable: indicates whether the server supports subscription identifiers.
SharedSubscriptionAvailable: indicates whether the server supports shared subscriptions.
ResponseInformation: used as the basis for creating a Response Topic.
ServerReference: can be used by the Client to identify another Server to use.
AuthenticationMethod: identifier of the Authentication Method.
AuthenticationData: string containing authentication data.

 OnQTTDisconnect: this event is fired when the client is disconnected from MQTT server. Parameters:

ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
DisconnectProperties: (New in MQTT 5.0)

SessionExpiryInterval: Session Expiry Interval in seconds.
ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client including diagnostic information.
ServerReference: can be used by the Client to identify another Server to use.

 OnMQTTPing: this event is fired when the client receives an acknowledgment from a ping previously sent.

 OnMQTTPubAck: this event is fired when receives the response to a Publish Packet with QoS level 1. There is
one parameter:

PacketIdentifier: is packet identifier sent initially.
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
PubAckProperties: (New in MQTT 5.0)

ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client including diagnostic information.

 OnMQTTPubComp: this event is fired when receives the response to a PubRel Packet. It is the fourth and final
packet of the QoS 2 protocol exchange. There are the following parameters:

PacketIdentifier: is packet identifier sent initially.
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
PubCompProperties: (New in MQTT 5.0)

ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client including diagnostic information.

 OnMQTTPublish: this event is fired when the client receives a message from the server. There are 2 parameters:

Topic: is the topic name of the published message.
Text: is the text of the published message.
PublishProperties: (New in MQTT 5.0)

PayloadFormat: select payload format from: mqpfUnspecified (which is equivalent to not sending a
Payload Format Indicator) or mqpfUTF8 (Message s UTF-8 Encoded Character Data).
MessageExpiryInterval: Length of time after which the server must stop delivery of the publish mes
sage to a subscriber if not yet processed.
TopicAlias: is an integer value that is used to identify the Topic instead of using the Topic Name. This
reduces the size of the PUBLISH packet, and is useful when the Topic Names are long and the same
Topic Names are used repetitively within a Network Connection.
ResponseTopic: is used as the Topic Name for a response message.
CorrelationData: The Correlation Data is used by the sender of the Request Message to identify
which request the Response Message is for when it is received.

COMPONENTS

235

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

UserProperties: This property is intended to provide a means of transferring application layer name-
value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.
SubscriptionIdentifier: A numeric subscription identifier included in SUBSCRIBE packet which will
be returned with messages delivered for that subscription.
ContentType: String describing content of message to be sent to all subscribers receiving the mes
sage.

 OnMQTTPubRec: this event is fired when receives the response to a Publish Packet with QoS 2. It is the second
packet of the QoS 2 protocol exchange. There are the following parameters:

PacketIdentifier: is packet identifier sent initially.
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
PubRecProperties: (New in MQTT 5.0)

ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client including diagnostic information.

 OnMQTTSubscribe: this event is fired as a response to subscribe method. There are the following parameters:

PacketIdentifier: is packet identifier sent initially.
Codes: codes with the result of a subscription.
SubscribeProperties: (New in MQTT 5.0)

ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client about subscription.

 OnMQTTUnSubscribe: this event is fired as a response to subscribe method. There are the following parame
ters:

PacketIdentifier: is packet identifier sent initially.
Codes: codes with the result of a subscription.
UnsubscribeProperties: (New in MQTT 5.0)

UserProperties: provide additional information to the Client about subscription.

 OnMQTTAuth: this event is fired as a response to Äuth method. There is one parameter: (New in MQTT 5.0)
ReasonCode: returns code with the result of connection.
ReasonName: text description of ReturnCode.
AuthProperties:

AuthenticationMethod: contains the name of the authentication method used for extended authenti
cation.
AuthenticationData: data associated to authentication.
ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
UserProperties: provide additional information to the Client including diagnostic information.

Enhanced Authentication (New in MQTT 5.0)

To begin an enhanced authentication, the Client includes an Authentication Method in the ConnectProperties. This
specifies the authentication method to use. If the Server does not support the Authentication Method supplied by
the Client, it may send a Reason Code "Bad authentication method" or Not Authorized.

Example:

Client to Server: CONNECT Authentication Method="SCRAM-SHA-1" Authentication Data=client-first-data
Server to Client: AUTH ReasonCode="Continue authentication" Authentication Method="SCRAM-SHA-1"
Authentication Data=server-first-data
Client to Server AUTH ReasonCode="Continue authentication" Authentication Method="SCRAMSHA1" Au
thentication Data=client-final-data
Server to Client CONNACK ReasonCode=0 Authentication Method="SCRAM-SHA-1" Authentication
Data=server-final-data

COMPONENTS

236

•
•
•

•
•

•

•

•

•
•
•

•

•
•
•

•

•

•

•

•

•

Properties

 MQTTVersion: select which MQTT version (3.1.1 or 5.0) will use to connect to server.

 Authentication: disabled by default, if True a UserName and Password are sent to the server to try user authen
tication.

 HeartBeat: enabled by default, if True, send a ping every X seconds (set by Interval property) to keep alive con
nection. You can set a Timeout too, so if after X seconds, the client doesn't receive a response to a ping, the con
nection will be closed automatically.

 LastWillTestament: if there is a disconnection and is enabled, a message is sent to all connected clients to in
form that connection has been closed.

Enabled: enable if you want activate last will testament.
Text: is the message that the server will publish in the event of an ungraceful disconnection.
Topic: is the topic that the server will publish the message to in the event of an ungraceful disconnection. Is
mandatory if LastWillTestament is enabled.
Retain: enable if server must retain message after publish it.
WillProperties: (New in MQTT 5.0)

WillDelayInterval: The Server delays publishing the Client’s Will Message until the Will Delay Interval
has passed or the Session ends, whichever happens first.
PayloadFormat: select payload format from: mqpfUnspecified (which is equivalent to not sending a
Payload Format Indicator) or mqpfUTF8 (Message s UTF-8 Encoded Character Data).
MessageExpiryInterval: Length of time after which the server must stop delivery of the will message
to a subscriber if not yet processed.
ContentType: string describing content of will message.
ResponseTopic: Used as a topic name for a response message.
CorrelationData: binary string used by client to identify which request the response message is for
when received.
UserProperties: can be used to send will related properties from the Client to the Server. The mean
ing of these properties is not defined by MQTT specification.

 ConnectProperties: (New in MQTT 5.0) are connection properties sent with packet connect.

Enabled: if True, connect properties will be sent to server.
SessionExpiryInterval: if value is zero, session will end when network connection is closed.
ReceiveMaximum: the Client uses this value to limit the number of QoS 1 and QoS 2 publications that it is
willing to process concurrently.
MaximumPacketSize: the Client uses the Maximum Packet Size to inform the Server that it will not process
packets exceeding this limit.
TopicAliasMaximum: the Client uses this value to limit the number of Topic Aliases that it is willing to hold
on this Connection.
RequestResponseInformation: the Client uses this value to request the Server to return Response Infor
mation in the CONNACK. If False indicates that the Server MUST NOT return Response Information, If True
the Server MAY return Response Information in the CONNACK packet.
RequestProblemInformation: the Client uses this value to indicate whether the Reason String or User
Properties are sent in the case of failures. If the value of Request Problem Information is False, the Server
MAY return a Reason String or User Properties on a CONNACK or DISCONNECT packet but MUST NOT
send a Reason String or User Properties on any packet other than PUBLISH, CONNACK, or DISCONNECT.
UserProperties: can be used to send connection related properties from the Client to the Server. The
meaning of these properties is not defined by MQTT specification.
AuthenticationMethod: contains the name of the authentication method used for extended authentication.

COMPONENTS

237

TsgcWSPClient_MQTT | Client MQTT Con
nect
In order to connect to a MQTT Server, you must create first a TsgcWebSocketClient and a TsgcWSPClient_MQTT.
Then you must attach MQTT Component to WebSocket Client.

Basic Usage

Connect to Mosquitto MQTT server using websocket protocol. Subscribe to topic: "topic1" after connect.

oClient = new TsgcWebSocketClient();

oClient->Host = "test.mosquitto.org";

oClient->Port = 8080;

oMQTT = new TsgcWSPClient_MQTT();

oMQTT->Client = oClient;

oClient->Active = true;

void OnMQTTConnect(TsgcWSConnection *Connection, const bool Session, const int ReasonCode,

 const string ReasonName, const TsgcWSMQTTCONNACKProperties *ConnectProperties);

{

 oMQTT->Subscribe("topic1");

}

Client Identifier

MQTT requires a Client Identifier to identify client connection. Component sets a random value automatically but
you can set your own Client Identifier if required, to do this, just handle OnBeforeConnect event and set your val
ue on aClientIdentifier parameter.

void OnMQTTBeforeConnect(TsgcWSConnection *Connection, ref bool aCleanSession,

 ref string aClientIdentifier)

{

 aClientIdentifier = "your client id";

}

Authentication

Somes servers require an user and password to authorize MQTT connections. Use Authentication property to
set the value for username and password before connect to server.

oMQTT = new TsgcWSPClient_MQTT();

oMQTT->Authentication->Enabled = true;

oMQTT->Authentication->UserName = "your user";

oMQTT->Authentication->Password = "your password";

COMPONENTS

238

TsgcWSPClient_MQTT | Connect MQTT
Mosquitto
Use the following sample configurations to connect to a Mosquitto MQTT Server.

MOSQUITTO MQTT WebSockets

oClient = new TsgcWebSocketClient();

oClient->Host = "test.mosquitto.org";

oClient->Port = 8080;

oMQTT = new TsgcWSPClient_MQTT();

oMQTT->Client = oClient;

oClient->Active = true;

MOSQUITTO MQTT WebSockets TLS

oClient = new TsgcWebSocketClient();

oClient->Host = "test.mosquitto.org";

oClient->Port = 8081;

oClient->TLS = true;

oClient->TLSOptions->Version = tls1_2;

oMQTT = new TsgcWSPClient_MQTT();

oMQTT->Client = oClient;

oClient->Active = true;

MOSQUITTO MQTT Plain TCP

oClient = new TsgcWebSocketClient();

oClient->Host = "test.mosquitto.org";

oClient->Port = 1883;

oClient->Specifications->RFC6455 = false;

oMQTT = new TsgcWSPClient_MQTT();

oMQTT->Client = oClient;

oClient->Active = true;

MOSQUITTO MQTT Plain TCP TLS

oClient = new TsgcWebSocketClient();

oClient->Host = "test.mosquitto.org";

oClient->Port = 8083;

oClient->Specifications->RFC6455 = false;

oClient->TLS = true;

oClient->TLSOptions->Version = tls1_2;

oMQTT = new TsgcWSPClient_MQTT();

oMQTT->Client = oClient;

oClient->Active = true;

COMPONENTS

239

TsgcWSPClient_MQTT | Client MQTT Ses
sions
Clean Start

OnMQTTBeforeConnect event, there is a parameter called aCleanSession. If the value of this parameter is True,
means that client want start a new session, so if server has any session stored, it must discard it. So, when On
MQTTConnect event is fired, aSession parameter will be false. If the value of this parameter is False and there is a
session associated to this client identifier, the server must resume communications with the client on state with the
existing session.

So, if client has an unexpected disconnection, and you want to recover the session where was disconnected, in
OnMQTTBeforeConnect set aCleanSession = True and aClientIdentifier = Client ID of Session.

Session

Once successful connection, check OnMQTTConnect event, the value of Session parameter.

 Session = true, means session has been resumed.
 Session = false, means it's a new session.

void OnMQTTBeforeConnect(TsgcWSConnection *Connection, ref bool aCleanSession,

 ref string aClientIdentifier)

{

 aCleanSession = false;

 aClientIdentifier = "previous client id";

}

void OnMQTTConnect(TsgcWSConnection *Connection, const bool Session, const int ReasonCode,

 const string ReasonName, const TsgcWSMQTTCONNACKProperties *ConnectProperties);

{

 if (Session == true)

 {

 WriteLn("Session resumed");

 }

 else

 {

 WriteLn("New Session");

 }

}

COMPONENTS

240

•
•

TsgcWSPClient_MQTT | Client MQTT Ver
sion
Currently, MQTT Client supports the following specifications:

MQTT 3.1.1: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
MQTT 5.0: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

You can select which is the version which will use the MQTT Client component using MQTTVersion property.

MQTT 3.1.1: TsgcWSPClient_MQTT.Version = mqtt311
MQTT 5.0: sgcWSPClient_MQTT.Version = mqtt5

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

COMPONENTS

241

TsgcWSPClient_MQTT | MQTT Publish Sub
scribe
The publish/subscribe pattern (also known as pub/sub) provides an alternative to traditional client-server architec
ture. In the client-sever model, a client communicates directly with an endpoint.The pub/sub model decouples the
client that sends a message (the publisher) from the client or clients that receive the messages (the sub
scribers). The publishers and subscribers never contact each other directly. In fact, they are not even aware that
the other exists. The connection between them is handled by a third component (the broker). The job of the
broker is to filter all incoming messages and distribute them correctly to subscribers.

With TsgcWSPClient_MQTT you can Publish messages and Subscribe to Topics.

Subscribe Topic

Subscribe to Topic "topic1" after a successful connection.

oClient = new TsgcWebSocketClient();

oClient->Host = "test.mosquitto.org";

oClient->Port = 8080;

oMQTT = new TsgcWSPClient_MQTT();

oMQTT->Client = oClient;

oClient->Active = true;

void OnMQTTConnect(TsgcWSConnection *Connection, const bool Session, const int ReasonCode,

 const string ReasonName, const TsgcWSMQTTCONNACKProperties *ConnectProperties);

{

 oMQTT->Subscribe("topic1");

}

Publish Message

Publish a message to all subscribers of "topic1"

oClient = new TsgcWebSocketClient();

oClient->Host = "test.mosquitto.org";

oClient->Port = 8080;

oMQTT = new TsgcWSPClient_MQTT();

oMQTT->Client = oClient;

oClient->Active = true;

void OnMQTTConnect(TsgcWSConnection *Connection, const bool Session, const int ReasonCode,

 const string ReasonName, const TsgcWSMQTTCONNACKProperties *ConnectProperties);

{

 oMQTT->Publish("topic1", "Hello Subscribers topic1");

}

COMPONENTS

242

TsgcWSPClient_MQTT | MQTT Topics
Topics

In MQTT, the word topic refers to an UTF-8 string that the broker uses to filter messages for each connected client.
The topic consists of one or more topic levels. Each topic level is separated by a forward slash (topic level separa
tor)

myHome / groundfloor / livingroom / temperature

In comparison to a message queue, MQTT topics are very lightweight. The client does not need to create the de
sired topic before they publish or subscribe to it. The broker accepts each valid topic without any prior initialization.
Note that each topic must contain at least 1 character and that the topic string permits empty spaces. Topics are
case-sensitive.

WildCards

When a client subscribes to a topic, it can subscribe to the exact topic of a published message or it can use wild
cards to subscribe to multiple topics simultaneously. A wildcard can only be used to subscribe to topics, not to pub
lish a message. There are two different kinds of wildcards: _single-level and _multi-level.

Single Level: +

As the name suggests, a single-level wildcard replaces one topic level. The plus symbol represents a single-level
wildcard in a topic.

myHome / groundfloor / + / temperature

Any topic matches a topic with single-level wildcard if it contains an arbitrary string instead of the wildcard. For ex
ample a subscription to _myhome/groundfloor/+/temperature can produce the following results:

YES => myHome / groundfloor / livingroom / temperature
YES => myHome / groundfloor / kitchen / temperature
NO => myHome / groundfloor / livingroom / brightness
NO => myHome / firstfloor / livingroom / temperature
NO => myHome / groundfloor / kitchen / fridge / temperature

Multi Level: #

The multi-level wildcard covers many topic levels. The hash symbol represents the multi-level wild card in the topic.
For the broker to determine which topics match, the multi-level wildcard must be placed as the last character in the
topic and preceded by a forward slash.

myHome / groundfloor / #

YES => myHome / groundfloor / livingroom / temperature
YES => myHome / groundfloor / kitchen / temperature
YES => myHome / groundfloor / kitchen / brightness
NO => myHome / firstfloor / kitchen / temperature

When a client subscribes to a topic with a multi-level wildcard, it receives all messages of a topic that begins with
the pattern before the wildcard character, no matter how long or deep the topic is. If you specify only the multi-level
wildcard as a topic (_#), you receive all messages that are sent to the MQTT broker.

COMPONENTS

243

TsgcWSPClient_MQTT | MQTT Subscribe
You can Subscribe to a Topic using method Subscribe from TsgcWSPClient_MQTT. This method has the following
parameters:

Topic: is the name of the topic to be subscribed.
QoS: one of the 3 QoS levels (not all brokers support all 3 levels). If not specificed uses mtqsAtMostOnce.
Read more about QoS Levels.
SubscribeProperties: if MQTT 5.0, are additional properties about subscriptions.

Subscribe QoS = At Least Once

MQTT->Subscribe("topic1", mtqsAtLeastOnce);

Subscribe MQTT 5.0

oProperties = new TsgcWSMQTTSubscribe_Properties();

oProperties->SubscriptionIdentifier = 1234;

oProperties->UserProperties->Add("name=value");

MQTT->Subscribe("topic1", mtqsAtMostOnce, oProperties);

COMPONENTS

244

TsgcWSPClient_MQTT | MQTT Publish Mes
sage
You can publish messages to all subscribers of a Topic using Publish method, which has the following parameters:

Topic: is the name of the topic where the message will be published.
Text: is the text of the message.
QoS: one of the 3 QoS levels (not all brokers support all 3 levels). If not specificed uses mtqsAtMostOnce.
Read more about QoS Levels.
Retain: if true, this message will be retained. And every time a new client subscribes to this topic, this mes
sage will be sent to this client.
PublishProperties: if MQTT 5.0, these are the properties of the message.

Publish a simple message

MQTT->Publish("topic1", "Hello Subscribers topic1");

Publish QoS = At Least Once

MQTT->Publish("topic1", "Hello Subscribers topic1", mtqsAtLeastOnce);

Publish Retained message

MQTT->Publish("topic1", "Hello Subscribers topic1", mtqsAtMostOnce, true);

COMPONENTS

245

TsgcWSPClient_MQTT | MQTT Receive Mes
sages
Messages sent by server, are received OnMQTTPublish event. This event has the following parameters:

Topic: is the name of the topic associated to this message.
Text: is the text of the message.
PublishProperties: if MQTT 5.0, these are the properties of the published message.

Read published Messages

void OnMQTTPublish(TsgcWSConnection *Connection, string aTopic, string aText,

 TsgcWSMQTTPublishProperties *PublishProperties)

{

 WriteLn("Topic: " + aTopic + ". Message: " + aText);

}

COMPONENTS

246

•

•

•

TsgcWSPClient_MQTT | Publish and Wait
Response
MQTT client allows the use of some type of QoS levels, any of those levels works in a different level to be sure that
messages have been processed as expected.

There are the following QoS levels:

mtqsAtMostOnce: (by default) the message is delivered according to the best efforts of the un
derlying TCP/IP network. A response is not expected and no retry semantics are defined in the
protocol. The message arrives at the server either once or not at all.
mtqsAtLeastOnce: the receipt of a message by the server is acknowledged by an ACKNOWL
EDGMENT message. If there is an identified failure of either the communications link or the send
ing device or the acknowledgement message is not received after a specified period of time, the
sender resends the message. The message arrives at the server at least once. A message with
QoS level 1 has an ID param in the message.
mtqsExactlyOnce: where message are assured to arrive exactly once. This level could be used,
for example, with billing systems where duplicate or lost messages could lead to incorrect charges
being applied. If there is an identified failure of either the communications link or the sending de
vice, or the acknowledgement message is not received after a specified period of time, the sender
resends the message.

You can handle the events OnPubAck or OnPubComp to know if message has been processed by server or you
can use the method PublishAndWait to know if the message has been processed by the server.
The use of PublishAndWait is the same that normal Publish method, now you have a new parameter called Time
out, where method will return with value false if after certain period of time, there is no response from server. By de
fault this value is 10 seconds.

if mqtt->PublishAndWait("topic", "text")

{

 ShowMessage("Message processed")

}

else

{

 ShowMessage("Message error");

}

COMPONENTS

247

TsgcWSPClient_MQTT | MQTT Clear Re
tained Messages
By default, every MQTT topic can have a retained message. The standard MQTT mechanism to clean up retained
messages is sending a retained message with an empty payload to a topic. This will remove the retained message.

MQTT->Publish("topic1", "", mtqsAtMostOnce, true);

COMPONENTS

248

•
•

•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•

Protocol AMQP 0.9.1
The Advanced Message Queuing Protocol (AMQP) is an open standard application layer protocol for message-
oriented middleware. The defining features of AMQP are message orientation, queuing, routing (including point-to-
point and publish-and-subscribe), reliability and security.

AMQP is a binary, application layer protocol, designed to efficiently support a wide variety of messaging applica
tions and communication patterns. It provides flow controlled, message-oriented communication with message-de
livery guarantees such as at-most-once (where each message is delivered once or never), at-least-once (where
each message is certain to be delivered, but may do so multiple times) and exactly-once (where the message will
always certainly arrive and do so only once), and authentication and/or encryption based on SASL and/or TLS. It
assumes an underlying reliable transport layer protocol such as Transmission Control Protocol (TCP).

Features

AMQP can be used in any situation if there is a need for high-quality and secure message delivery between client
and broker.

AMQP provides the following features:

 Monitoring and sharing updates.
 Ensuring quick response of the server to requests and transmission of timeconsuming tasks for further pro
cessing.
 Distribute messages to multiple recipients.
 Connection offline clients for further data retrieval.
 Increase the reliability and smooth operation of applications.
 Reliability of message delivery.
 High speed message delivery.
 Message Acceptance.

Components

TsgcWSPClient_AMQP: it's the client component that implements AMQP 0.9.1 protocol.

Most common uses

Connection
Client AMQP Connect
Client AMQP Disconnect

Commands
AMQP Channels
AMQP Exchanges
AMQP Queues
AMQP Publish Messages
AMQP Consume Messages (Asynchronous)
AMQP Get Messages (Synchronous)
AMQP QoS
AMQP Transactions

COMPONENTS

249

•

•

•

•

•
•

TsgcWSPClient_AMQP
The TsgcWSClient_AMQP client implements the full AMQP 0.9.6 protocol following the OASIS specification. The
client supports Plain TCP and WebSocket connections, TLS (secure) connections are supported too.

Connection

AMQP 0.9.6 protocols defines the concept of channels, which allows to share a single socket connection with sev
eral virtual channels, the client implements an internal thread which reads the bytes received and dispatch every
message to the correct channel (which already runs in his own thread), so, if you are running an AMQP connection
with 5 channels, the client will run 6 threads (5 threads which handle the data of every channel and 1 thread which
handles the data of the connection).

Before connect to an AMQP server, configure the following properties of the AMQP protocol

AMQPOptions.Locale: it's the message locale to use, it's a negotiated value, so can change when com
pared with the supported locales supported by the server. The default value is "en_US".
AMQPOptions.MaxChannels: it's the maximum number of channels which can be opened, it's a negotiated
value, so can change when compared with the server configuration. The default value is 65535.
AMQPOptions.MaxFrameSize: it's the maximum size in bytes of the AMQP frame, it's a negotiated value,
so can change when compared with the server configuration. The default value is 2147483647.
AMQPOptions.VirtualHost: it's the name of the virtual host. The default value is "/".

The AMQP HeartBeat can be configured too before connect to server, you can enable or disable the use of heart
beats.

HeartBeat.Enabled: set to true if the client supports HeartBeats.
HeartBeat.Interval: the desired interval in seconds.

Once the AMQP client has been configured, attach to a TsgcWebSocketClient and now you can configure the serv
er connection properties to connect to the AMQP Server.
Set the property value Specifications.RFC6455 to false if using Plain TCP connection instead of WebSocket con
nection.

TsgcWSPClient_AMQP *oAMQP = new TsgcWSPClient_AMQP();

oAMQP->AMQPOptions->Locale = "en_US";

oAMQP->AMQPOptions->MaxChannels = 100;

oAMQP->AMQPOptions->MaxFrameSize = 16384;

oAMQP->AMQPOptions->VirtualHost = "/";

oAMQP->HeartBeat->Enabled = true;

oAMQP->HeartBeat->Interval = 60;

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

oAMQP->Client = oClient;

oClient->Specifications->RFC6455 = false;

oClient->Host = "www.esegece.com";

oClient->Port = 5672;

oClient->Active = true;

Channels

Once the AMQP client has connected, it can open the first channel.

oAMQP->OpenChannel("channel_name");

COMPONENTS

250

•

•

Exchanges

When a Channel is opened, the client can declare new exchanges, verify than exists... use the method DeclareEx
change to declare a new exchange.

oAMQP->DeclareExchange("channel_name", "exchange_name");

Queues

When a Channel is opened, the client can declare new queues, verify than exists... use the method DeclareQueue
to declare a new Queue. The queues are not provided by default by the server (unlike the exchanges), so it's al
ways required to declare a new queue (unless a queue has been already created by another client).

oAMQP->DeclareQueue("channel_name", "queue_name");

Binding Queues

Once the Exchanges and Queues are configured, you may need to bind queues to exchanges, this way the ex
changes can know which messages will be dispatched to the queues.

AMQP Servers automatically bind the queues to "direct" exchange using the queue name as routing key. This al
lows to send a message to a specific queue without the need to declare a binding (just calling PublishMessage
method and pasing the Exchange argument as empty value and the name of the queue in the RoutingKey argu
ment).

oAMQP->BindQueue("channel_name", "queue_name", "exchange_name", "routing_key");

Send Messages

Call the method PublishMessage to publish a new AMQP message. The method allows to publish a String or
TStream message.

oAMQP->PublishMessage("channel_name", "exchange_name", "routing_key", "Hello from sgcWebSockets!!!");

Receive Messages

AMQP allows to receive the messages in 2 modes:

Request by Client: using the GetMessage method. If there aren't messages in the queue, the event On
AMQPBasicGetEmpty will be called.
Pushed by Server: using the Consume method.

Request By Client

oAMQP->GetMessage("channel_name", "queue_name");

private void OnAMQPGetOk(TObject *Sender, const string aChannel;

 const TsgcAMQPFramePayload_Method_BasicGetOk *aGetOk, const TsgcAMQPMessageContent *aContent)

{

 DoLog("#AMQP_basic_GetOk: " + aChannel + " " + IntToStr(aGetOk->MessageCount) + " " + aContent->Body->AsString);

}

Pushed By Server

COMPONENTS

251

oAMQP->Consume("channel_name", "queue_name");

private void OnAMQPGetOk(TObject *Sender, const string aChannel;

 const TsgcAMQPFramePayload_Method_BasicGetOk *aGetOk, const TsgcAMQPMessageContent *aContent)

{

 DoLog("#AMQP_basic_GetOk: " + aChannel + " " + IntToStr(aGetOk->MessageCount) + " " + aContent->Body->AsString);

}

COMPONENTS

252

Connection | Client AMQP Connect
In order to connect to a AMQP Server, you must create first a TsgcWebSocketClient and a TsgcWSPClient_AMQP.
Then you must attach AMQP Component to WebSocket Client.

Basic Usage

Connect to AMQP server without authentication. Define the AMQPOptions property values, virtual host and then
set in the TsgcWebSocketClient the Host and Port of the server.
If you are using a TCP Plain connection, set the TsgcWebSocketClient property Specifications.RFC6455 to false.

oAMQP = new TsgcWSPClient_AMQP();

oAMQP->AMQPOptions->Locale = 'en_US';

oAMQP->AMQPOptions->MaxChannels = 100;

oAMQP->AMQPOptions->MaxFrameSize = 16384;

oAMQP->AMQPOptions->VirtualHost = '/';

oAMQP->HeartBeat->Enabled = true;

oAMQP->HeartBeat->Interval = 60;

oClient = new TsgcWebSocketClient();

oAMQP->Client = oClient;

oClient->Specifications->RFC6455 = false;

oClient->Host = 'www.esegece.com';

oClient->Port = 5672;

oClient->Active = true;

Authentication

If the server requires authentication, use the event OnAMQPAuthentication to select the Authentication mecha
nism (if required) and set the User / Password.

oAMQP = new TsgcWSPClient_AMQP();

oAMQP->AMQPOptions->Locale = 'en_US';

oAMQP->AMQPOptions->MaxChannels = 100;

oAMQP->AMQPOptions->MaxFrameSize = 16384;

oAMQP->AMQPOptions->VirtualHost = '/';

oAMQP->HeartBeat->Enabled = true;

oAMQP->HeartBeat->Interval = 60;

oClient = new TsgcWebSocketClient();

oAMQP->Client = oClient;

oClient->Specifications->RFC6455 = false;

oClient->Host = 'www.esegece.com';

oClient->Port = 5672;

oClient->Active = true;

private void OnAMQPAuthentication(TObject *Sender, TsgcAMQPAuthentications *aMechanisms, ref TsgcAMQPAuthentication *Mechanism,

 ref string User, ref string Password)

{

 User = "user_value";

 Password := "password_value";

}

COMPONENTS

253

Connection | Client AMQP Disconnect
The client can disconnect a current active connection, using the following methods:

Sending a Close Reason

The AMQP client can inform the server that the connection will be closed and provide information about the reason
why is closing the connection. Use the method Close to request a connection close to the server.

oAMQP.Close(541, "Internal Error");

Closing Socket Connection

Just set the property Active of TsgcWebSocketClient to False. You can read more about closing connections.

COMPONENTS

254

Commands | AMQP Channels
AMQP is a multi-channelled protocol. Channels provide a way to multiplex a heavyweight TCP/IP connection into
several light weight connections. This makes the protocol more “firewall friendly” since port usage is predictable. It
also means that traffic shaping and other network QoS features can be easily employed.

Every channel run in his own thread, so every time a new message is received, first the client identifies the channel
and queues the message in a queue which is process by the thread channel.

The channel life-cycle is this:

1. The client opens a new channel (Open).
2. The server confirms that the new channel is ready (Open-Ok).
3. The client and server use the channel as desired.
4. One peer (client or server) closes the channel (Close).
5. The other peer hand-shakes the channel close (Close-Ok).

Open Channel

To create a new channel just call the method OpenChannel and pass the channel name as argument. The event
OnAMQPChannelOpen is raised as a confirmation sent by the server that the channel has been opened.

AMQP->OpenChannel("channel_name");

private void OnAMQPChannelOpen(TObject *Sender, const string aChannel)

{

 DoLog("#AMQP_channel_open: " + aChannel);

}

A Synchronous call can be done too calling the method OpenChannelEx, this method returns true if the channel
has been opened and false if no confirmation from server has arrived.

if AMQP->OpenChannelEx("channel_name")

{

 DoLog("#AMQP_channel_open channel_name");

}

else

{

 DoLog("#AMQP_channel_open_error");

}

Close Channel

To close an existing channel, call the method CloseChannel and pass the channel name as argument. The event
OnAMQPChannelClose will be called when the client receives a confirmation that the channel has been closed.

A Synchronous call can be done calling the method CloseChannelEx, this method returns true if the channel has
been closed and false if no confirmation from server has arrived.

Channel Flow

Flow control is an emergency procedure used to halt the flow of messages from a peer. It works in the same way
between client and server and is implemented by the EnableChannel / DisableChannel commands. Flow control
is the only mechanism that can stop an over-producing publisher.

COMPONENTS

255

To Disable the Flow of a channel, call the method DisableChannel, the event OnAMQPChannelFlow will be
called when the client receives a confirmation that the channel flow has been disabled.
The same applies when enabling the flow of a channel, call the method EnableChannel, the event On
AMQPChannelFlow will be called when the client receives a confirmation that the channel flow has been enabled.

Synchronous requests are available through the functions EnableChannelEx and DisableChannelEx.

COMPONENTS

256

•
•

•

•

•

•
•
•
•

Commands | AMQP Exchanges
The exchange class lets an application manage exchanges on the server. This class lets the application script its
own wiring (rather than relying on some configuration interface). Note: Most applications do not need this level of
sophistication, and legacy middleware is unlikely to be able to support this semantic.

The exchange life-cycle is:

1. The client asks the server to make sure the exchange exists (Declare). The client can refine this into, "create the
exchange if it does not exist", or "warn me but do not create it, if it does not exist".
2. The client publishes messages to the exchange.
3. The client may choose to delete the exchange (Delete).

Declare Exchange

This method creates a new exchanges or verifies that an Exchange already exists. The method has the following
arguments:

ChannelName: it's the name of the channel (must be open before call this method).
ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
ExchangeType: it's the exchange type, all AMQP servers support "direct" and "fanout" exchanges. Check
the server documentation to know which exchanges types are supported.
Passive: if passive is true, the server only verifies that the exchange is already declared. If passive is false,
and the exchange not exists, the server will create a new one.
Durable: if true, the exchange will be recreated when the server starts. If false, the exchange will be delet
ed when the server stops.
AutoDelete: if true, the exchange will be deleted when all queues have been unbound.
Internal: always false.
NoWait: if true, the server doesn't sends an acknowledgment to the client.
Arguments: string which contains custom arguments, the values must be passed as a json string,
example: {"xdeadletterexchange":"mydlx"}.

To Declare a new Exchange just call the method DeclareExchange and pass the channel name, exchange name
and exchange type as arguments. The event OnAMQPExchangeDeclare is raised as a confirmation sent by the
server that the exchange has been declared.

AMQP->DeclareExchange("channel_name", "exchange_name", "direct");

private void OnAMQPExchangeDeclare(TObject *Sender, const string aChannel, const string aExchange)

{

 DoLog("#AMQP_exchange_declare: [" + aChannel + "] " + aExchange);

}

A Synchronous call can be done too calling the method DeclareExchangeEx, this method returns true if the Ex
change has been Declared and false if no confirmation from server has arrived.

if AMQP->DeclareExchangeEx("channel_name", "exchange_name", "direct")

{

 DoLog("#AMQP_exchange_declare: [" + aChannel + "] " + aExchange);

}

else

{

 DoLog("#AMQP_exchange_declare_error");

}

Delete Exchange

This method is used to delete an existing Exchange. The method has the following arguments:

COMPONENTS

257

•
•

•
•

ChannelName: it's the name of the channel (must be open before call this method).
ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
IfUnused: the server only deletes the exchange if there aren't any queues bound to it.
NoWait: if true, the server doesn't sends an acknowledgment to the client.

To Delete an existing Exchange call the method DeleteExchange and pass the channel name and exchange name
as arguments. The event OnAMQPExchangeDelete is raised as a confirmation sent by the server that the ex
change has been deleted.

A Synchronous call can be done too calling the method DeleteExchangeEx, this method returns true if the Ex
change has been Deleted and false if no confirmation from server has arrived.

COMPONENTS

258

•
•

•

•

•
•
•
•

Commands | AMQP Queues
The queue class lets an application manage message queues on the server. This is a basic step in almost all appli
cations that consume messages, at least to verify that an expected message queue is actually present.

The life-cycle for a durable message queue is fairly simple:

1. The client asserts that the message queue exists (Declare, with the "passive" argument).
2. The server confirms that the message queue exists (Declare-Ok).
3. The client reads messages off the message queue.

The life-cycle for a temporary message queue is more interesting:

1. The client creates the message queue (Declare, often with no message queue name so the server will assign a
name). The server confirms (Declare-Ok).
2. The client starts a consumer on the message queue. The precise functionality of a consumer is defined by the
Basic class.
3. The client cancels the consumer, either explicitly or by closing the channel and/or connection.
4. When the last consumer disappears from the message queue, and after a polite time-out, the server deletes the
message queue.

AMQP implements the delivery mechanism for topic subscriptions as message queues. This enables interesting
structures where a subscription can be load balanced among a pool of co-operating subscriber
applications.

The life-cycle for a subscription involves an extra bind stage:

1. The client creates the message queue (Declare), and the server confirms (Declare-Ok).
2. The client binds the message queue to a topic exchange (Bind) and the server confirms (Bind-Ok).
3. The client uses the message queue as in the previous examples.

Declare Queue

This method creates a new queue or verifies that a Queue already exists. The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
Passive: if passive is true, the server only verifies that the queue is already declared. If passive is false, and
the queue not exists, the server will create a new one.
Durable: if true, the queue will be re-created when the server starts. If false, the queue will be deleted when
the server stops.
Exclusive: if true means the queue is only accessed by the current connection.
AutoDelete: if true, the queue will be deleted when all consumers no longer use the queue.
NoWait: if true, the server doesn't sends an acknowledgment to the client.
Arguments: string which contains custom arguments, the values must be passed as a json string,
example: {"xdeadletterexchange":"mydlx"}.

To Declare a new Queue just call the method DeclareQueue and pass the channel name and queue name as ar
guments. The event OnAMQPQueueDeclare is raised as a confirmation sent by the server that the exchange has
been declared.

AMQP->DeclareQueue("channel_name", "queue_name");

private void OnAMQPExchangeDeclare(TObject *Sender, const string aChannel, const string aQueue,

 int aMessageCount, int aConsumerCount)

{

 DoLog("#AMQP_queue_declare: [" + aChannel + "] " + aQueue));

}

COMPONENTS

259

•
•

•
•
•

•
•

•

•
•
•

A Synchronous call can be done too calling the method DeclareQueueEx, this method returns true if the Queue
has been Declared and false if no confirmation from server has arrived.

if AMQP->DeclareQueueEx("channel_name", "queue_name")

{

 DoLog("#AMQP_queue_declare: [" + aChannel + "] " + aQueue);

}

else

{

 DoLog("#AMQP_queue_declare_error");

}

Delete Queue

This method is used to delete an existing Queue. The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
IfUnused: the server only deletes the queue if there aren't any consumers attachedt to it.
IfEmpty: the server only deletes the queue if there are no messages.
NoWait: if true, the server doesn't sends an acknowledgment to the client.

To Delete an existing Queue call the method DeleteQueue and pass the channel name and queue name as argu
ments. The event OnAMQPQueueDelete is raised as a confirmation sent by the server that the queue has been
deleted.

A Synchronous call can be done too calling the method DeleteQueueEx, this method returns true if the Queue has
been Deleted and false if no confirmation from server has arrived.

Bind Queue

This method is used to bind a Queue to a Exchange. The Exchanges use the bindings to know which queues will
be used to route the messages.

All AMQP Servers bind automatically all the queues to the default exchange (it's a "direct" exchange without name)
using the Queue Name as the binding routing key. This allows to send a message to a specific queue without de
clare a binding. Just call the method PublishMessage, pass an empty value as Exchange Name and set the Rout
ingKey with the value of the Queue Name.

The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
RoutingKey: it's the binding's routing key.
NoWait: if true, the server doesn't sends an acknowledgment to the client.
Arguments: string which contains custom arguments, the values must be passed as a json string,
example: {"xdeadletterexchange":"mydlx"}.

To Bind a Queue to a Exchange call the method BindQueue and pass the channel name, queue name, exchange
and routing key as arguments. The event OnAMQPQueueBind is raised as a confirmation sent by the server that
the queue has been bind.

AMQP->BindQueueEx("channel_name", "queue_name", "exchange_name", "routing_key");

private void OnAMQPQueueBind(TObject *Sender, const string aChannel, const string aQueue,

 const string aExchange)

{

COMPONENTS

260

•
•

•

•

•
•

•

 DoLog("#AMQP_queue_bind: [" + aChannel + "] " + aQueue + " -->-- " + aExchange);

}

A Synchronous call can be done too calling the method BindQueueEx, this method returns true if the Queue has
been Bind and false if no confirmation from server has arrived.

if AMQP->BindQueueEx("channel_name", "queue_name", "exchange_name", "routing_key")

{

 DoLog("#AMQP_queue_bind: [" + aChannel + "] " + aQueue + " --><-- " + aExchange);

}

else

{

 DoLog("#AMQP_queue_bind_error");

}

UnBind Queue

This method deletes an existing queue binding.

The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
RoutingKey: it's the binding's routing key.

To UnBind a Queue just call the method UnBindQueue and pass the channel name, queue name, exchange and
routing key as arguments. The event OnAMQPQueueUnBind is raised as a confirmation sent by the server that
the queue has been unbind.

A Synchronous call can be done too calling the method UnBindQueueEx, this method returns true if the Queue
has been UnBind and false if no confirmation from server has arrived.

Purge Queue

This method purges all messages of a queue. All the messages that have been sent but are awaiting acknowledg
ment are not affected.

The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
NoWait: if true, the server doesn't sends an acknowledgment to the client.

To Purge a Queue just call the method PurgeQueue and pass the channel name and queue name as arguments.
The event OnAMQPQueuePurge is raised as a confirmation sent by the server that the queue has been Purged.

A Synchronous call can be done too calling the method PurgeQueueEx, this method returns true if the Queue has
been Purged and false if no confirmation from server has arrived.

COMPONENTS

261

•
•

•
•

•

Commands | AMQP Publish Messages
Publish Messages

The method PublishMessages is used to send a message to the AMQP server.

AMQP Servers automatically bind the queues to "direct" exchange using the queue name as routing key. This al
lows to send a message to a specific queue without the need to declare a binding (just calling PublishMessage
method and pasing the Exchange argument as empty value and the name of the queue in the RoutingKey argu
ment).

The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
ExchangeName: it's the name of the exchange, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
RoutingKey: it's the binding's routing key name.
Mandatory: if true and the message cannot be routed to any queue, the message is returned by the server,
the event OnAMQPBasicReturn is fired.
Immediate: if true and the message cannot be routed to any queue, the message is returned by the server,
the event OnAMQPBasicReturn is fired.

AMQP->PublishMessage("channel_name", "exchange_name", "routing_key", "Hello from sgcWebSockets!!!");

private void OnAMQPBasicReturn(TObject *Sender, const string aChannel,

 const TsgcAMQPFramePayload_Method_BasicReturn *aReturn,

 const TsgcAMQPMessageContent *aContent)

{

 DoLog("#AMQP_basic_return: " + aChannel + " " + IntToStr(aReturn->ReplyCode) + " " + aReturn->ReplyText + " " + aContent->Body->AsString);

}

Publish Confirmations

Network can fail while publishing a message, the only way to guarantee that a message isn't lost is by using trans
actions, then for each message/s select transaction, send the message and commit. The confirmation of a suc
cessful transaction is received when the event OnAMQPTransactionOk is fired.

COMPONENTS

262

•
•

•

•
•
•
•
•

•
•
•

AMQP Consume Messages
Consumers consume from queues. In order to consume messages there has to be a queue. When a new con
sumer is added, assuming there are already messages ready in the queue, deliveries will start immediately.
The target queue can be empty at the time of consumer registration. In that case first deliveries will happen
when new messages are enqueued.

Consuming messages is an asynchronous task, which means that every time a new message can be delivered
to the consumer queue, it's pushed by the server to the client automatically. You can read an alternative method
to Receive Message Synchronously.

Consume

The method Consume creates a new consumer in the queue, and every time there is a new message this will
be delivered automatically to the consumer client.

The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
ConsumerTag: it's the name of the consumer and must be unique. If it's not set, then the server creates a
new one.
NoLocal: if true means the consumer never consumes messages published on the same channel.
NoAck: if true means the server doesn't expect an acknowledgment for every message delivered.
Exclusive: if true prevents that other consumers consume messages from this queue.
NoWait: if true, the server won't send an acknowledgment to the client.
Arguments: string which contains custom arguments, the values must be passed as a json string,
example: {"xdeadletterexchange":"mydlx"}.

The messages are delivered OnAMQPBasicDeliver event.

AMQP->Consume("channel_name", "queue_name", "consumer_tag");

void OnAMQPBasicDeliver(TObject *Sender, const string aChannel,

 const TsgcAMQPFramePayload_Method_BasicDeliver *aDeliver,

 const TsgcAMQPMessageContent *aContent)

{

 DoLog("#AMQP_basic_deliver: " + aChannel + " " + aDeliver->ConsumerTag + " " +

 " " + aContent->Body->AsString);

}

A Synchronous call can be done just calling the method ConsumeEx, this method returns true if the Consumer has
been created and false if no confirmation from server has arrived.

Cancel Consume

This method is used to Cancel an existing consumer queue.

The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
ConsumerTag: it's the name of the consumer.
NoWait: if true, the server won't send an acknowledgment to the client.

AMQP->CancelConsume("channel_name", "consumer_tag");

COMPONENTS

263

private void OnAMQPBasicCancelConsume(TObject *Sender, const string aChannel, const string aConsumerTag)

{

 DoLog("#AMQP_basic_cancel_consume: " + aChannel + " " + aConsumerTag);

}

A Synchronous call can be done just calling the method CancelConsumeEx, this method returns true if the Con
sumer has been cancelled and false if no confirmation from server has arrived.

COMPONENTS

264

•
•

•

Commands | AMQP Get Messages
Getting messages is a Synchronous task, which means that is the client who ask to server is there are mes
sages in the queue. You can read an alternative method to Receive Message Aynchronously.

Get Message

The method GetMessage sends a request to the AMQP server asking if there are messages available in a
queue. If there are messages these will be dispatched OnAMQPBasicGetOk event and if the queue is empty,
the event OnAMQPBasicGetEmpty will be called.

The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
QueueName: it's the name of the queue, must be no longer of 255 characters and not begin with
"amq." (except if passive parameter is true).
NoWait: if true, the server won't send an acknowledgment to the client.

AMQP->GetMessage("channel_name", "queue_name");

private void OnAMQPBasicGetOk(TObject *Sender, const string aChannel,

 const TsgcAMQPFramePayload_Method_BasicGetOk *aGetOk,

 const TsgcAMQPMessageContent *aContent)

{

 DoLog("#AMQP_basic_GetOk: " + aChannel + " " + IntToStr(aGetOk->MessageCount) + " " + aContent->Body->AsString);

}

private void OnAMQPBasicGetEmpty(TObject *Sender, const string aChannel)

{

 DoLog("#AMQP_basic_GetEmpty: " + aChannel);

}

A Synchronous call can be done just calling the method GetMessageEx, this method returns true if the queue has
messages available, otherwise the result will be false.

COMPONENTS

265

•
•

•

•

Commands | AMQP QoS
AMQP allows to set a QoS level to limit the number of messages the server sends to the client before wait to get
the acknowledgment of the messages.

Set QoS

The method SetQoS is used to limit the number messages the server sends to the AMQP client.
The method has the following arguments:

ChannelName: it's the name of the channel (must be open before call this method).
PrefetchSize: it's the windows size in bytes, the server doesn't send messages to the client if the total size
of all currently unacknowledged messages already sent plus the next message to be sent it's greater than
PrefetchSize argument. If the value is zero, means no limit.
PrefetchCount: is the maximum number of unacknowledged messages already sent and not acknowl
edged, if the number is greater, the server stops sending messages to the client.
Global: if true the QoS applies to all existing and new consumers of the connection. If false, the QoS applies
to all existing and new consumers of the channel.

The response from the server is received OnAMQPBasicQoS event.

AMQP->SetQoS("channel_name", 1024000, 100, false);

private void OnAMQPBasicQoS(TObject *Sender, const string aChannel,

 const TsgcAMQPFramePayload_Method_BasicQoS *aQoS)

{

 DoLog("#AMQP_basic_qos: " + aChannel + " " + IntToStr(aQoS->PrefetchSize) + " "

 + IntToStr(aQoS->PrefetchCount) + " " + BoolToStr(aQoS->Global));

}

A Synchronous call can be done just calling the method SetQoSEx, this method returns true if the request has
been processed, otherwise the result will be false.

COMPONENTS

266

Commands | AMQP Transactions
AMQP supports two kinds of transactions:

1. Automatic transactions, in which every published message and acknowledgement is processed as a stand-alone
transaction.
2. Server local transactions, in which the server will buffer published messages and acknowledgements and com
mit them on demand from the client.

The Transaction class (“tx”) gives applications access to the second type, namely server transactions. The seman
tics of this class are:

1. The application asks for server transactions in each channel where it wants these transactions (Select).
2. The application does work (Publish, Ack).
3. The application commits or rolls-back the work (Commit, Roll-back).
4. The application does work, ad infinitum.

Transactions cover published contents and acknowledgements, not deliveries. Thus, a rollback does not requeue
or redeliver any messages, and a client is entitled to acknowledge these messages in a following transaction.

The Transaction methods allows publish and ack operations to be batched into atomic units of work. The intention
is that all publish and ack requests issued within a transaction will complete successfully or none of them will.

Start Transaction

The method StartTransaction starts a new transaction in the server, the client uses this method at least once on a
channel before using the Commit or Rollback methods. The event OnAMQPTransactionOk is raised when the
server acknowledges the use of transactions.

AMQP->StartTransaction("channel_name");

A Synchronous call can be done just calling the method StartTransactionEx, this method returns true if the re
quest has been processed, otherwise the result will be false.

Commit Transaction

This method commits all message publications and acknowledgments performed in the current transaction. A new
transaction starts immediately after a commit. The event OnAMQPTransactionOk is raised when the server ac
knowledges the use of transactions.

AMQP->CommitTransaction("channel_name");

A Synchronous call can be done just calling the method CommitTansactionEx, this method returns true if the re
quest has been processed, otherwise the result will be false.

Rollback Transaction

This method abandons all message publications and acknowledgments performed in the current transaction. A new
transaction starts immediately after a rollback. Note that unacked messages will not be automatically redelivered by
rollback; if that is required an explicit recover call should be issued. The event OnAMQPTransactionOk is raised
when the server acknowledges the use of transactions.

AMQP->RollbackTransaction("channel_name");

A Synchronous call can be done just calling the method RollbackTransactionEx, this method returns true if the re
quest has been processed, otherwise the result will be false.

COMPONENTS

267

COMPONENTS

268

•

•

•

•

•

•

•

•

•

•

•
•
•
•
•
•

•
◦
◦
◦
◦
◦
◦

Protocol AMQP 1.0.0
AMQP (Advanced Message Queuing Protocol) 1.0.0 is a messaging protocol designed for reliable, asynchronous
communication between distributed systems. It facilitates the exchange of messages between applications or com
ponents in a decoupled manner, allowing them to communicate without direct dependencies. Here's a technical
breakdown of some key aspects of AMQP 1.0.0:

Message-oriented communication: AMQP 1.0.0 is centered around the concept of messages. Messages
can carry data, instructions, or commands and are the fundamental units of communication.
Message Brokers: The protocol operates on a brokered messaging model. Brokers, which can be servers
or intermediary entities, manage the routing and delivery of messages between producers and consumers.
Queues and Exchanges: Queues are storage entities within the broker where messages are temporarily
stored. Exchanges define the rules for routing messages from producers to queues based on criteria like
message content or routing keys.
Addresses and Links: Addresses identify message destinations within the messaging infrastructure. Links
are communication channels between a sender (producer) and a receiver (consumer) associated with a spe
cific address.
Sessions and Connections: Sessions represent a logical channel for communication, allowing multiple
streams of messages within a single connection. Connections manage the overall communication link be
tween client applications and the message broker.
Security: AMQP 1.0.0 supports various security mechanisms, including authentication and authorization, to
ensure secure communication between clients and brokers.
Transport Agnostic: The protocol is designed to be transport agnostic, meaning it can operate over differ
ent network transports such as TCP, TLS, or WebSockets, providing flexibility in deployment.
Flow Control: AMQP 1.0.0 includes mechanisms for flow control, allowing consumers to indicate their ability
to handle incoming messages at a given rate. This helps prevent overwhelming consumers with a large
number of messages.
Error Handling: The protocol specifies mechanisms for handling errors, including acknowledgment and re
jection of messages, ensuring robustness and reliability in message delivery.
SASL Authentication: Simple Authentication and Security Layer (SASL) is used for authenticating and se
curing connections between clients and brokers.

Overall, AMQP 1.0.0 provides a standardized and interoperable way for different software components and sys
tems to communicate in a loosely coupled manner, making it suitable for various distributed and enterprise-level
applications.

Components

TsgcWSPClient_AMQP1: it's the client component that implements AMQP 1.0.0 protocol.

Most common uses

Connection
Client AMQP1 Connect
Client AMQP1 Disconnect
Client AMQP1 Idle Timeout Connection
Client AMQP1 Connection State
Client AMQP1 Authentication

Commands

AMQP1 Sessions
AMQP1 Links
AMQP1 Sender Links
AMQP1 Receiver Links
AMQP1 Send Message
AMQP1 Read Message

COMPONENTS

269

•

•
•
•

•
•
•

•
◦
◦
◦

▪
▪

◦

TsgcWSPClient_AMQP1
The TsgcWSClient_AMQP client implements the AMQP 1.0.0 protocol following the OASIS specification. The
client supports Plain TCP and WebSocket connections, TLS (secure) connections are supported too.

Configuration

The AMQP 1.0.0 client has the property AMQPOptions where you can configure the connection.

ChannelMax: The channelmax value is the highest channel number that can be used on the connection.
This
value plus one is the maximum number of sessions that can be simultaneously active on the
connection
ContainerId: (optional) is the name of the source container, identifies uniquely the connection in the server.
CreditSize: default size of the credit flow.
IdleTimeout: The timeout is triggered by a local peer when no frames
are received after a threshold value is exceeded. The idle timeout is measured in milliseconds, and starts
from
the time the last frame is received.
MaxFrameSize: the max accepted frame size.
MaxLinksPerSession: the max number of links per session.
WindowSize: the default window size.

The AMQP Authentication must be configured in the Authentication property.

AuthType: type of authentication
amqp1authNone: not configured.
amqp1authSASLAnonymous: anonymous authentication
amqp1authSASLPlain: user/password authentication. This type of authentication requires to fill the
following properties:

Username
Password

amqp1authSASLExternal: external authentication

Connection

The connection starts with the client (usually a messaging application or service) initiating a TCP connection to the
server (the message broker). The client connects to the server's port, typically 5672 for non-TLS connections and
5671 for TLS-secured connections. Once the TCP connection is established, the client and server negotiate the
AMQP protocol version they will use. AMQP 1.0.0 supports various versions, and during negotiation, both parties
agree on using version 1.0.0.

After protocol negotiation, the client may need to authenticate itself to the server, depending on the server's config
uration. Authentication mechanisms can include SASL (Simple Authentication and Security Layer) mechanisms like
PLAIN, EXTERNAL, or others supported by the server.

Example: connect to AMQP server listening on secure port 5671 and using SASL credentials

// Creating AMQP client

oAMQP = new TsgcWSPClient_AMQP1(this);

// Setting AMQP authentication options

oAMQP->AMQPOptions->Authentication->AuthType = amqp1authSASLPlain;

oAMQP->AMQPOptions->Authentication->Username = L"sgc";

oAMQP->AMQPOptions->Authentication->Password = L"sgc";

// Creating WebSocket client

oClient = new TsgcWebSocketClient(this);

// Setting WebSocket specifications

oClient->Specifications->RFC6455 = false;

// Setting WebSocket client properties

COMPONENTS

270

oClient->Host = L"www.esegece.com";

oClient->Port = 5671;

oClient->TLS = true;

// Assigning WebSocket client to AMQP client

oAMQP->Client = oClient;

// Activating WebSocket client

oClient->Active = true;

Sessions

Once authenticated, the client opens an AMQP session. A session is a logical context for communication between
the client and server. Sessions are used to group related messaging operations together. Use the method Create
Session to create a new session, the method allows to set the session name or leave empty and the component
will assign automatically one.

If the session has been created successfully, the event OnAMQPSessionOpen will be fired with the details of the
session.

oAMQP->CreateSession("MySession");

oAMQP->OnAMQPSessionOpen = AMQP1AMQPSessionOpen;

void __fastcall TMyClass::AMQP1AMQPSessionOpen(TObject *Sender, TsgcAMQP1Session *const aSession, TsgcAMQP1FrameBegin *

{

 ShowMessage("#session-open: " + aSession->Id);

}

Links

Within a session, the client creates links to communicate with specific entities like queues, topics, or other re
sources provided by the server. Links are bidirectional communication channels used for sending and receiving
messages.

The component can work as a sender and receiver node. Allows to create any number of links for each session, up
to the limit set in the MaxLinksPerSession property.

Sender Links

To create a new sender link, use the method CreateSenderLink and pass the name of the session and optionally
the name of the sender link. If the link is created successfully, the event OnAMQPLinkOpen is raised.

oAMQP->CreateSenderLink("MySession", "MySenderLink");

oAMQP->OnAMQPLinkOpen = AMQP1AMQPLinkOpen;

void __fastcall TMyForm::AMQP1AMQPLinkOpen(TObject *Sender, TsgcAMQP1Session *const aSession, TsgcAMQP1Link *const

{

 ShowMessage("#link-open: " + aLink->Name);

}

Receiver Links

To create a new receiver link, use the method CreateReceiverLink and pass the name of the session and optional
ly the name of the receiver link. If the link is created successfully, the event OnAMQPLinkOpen is raised.

COMPONENTS

271

oAMQP->CreateSenderLink("MySession", "MySenderLink");

oAMQP->OnAMQPLinkOpen = AMQP1AMQPLinkOpen;

void __fastcall TMyForm::AMQP1AMQPLinkOpen(TObject *Sender, TsgcAMQP1Session *const aSession, TsgcAMQP1Link *const

{

 ShowMessage("#link-open: " + aLink->Name);

}

Sending Messages

With the session established and links created, the client can start performing message operations such as sending
messages to a destination. Use the method SendMessage to send a message using a sender link.

oAMQP->SendMessage("MySession", "MySenderLink", "My first AMQP Message");

Receiving Messages

By default, the Receiver Links are created in Automatic mode, which means that every time a new message ar
rives, it will be delivered to the client.

If the Receiver Links has been created in manual mode, use the Sync Method GetMessage to fetch and wait till a
new message arrives.

In Automatic and Manual mode, every time a new message arrives, the event OnAMQPMessage is fired.

void __fastcall OnAMQPMessageEvent(TObject *Sender, TsgcAMQP1Session *const aSession,

 TsgcAMQP1ReceiverLink *const aLink, TsgcAMQP1Message *const aMessage,

 TsgcAMQP1MessageDeliveryState &DeliveryState)

{

 ShowMessage(aMessage->ApplicationData->AMQPValue->Value);

}

COMPONENTS

272

Connection | Client AMQP1 Connect
In order to connect to a AMQP Server, you must create first a TsgcWebSocketClient and a
TsgcWSPClient_AMQP1. Then you must attach AMQP1 Component to WebSocket Client.

After a successful connection, the event OnAMQPConnect is fired.

Basic Usage

Connect to an AMQP 1.0.0 server without authentication. Define the AMQPOptions property values, virtual host
and then set in the TsgcWebSocketClient the Host and Port of the server.
If you are using a TCP Plain connection, set the TsgcWebSocketClient property Specifications.RFC6455 to false.

// Creating AMQP client

oAMQP = new TsgcWSPClient_AMQP1(this);

// Creating WebSocket client

oClient = new TsgcWebSocketClient(this);

// Setting WebSocket specifications

oClient->Specifications->RFC6455 = false;

// Setting WebSocket client properties

oClient->Host = L"amqp_host_address";

oClient->Port = 5672;

// Assigning WebSocket client to AMQP client

oAMQP->Client = oClient;

// Activating WebSocket client

oClient->Active = true;

Authentication

If the server requires authentication, use the properties AMQP:Authentication to set the values of the Username/
Password and set AuthType to the value "amqp1authSASLPlain".

// Creating AMQP client

oAMQP = new TsgcWSPClient_AMQP1(this);

// Setting AMQP authentication options

oAMQP->AMQPOptions->Authentication->AuthType = amqp1authSASLPlain;

oAMQP->AMQPOptions->Authentication->Username = L"sgc";

oAMQP->AMQPOptions->Authentication->Password = L"sgc";

// Creating WebSocket client

oClient = new TsgcWebSocketClient(this);

// Setting WebSocket specifications

oClient->Specifications->RFC6455 = false;

// Setting WebSocket client properties

oClient->Host = L"www.esegece.com";

oClient->Port = 5671;

oClient->TLS = true;

// Assigning WebSocket client to AMQP client

oAMQP->Client = oClient;

// Activating WebSocket client

oClient->Active = true;

COMPONENTS

273

Connection | Client AMQP1 Disconnect
The client can disconnect a current active connection, using the following methods:

Sending a Close Reason

The AMQP client can inform the server that the connection will be closed and provide information about the reason
why is closing the connection. Use the method Close to request a connection close to the server.

oAMQP.Close('invalid-frame', "The received frame has an invalid format.");

Await Close

By default, the Close method is Asynchronous, so after calling the method, the code continue. If you want to wait
till the Close method is completed and the confirmation sent by the server is received, set the property Await to
True in the Options parameter.

void Close(const System::UnicodeString aCondition, const System::UnicodeString aDescription)

{

 TsgcAMQP1MethodOptions_Close *oOptions = new TsgcAMQP1MethodOptions_Close();

 try

 {

 oOptions->ErrorCondition = aCondition;

 oOptions->ErrorDescription = aDescription;

 oOptions->Await = true;

 AMQP1->Close(oOptions);

 }

 __finally

 {

 delete oOptions;

 }

}

Closing Socket Connection

Just set the property Active of TsgcWebSocketClient to False. You can read more about closing connections.

COMPONENTS

274

Connection | Idle Timeout
Connections are subject to an idle timeout threshold. The timeout is triggered by the client when no frames
are received from the server after a threshold value is exceeded. The idle timeout is measured in milliseconds, and
starts from
the time the last frame is received. If the threshold is exceeded the component sends a Close Frame to the server.
If the server does not respond after 10 seconds the client will close the TCP socket.

The Value of the Idle Timeout can be configured in the property:

AMQPOptions.IdleTimeout

The value set in this property will be sent to the server when opening the AMQP connection. If the value is greater
than zero and less than half the MaxInt value, an internal timer will be enabled to check if the idle timeout has not
been exceeded.

Example: set an IdleTimeout value of 60 seconds

AMQPOptions.IdleTimeout = 60000

COMPONENTS

275

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

Connection | Connection State
The AMQP 1.0.0 defines the following connection states:

amqp1csUnknown: initial state.
amqp1csStart: In this state a connection exists, but nothing has been sent or received. This is the state an
implementation would be in immediately after performing a socket connect or socket accept.
amqp1csHeaderReceived: In this state the connection header has been received from the peer but a con
nection header
has not been sent.
amqp1csHeaderSent: In this state the connection header has been sent to the peer but no connection
header has
been received.
amqp1csHeaderExchanged: In this state the connection header has been sent to the peer and a connec
tion header has
been received from the peer.
amqp1csOpenPipe: In this state both the connection header and the open frame have been sent but noth
ing has
been received.
amqp1csOpenClosePipe: In this state, the connection header, the open frame, any pipelined connection
traffic, and
the close frame have been sent but nothing has been received.
amqp1csOpenReceived: In this state the connection headers have been exchanged. An open frame has
been received
from the peer but an open frame has not been sent.
amqp1csOpenSent: In this state the connection headers have been exchanged. An open frame has been
sent
to the peer but no open frame has yet been received.
amqp1csClosePipe: In this state the connection headers have been exchanged. An open frame, any
pipelined
connection traffic, and the close frame have been sent but no open frame has yet been
received from the peer.
amqp1csOpened: In this state the connection header and the open frame have been both sent and re
ceived.
amqp1csCloseReceived: In this state a close frame has been received indicating that the peer has initiated
an AMQP
close. No further frames are expected to arrive on the connection; however, frames can still
be sent. If desired, an implementation MAY do a TCP half-close at this point to shut down
the read side of the connection.
amqp1csCloseSent: In this state a close frame has been sent to the peer. It is illegal to write anything more
onto the connection, however there could potentially still be incoming frames. If desired,
an implementation MAY do a TCP half-close at this point to shutdown the write side of the
connection.
amqp1csDiscarding: The DISCARDING state is a variant of the CLOSE SENT state where the close is trig
gered
by an error. In this case any incoming frames on the connection MUST be silently discarded
until the peer’s close frame is received.
amqp1csEnd: In this state it is illegal for either endpoint to write anything more onto the connection. The
connection can be safely closed and discarded.

The AMQP Client has the property ConnectionState where you can check in which connection state is the client
component.

COMPONENTS

276

•
•
•
•

•
•
•

Connection | AMQP1 Authentication
The component has the following authentication methods:

amqp1authNone: there is no authentication method to use when connecting to the server.
amqp1authSASLAnonymous: connects as anonymous.
amqp1authSASLPlain: the default, uses a user/password authentication.
amqp1authSASLExternal: not currently supported.

SASL Authentication

The most common authentication is using amqp1authSASLPlain type. This authentication type, can be enabled in
the AMQP1 component, accessing to the property AMQPOptions.Authentication.

AuthType: select amqp1authSASLPlain
Username: the user to use for SASL Authentication.
Password: the secret value to use for SASL Authentication.

The result of the SASL Authentication can be obtained when the event OnAMQPSASLAuthentication.

void __fastcall OnAMQP1SASLAuthentication(System::TObject* Sender, TsgcAMQP1SaslCode aCode,

 const System::UnicodeString aDescription, bool &Handled)

{

 ShowMessage("#sasl-authentication: " + aDescription);

}

COMPONENTS

277

•

•

•

•

•

•

Commands | AMQP1 Sessions
In the context of the AMQP (Advanced Message Queuing Protocol) 1.0.0 specification, a session represents a logi
cal context for communication between a client and a message broker. Here's a breakdown of what an AMQP 1.0.0
session entails:

Logical Context: A session establishes a logical context for messaging operations between an AMQP client
(producer or consumer) and an AMQP broker. It provides a way to group related messaging operations to
gether within a single connection.
Communication Channel: Sessions serve as communication channels over which messages are sent and
received. They encapsulate the exchange of messages, acknowledgments, and flow control mechanisms.
Transactional Boundaries: Sessions define transactional boundaries for message operations. They enable
the grouping of multiple message sends or receives into a single atomic unit, ensuring that either all opera
tions within the session are processed successfully or none are processed at all.
Flow Control: Sessions support flow control mechanisms to regulate the rate at which messages are ex
changed between the client and the broker. Flow control helps prevent overwhelming the resources of either
party, ensuring efficient and reliable message delivery.
Lifetime Management: Sessions have a lifecycle that begins when they are created and ends when they
are closed. Clients can establish multiple sessions within a single connection to parallelize message pro
cessing or isolate message streams.
Resource Allocation: Sessions may be associated with specific resources such as queues, topics, or sub
scriptions within the broker. Messages sent or received within a session are bound to these resources, en
abling targeted message routing and delivery.

In summary, an AMQP 1.0.0 session provides a logical context for message exchange between an AMQP client
and broker, facilitating transactional integrity, flow control, and resource management within the messaging system.
It defines the boundaries within which messaging operations are performed and helps ensure the efficient and reli
able exchange of messages.

Open Session

The method CreateSession creates a new session with the given name (or if empty, it creates with a random
name), if the session already exists an exception is raised. The client allows to create multiple session using the
same AMQP connection.

Once the session is successfully created, the event OnAQMPSessionOpen is fired.

oAMQP->CreateSession("MySession");

oAMQP->OnAMQPSessionOpen = OnAMQPSessionOpenEvent;

void __fastcall TMyClass::OnAMQPSessionOpenEvent(TObject *Sender, TsgcAMQP1Session *const aSession, TsgcAMQP1FrameBegin *

{

 ShowMessage("#session-open: " + aSession->Id);

}

The CreateSession method returns the TsgcAMQP1Session class which contains the session information.

Await Open Session

By default, the CreateSession method is Asynchronous, so after calling the method, the code continue. If you
want to wait till the CreateSession method is completed and the confirmation sent by the server is received, set
the property Await to True in the Options parameter.

void OpenSession(const System::UnicodeString aSession)

{

 TsgcAMQP1MethodOptions_SessionOpen *oOptions = new TsgcAMQP1MethodOptions_SessionOpen();

COMPONENTS

278

 try

 {

 oOptions->Await = true;

 AMQP1->CreateSession(aSession, oOptions);

 }

 __finally

 {

 delete oOptions;

 }

}

Close Session

To Close an existing session use the method CloseSession passing the name of the session to close.

Once the session is successfully closed, the event OnAQMPSessionClose is fired.

oAMQP->CloseSession("MySession");

oAMQP->OnAMQPSessionClose = OnAMQPSessionCloseEvent;

// OnAMQPSessionCloseEvent implementation

void __fastcall TMyClass::OnAMQPSessionCloseEvent(TObject *Sender, TsgcAMQP1Session *const aSession, TsgcAMQP1FrameEnd *

{

 ShowMessage("#session-close: " + aSession->Id + " [" + IntToStr(aSession->Channel) + "] reason: " + aEnd->Error->Condition);

}

Await Close Session

By default, the CloseSession method is Asynchronous, so after calling the method, the code continue. If you
want to wait till the CloseSession method is completed and the confirmation sent by the server is received, set
the property Await to True in the Options parameter.

void CloseSession(const System::UnicodeString aSession)

{

 TsgcAMQP1MethodOptions_SessionClose *oOptions = new TsgcAMQP1MethodOptions_SessionClose();

 try

 {

 oOptions->Await = true;

 AMQP1->CloseSession(aSession, oOptions);

 }

 __finally

 {

 delete oOptions;

 }

}

COMPONENTS

279

•

•

•

•

•

•

•

•

•

•

•

•

Commands | AMQP1 Links

In the AMQP (Advanced Message Queuing Protocol) 1.0.0 specification, a link represents a unidirectional commu
nication channel between an AMQP client and a message broker. Let's delve deeper into what AMQP 1.0.0 links
entail:

Communication Channel: A link serves as a pathway through which messages flow between an AMQP
sender and receiver. It allows for the transmission of messages in one direction, either from the sender to
the receiver or vice versa.
Unidirectional Flow: Each link is unidirectional, meaning that messages can only travel in one direction
along the link. If bidirectional communication is needed, two links must be established—one for each direc
tion.
Message Transfer: Messages are transferred across links according to the AMQP protocol rules. These
messages can include payloads, message properties, and additional metadata required for communication.
Resource Binding: Links are associated with specific resources within the AMQP broker, such as queues,
topics, or exchanges. Messages sent or received via a link are directed to or originate from these resources.
Flow Control: Links support flow control mechanisms to regulate the rate at which messages are sent or re
ceived. Flow control ensures that neither the sender nor the receiver is overwhelmed by the volume of mes
sages being exchanged.
Lifetime Management: Links have a lifecycle that begins when they are established and ends when they
are closed. They can be created dynamically as needed and closed when they are no longer required.
Addressing: Links are identified by unique addresses that specify the source and target endpoints of the
communication. These addresses allow clients and brokers to identify and establish connections to the ap
propriate endpoints.
Transactional Boundaries: Links define transactional boundaries for message operations. They enable the
grouping of multiple message sends or receives into a single atomic unit, ensuring consistency and reliability
in message delivery.

In summary, AMQP 1.0.0 links provide a means for unidirectional communication between AMQP clients and bro
kers, facilitating the transfer of messages while supporting flow control, resource binding, addressing, and transac
tional integrity within the messaging system. They form the fundamental building blocks of message exchange in
the AMQP protocol.

There are 2 types of Links:

Sender Links: those links are used to send messages.

Receiver Links: those links are used to receive messages.

Every time a new link is created or deletes, the following events are fired:

OnAMQPLinkOpen: this event is fired when a new link is created. Use the aLink.Mode property to check if
the link is in receiver or sender mode.

OnAMQPLinkClose: this event is fired when a link is closed.

COMPONENTS

280

•
•
•

•

◦

◦

◦

Commands | AMQP1 Sender Links
In the AMQP 1.0.0 protocol, a Sender Link is a communication channel established between an AMQP client
and an AMQP server for the purpose of sending messages. It operates within the context of an AMQP session,
which represents a logical channel for communication between the client and server.

Create Sender Link

To Create a new Sender Link, call the method CreateSenderLink which contains the following parameters:

Session: the session name where the sender link will be attached.
Name: (optional) the name of the sender link, if is not set, a random name will be assigned automatically.
Target: (optional) you can specify the destination where messages should be received on the remote host
by setting the "target" parameter. However, in certain scenarios, specifying the target may not be required. In
such cases, providing an empty string will be sufficient.
SndSettleMode: (mixed by default) AMQP offers the capability to discuss delivery assurances via the Mes
sage Settlement mechanism. Upon establishing a link, both the sender and the receiver discuss and agree
upon a settlement mode (one for each role). Senders operate within one of these modes:

amqp1ssmSettled: The message is considered successfully delivered and acknowledged once it's
sent.
amqp1ssmUnsettled: The message is not considered settled until it's explicitly accepted or rejected
by the receiver. This allows for more control over message processing and handling.
amqp1ssmMixed: A combination of settled and unsettled modes can be used within a single AMQP
session. Use the MessageOptions parameter of the SendMessage method to configure if the mes
sage is Settled or not.

When the Sender Link has been created successfully, the event OnAMQPLinkOpen will be fired.

oAMQP1->CreateSenderLink("MySession", "MySenderLink");

oAMQP1->OnAMQPLinkOpen = AMQP1AMQPLinkOpen;

void __fastcall TMyForm::AMQP1AMQPLinkOpen(TObject *Sender, TsgcAMQP1Session *const aSession, TsgcAMQP1Link *const

{

 ShowMessage("#link-open: " + aLink->Name);

}

Await Create Sender Link

By default, the CreateSenderLink method is Asynchronous, so after calling the method, the code continue. If you
want to wait till the CreateSenderLink method is completed and the confirmation sent by the server is re
ceived, set the property Await to True in the Options parameter.

void CreateSenderLink(const System::UnicodeString aSession, const System::UnicodeString aSender)

{

 TsgcAMQP1MethodOptions_CreateSenderLink *oOptions = new TsgcAMQP1MethodOptions_CreateSenderLink();

 try

 {

 oOptions->Await = true;

 AMQP1->CreateSenderLink(aSession, aSender, L"", oOptions);

 }

 __finally

 {

 delete oOptions;

 }

}

COMPONENTS

281

•
•
•

•
•
•

Sending Messages

To Send a new Message, call the method SendMessage which contains the following parameters:

Session: name of the session.
Link: name of the sender link.
Text: the text of the string message.

oAMQP1->SendMessage("MySession", "MySenderLink", "My first AMQP Message");

Sending Messages Mixed Mode

When the Sender Link is created in Mixed mode (the default), when sending a message, the user can set if want
the message is settled or not. Use the MessageOptions parameter to define if the message is settled or not.

TsgcAMQP1MessageOptions* oMessageOptions = new TsgcAMQP1MessageOptions();

try

{

 oMessageOptions->Settled = true;

 oAMQP1->SendMessage("MySession", "MySenderLink", "MyMessage", "message-id", oMessageOptions);

}

__finally

{

 delete oMessageOptions;

}

Close Sender Link

To Close an existing Sender Link, call the method CloseLink which contains the following parameters:

Session: name of the session that contains the link.
Link: name of the sender link.
Error: (optional) here you can set the reason why the link is closed.

When the Sender Link has been closed successfully, the event OnAMQPLinkClose will be fired.

oAMQP->CloseLink("MySession", "MySenderLink");

void __fastcall TForm1::OnAMQPLinkCloseEvent(TObject *Sender, TsgcAMQP1Session *const aSession, TsgcAMQP1Link *const

{

 ShowMessage("#link-close: " + aLink->Name);

}

Await Close Sender Link

By default, the CloseLink method is Asynchronous, so after calling the method, the code continue. If you want to
wait till the CloseLink method is completed and the confirmation sent by the server is received, set the proper
ty Await to True in the Options parameter.

void CloseSenderLink(const System::UnicodeString aSession, const System::UnicodeString aSenderLink)

{

 TsgcAMQP1MethodOptions_CloseLink *oOptions = new TsgcAMQP1MethodOptions_CloseLink();

 try

 {

 oOptions->Await = true;

 AMQP1->CloseLink(aSession, aSenderLink, oOptions);

 }

 __finally

 {

 delete oOptions;

COMPONENTS

282

 }

}

COMPONENTS

283

•
•
•

•

◦

◦

•
◦

◦

Commands | AMQP1 Receiver Links
In the AMQP 1.0.0 protocol, a Receiver Link is a communication channel established between an AMQP client
and an AMQP server for the purpose of receiving messages. It operates within the context of an AMQP session,
which represents a logical channel for communication between the client and server.

Create Receiver Link

To Create a new Receiver Link, call the method CreateReceiverLink which contains the following parameters:

Session: the session name where the sender link will be attached.
Name: (optional) the name of the sender link, if is not set, a random name will be assigned automatically.
Source: (optional) the source can be configured to indicate the location of the node on the remote host that
is supposed to act as the sender. In some situations, specifying this address may not be required. In such
cases, simply providing an empty string as the value for the paramters will be enough.
ReadMode: (amqp1srmAuto by default) Receiver links can function in one of two modes for receiving mes
sages:

amqp1srmAuto: Automatica Mode, in this mode the receiver actively works to ensure that messages
are received promptly as soon as they become available. It automatically listens for and receives
messages without any explicit instruction each time a new message arrives.
amqp1srmManual: Fetch-Based Mode, in this mode, the receiver will only retrieve or fetch a new
message when it is specifically told to do so. Unlike the automatic mode, the receiver will not actively
listen for new messages but will instead wait for manual instructions to fetch the next message.

RcvSettleMode: (amqp1rsmFirst by default) Receiver Links operate within one of these modes:
amqp1rsmFirst: When messages arrive, they will be processed and confirmed right away. If the
message hasn't already been confirmed by the time it was sent, the sender will be informed that the
message has been received.
amqp1rsmSecond: Messages that arrive will only be confirmed after the sender has confirmed them
first. Additionally, the sender will receive a notification when a message has been received, provided
the message wasn't already confirmed when it was sent.

When the Receiver Link has been created successfully, the event OnAMQPLinkOpen will be fired.

oAMQP1->CreateReceiverLink("MySession", "MyReceiverLink");

oAMQP1->OnAMQPLinkOpen = AMQP1AMQPLinkOpen;

void __fastcall TMyForm::AMQP1AMQPLinkOpen(TObject *Sender, TsgcAMQP1Session *const aSession, TsgcAMQP1Link *const

{

 ShowMessage("#link-open: " + aLink->Name);

}

Await Create Receiver Link

By default, the CreateReceiverLink method is Asynchronous, so after calling the method, the code continue. If
you want to wait till the CreateReceiverLink method is completed and the confirmation sent by the server is
received, set the property Await to True in the Options parameter.

void CreateReceiverLink(const System::UnicodeString aSession, const System::UnicodeString aReceiver)

{

 TsgcAMQP1MethodOptions_CreateReceiverLink *oOptions = new TsgcAMQP1MethodOptions_CreateReceiverLink();

 try

 {

 oOptions->Await = true;

 AMQP1->CreateReceiverLink(aSession, aReceiver, L"", oOptions);

 }

 __finally

 {

 delete oOptions;

 }

COMPONENTS

284

•
•
•

•
•
•

}

Sync Messages

When the Receiver Link works in Manual ReadMode, call the method GetMessage to get new messages. This
method is synchronous, which means that waits till a timeout is exceeded (by default 10 seconds). When the
method is called, the component increases the credit in one unit and waits till a new message arrives or the timeout
has been exceeded. If no message arrives, the credit is set to zero again.

The method GetMessage has the following parameters:

Session: name of the session that contains the link.
Link: name of the receiver link.
Timeout: (by default 1000 = 10 seconds) the max time the function will wait to get a new message.

Close Receiver Link

To Close an existing Receiver Link, call the method CloseLink which contains the following parameters:

Session: name of the session that contains the link.
Link: name of the receiver link.
Error: (optional) here you can set the reason why the link is closed.

When the Receiver Link has been closed successfully, the event OnAMQPLinkClose will be fired.

oAMQP1->CloseLink("MySession", "MyReceiverLink");

void __fastcall TForm1::OnAMQPLinkCloseEvent(TObject *Sender, TsgcAMQP1Session *const aSession, TsgcAMQP1Link *const

{

 ShowMessage("#link-close: " + aLink->Name);

}

Await Close Receiver Link

By default, the CloseLink method is Asynchronous, so after calling the method, the code continue. If you want to
wait till the CloseLink method is completed and the confirmation sent by the server is received, set the proper
ty Await to True in the Options parameter.

void CloseReceiverLink(const System::UnicodeString aSession, const System::UnicodeString aReceiverLink)

{

 TsgcAMQP1MethodOptions_CloseLink *oOptions = new TsgcAMQP1MethodOptions_CloseLink();

 try

 {

 oOptions->Await = true;

 AMQP1->CloseLink(aSession, aReceiverLink, oOptions);

 }

 __finally

 {

 delete oOptions;

 }

}

COMPONENTS

285

•
•
•
•

•
◦

◦

◦
◦

•

AMQP1 | Send Message
Read first AMQP1 Sender Links to know how to create a Sender Link.

Send Message

Use the method SendMessage passing the Session and SenderLink name to send a text message to the AMQP1
Server. The method has the following parameters:

Session: name of the session.
Link: name of the sender link.
Text: text of the message.
MessageId: (optional) the id of the message, it can be used when using unsettled mode, to know if the serv
er has processed the message.
Options: (optional) allows to customize some options when sending the message.

Settled: when using a sender link in mixed mode, when sending a message the Settled property can
be customized.
Await: if the message is unsettled, and the value is true, the code will wait till the message is
processed by the server or the timeout has exceeded.
Timeout: value in milliseconds if await is true (by default 10000).
RaiseTimeoutException: if the timeout is exceeded, an exception is raised (by default true).

oAMQP1->SendMessage("MySession", "MySenderLink", "My first AMQP Message");

Await Send Message

By default, the SendMessage method is asynchronous when sending a message unsettled, setting the property
Await to true, the client will wait till receives a confirmation from the server that the message has been processed.

void SendMessageAwait(const System::UnicodeString aSession, const System::UnicodeString aSenderLink, const System::UnicodeString aText)

{

 TsgcAMQP1MethodOptions_SendMessageAck *oOptions = new TsgcAMQP1MethodOptions_SendMessageAck();

 try

 {

 oOptions->Settled = false;

 oOptions->Await = true;

 AMQP1->SendMessage(aSession, aSenderLink, aText, L"messsage-id", oOptions);

 }

 __finally

 {

 delete oOptions;

 }

}

Events

When sending a message, there are 2 Events that can be used to know when the message is sent and if the mes
sage has been processed by the server (when sending unsettled).

OnAMQPMessageSent: this event is called after the message is sent to the server. When calling the
method SendMessage, the message is stored in an internal queue and processed by a secondary thread, so
after the message is sent, this event is called.

COMPONENTS

286

• OnAMQPMessageSentAck: this event is called, when the client receives a confirmation that the message
has been processed by the AMQP1 Server.

void __fastcall OnAMQPMessageSentAck(System::TObject* Sender, TsgcAMQP1Session* const aSession,

 TsgcAMQP1SenderLink* const aLink, const System::UnicodeString aMessageId,

 TsgcAMQP1FrameDeliveryStates aDeliveryState, TsgcAMQP1FrameDisposition aDisposition)

{

 System::UnicodeString vMessageId = aMessageId;

 switch (aDeliveryState)

 {

 case amqp1fdtsAccepted:

 ShowMessage("#msg-accepted: " + vMessageId);

 break;

 case amqp1fdtsRejected:

 ShowMessage("#msg-rejected: " + vMessageId + " " +

 TsgcAMQP1FrameRejected(aDisposition.State)->Error->Condition + " " +

 TsgcAMQP1FrameRejected(aDisposition.State)->Error->Description);

 break;

 case amqp1fdtsReleased:

 ShowMessage("#msg-released: " + vMessageId);

 break;

 case amqp1fdtsModified:

 ShowMessage("#msg-modified: " + vMessageId + " " +

 TsgcAMQP1FrameModified(aDisposition.State)->MessageAnnotations);

 break;

 case amqp1fdtsReceived:

 ShowMessage("#msg-received: " + vMessageId);

 break;

 }

}

COMPONENTS

287

•
•

•
•

AMQP1 | Read Message
Every time a new message is received, the event OnAMQPMessage is fired.

The TsgcAMQP1Message instance contains the message received. You can access to the text message using the
property aMessage.ApplicationData.AMQPValue.Value.

To specify the Delivery Outcome, use the DeliveryState parameter. By default, all the messages have the accept
ed state, but you can set one of the following:

amqp1mdtsAccepted: The message has been processed successfully.
amqp1mdtsRejected: The message failed to process successfully. Set the error using the
property DeliveryState.Rejected.
amqp1mdtsReleased: The message has not been and won't be processed.
amqp1mdtsModified: Same as amqp1mdtsReleased, but you can add additional data using the property
DeliveryState.Modified.

void __fastcall OnAMQPMessage(System::TObject* Sender, TsgcAMQP1Session* const aSession,

 TsgcAMQP1ReceiverLink* const aLink, TsgcAMQP1Message* const aMessage,

 TsgcAMQP1MessageDeliveryState &DeliveryState)

{

 if (aMessage->ApplicationData->AMQPValue->Value == "xxx")

 {

 DeliveryState.State = amqp1mdtsRejected;

 DeliveryState.Rejected->Error->Condition = "amqp-error-processing";

 DeliveryState.Rejected->Error->Description = "Value received was not the expected.";

 }

 else

 {

 DeliveryState.State = amqp1mdtsAccepted;

 }

}

COMPONENTS

288

Protocol STOMP
STOMP is the Simple (or Streaming) Text Orientated Messaging Protocol. STOMP provides an interoperable wire
format so that STOMP clients can communicate with any STOMP message broker to provide easy and widespread
messaging interoperability among many languages, platforms and brokers.

Our STOMP client components support following STOMP versions: 1.0, 1.1 and 1.2.

Components

 TsgcWSPClient_STOMP: generic STOMP Protocol client, allows to connect to any STOMP Server.

 TsgcWSPClient_STOMP_RabbitMQ: STOMP client for RabbitMQ Broker.

 TsgcWSPClient_STOMP_ActiveMQ: STOMP client for ActiveMQ Broker.

COMPONENTS

289

TsgcWSPClient_STOMP
This is Client Protocol STOMP Component, you need to drop this component in the form and select a TsgcWeb
SocketClient Component using Client Property.

Methods

 Send: The SEND frame sends a message to a destination in the messaging system.

 Subscribe: The SUBSCRIBE frame is used to register to listen to a given destination.

 UnSubscribe: The UNSUBSCRIBE frame is used to remove an existing subscription.

 ACK: ACK is used to acknowledge the consumption of a message from a subscription.

 NACK: NACK is the opposite of ACK. It is used to tell the server that the client did not consume the message.

 BeginTransaction: is used to start a transaction. Transactions in this case apply to sending and acknowledging -
any messages sent or acknowledged during a transaction will be processed atomically based on the transaction.

 CommitTransaction: is used to commit a transaction in progress.

 AbortTransaction: is used to roll back a transaction in progress.

 Disconnect: use to graceful shutdown connection, where the client is assured that all previous frames have been
received by the server.

Events

 OnSTOMPConnected: this event is fired after a new connection is established.
version : The version of the STOMP protocol the session will be using. See Protocol Negotiation for more
details.
STOMP 1.2 servers MAY set the following headers:
 heart-beat : The Heart-beating settings.
 session : A session identifier that uniquely identifies the session.
 server : A field that contains information about the STOMP server. The field MUST contain a server-name
field and MAY be followed by optional comment fields delimited by a space character.

 OnSTOMPMessage: this event is fired when the client receives a message.

The MESSAGE frame MUST include a destination header indicating the destination the message was sent
to. If the message has been sent using STOMP, this destination header SHOULD be identical to the one
used in the corresponding SEND frame.
The MESSAGE frame MUST also contain a message-id header with a unique identifier for that message
and a subscription header matching the identifier of the subscription that is receiving the message.
If the message is received from a subscription that requires explicit acknowledgment (either client or client-
individual mode) then the MESSAGE frame MUST also contain an ack header with an arbitrary value. This
header will be used to relate the message to a subsequent ACK or NACK frame.
MESSAGE frames SHOULD include a content-length header and a content-type header if a body is present.
MESSAGE frames will also include all user-defined headers that were present when the message was sent
to the destination in addition to the server-specific headers that MAY get added to the frame.

 OnSTOMPReceipt: this event is fired once a server has successfully processed a client frame that requests a re
ceipt.

A RECEIPT frame is an acknowledgment that the corresponding client frame has been processed by the
server. Since STOMP is stream based, the receipt is also a cumulative acknowledgment that all the previous
frames have been received by the server. However, these previous frames may not yet be fully processed. If
the client disconnects, previously received frames SHOULD continue to get processed by the server.

COMPONENTS

290

 OnSTOMPError: this event is fired if something goes wrong.

The ERROR frame SHOULD contain a message header with a short description of the error, and the body
MAY contain more detailed information (or MAY be empty).
If the error is related to a specific frame sent from the client, the server SHOULD add additional headers to
help identify the original frame that caused the error. For example, if the frame included a receipt header, the
ERROR frame SHOULD set the receipt-id header to match the value of the receipt header of the frame
which the error is related to.
ERROR frames SHOULD include a content-length header and a content-type header if a body is present.

Properties

 Authentication: disabled by default, if True a UserName and Password are sent to the server to try user authen
tication.

 HeartBeat: Heart-beating can optionally be used to test the healthiness of the underlying TCP connection and to
make sure that the remote end is alive and kicking. In order to enable heart-beating, each party has to declare what
it can do and what it would like the other party to do. 0 means it cannot send/receive heart-beats, otherwise it is the
desired number of milliseconds between heart-beats.

 Options: The name of a virtual host that the client wishes to connect to. It is recommended clients set this to the
host name that the socket was established against, or to any name of their choosing. If this header does not match
a known virtual host, servers supporting virtual hosting MAY select a default virtual host or reject the connection.

 Versions: Set which STOMP versions are supported.

 ConnectHeaders: Allows to send custom headers when CONNECT method is sent.

COMPONENTS

291

•
•
•
•
•

TsgcWSPClient_STOMP_RabbitMQ
This is Client Protocol STOMP Component for RabbitMQ Broker, you need to drop this component in the form and
select a TsgcWebSocketClient Component using Client Property.

Destinations

The STOMP specification does not prescribe what kinds of destinations a broker must support, instead the value of
the destination header in SEND and MESSAGE frames is broker-specific. The RabbitMQ STOMP adapter supports
a number of different destination types:

Topic: SEND and SUBSCRIBE to transient and durable topics.
Queue: SEND and SUBSCRIBE to queues managed by the STOMP gateway.
QueueOutside: SEND and SUBSCRIBE to queues created outside the STOMP gateway.
TemporaryQueue: create temporary queues (in reply-to headers only).
Exchange: SEND to arbitrary routing keys and SUBSCRIBE to arbitrary binding patterns.

Methods

 Publish: The SEND frame sends a message to a destination in the messaging system.
PublishTopic
PublishQueue
PublishQueueOutside
PublishTemporaryQueue
PublishExchange

 Subscribe: The SUBSCRIBE frame is used to register to listen to a given destination. Supports following sub
scriptions

SubscribeTopic
SubscribeQueue
SubscribeQueueOutside
SubscribeTemporaryQueue
SubscribeExchange

 UnSubscribe: The UNSUBSCRIBE frame is used to remove an existing subscription. Supports following UnSub
scriptions

UnSubscribeTopic
UnSubscribeQueue
UnSubscribeQueueOutside
UnSubscribeTemporaryQueue
UnSubscribeExchange

 ACK: ACK is used to acknowledge the consumption of a message from a subscription.

 NACK: NACK is the opposite of ACK. It is used to tell the server that the client did not consume the message.

 BeginTransaction: is used to start a transaction. Transactions in this case apply to sending and acknowledging -
any messages sent or acknowledged during a transaction will be processed atomically based on the transaction.

 CommitTransaction: is used to commit a transaction in progress.

 AbortTransaction: is used to roll back a transaction in progress.

 Disconnect: use to graceful shutdown connection, where the client is assured that all previous frames have been
received by the server.

COMPONENTS

292

Events

 OnRabbitMQConnected: this event is fired after a new connection is established.
version : The version of the STOMP protocol the session will be using. See Protocol Negotiation for more
details.
STOMP 1.2 servers MAY set the following headers:
 heart-beat : The Heart-beating settings.
 session : A session identifier that uniquely identifies the session.
 server : A field that contains information about the STOMP server. The field MUST contain a server-name
field and MAY be followed by optional comment fields delimited by a space character.

 OnRabbitMQMessage: this event is fired when the client receives a message.

The MESSAGE frame MUST include a destination header indicating the destination the message was sent
to. If the message has been sent using STOMP, this destination header SHOULD be identical to the one
used in the corresponding SEND frame.
The MESSAGE frame MUST also contain a message-id header with a unique identifier for that message
and a subscription header matching the identifier of the subscription that is receiving the message.
If the message is received from a subscription that requires explicit acknowledgment (either client or client-
individual mode) then the MESSAGE frame MUST also contain an ack header with an arbitrary value. This
header will be used to relate the message to a subsequent ACK or NACK frame.
MESSAGE frames SHOULD include a content-length header and a content-type header if a body is present.
MESSAGE frames will also include all user-defined headers that were present when the message was sent
to the destination in addition to the server-specific headers that MAY get added to the frame.

 OnRabbitMQReceipt: this event is fired once a server has successfully processed a client frame that requests a
receipt.

A RECEIPT frame is an acknowledgment that the corresponding client frame has been processed by the
server. Since STOMP is stream based, the receipt is also a cumulative acknowledgment that all the previous
frames have been received by the server. However, these previous frames may not yet be fully processed. If
the client disconnects, previously received frames SHOULD continue to get processed by the server.

 OnRabbitMQError: this event is fired if something goes wrong.

The ERROR frame SHOULD contain a message header with a short description of the error, and the body
MAY contain more detailed information (or MAY be empty).
If the error is related to a specific frame sent from the client, the server SHOULD add additional headers to
help identify the original frame that caused the error. For example, if the frame included a receipt header, the
ERROR frame SHOULD set the receipt-id header to match the value of the receipt header of the frame
which the error is related to.
ERROR frames SHOULD include a content-length header and a content-type header if a body is present.

Properties

 Authentication: disabled by default, if True a UserName and Password are sent to the server to try user authen
tication.

 HeartBeat: Heart-beating can optionally be used to test the healthiness of the underlying TCP connection and to
make sure that the remote end is alive and kicking. In order to enable heart-beating, each party has to declare what
it can do and what it would like the other party to do. 0 means it cannot send/receive heart-beats, otherwise it is the
desired number of milliseconds between heart-beats.

 Options: The name of a virtual host that the client wishes to connect to. It is recommended clients set this to the
host name that the socket was established against, or to any name of their choosing. If this header does not match
a known virtual host, servers supporting virtual hosting MAY select a default virtual host or reject the connection.

 Versions: Set which STOMP versions are supported.

COMPONENTS

293

•
•

•
•
•
•
•
•
•
•

TsgcWSPClient_STOMP_ActiveMQ
This is Client Protocol STOMP Component for ActiveMQ Broker, you need to drop this component in the form and
select a TsgcWebSocketClient Component using Client Property.

Destinations

The STOMP specification does not prescribe what kinds of destinations a broker must support, instead the value of
the destination header in SEND and MESSAGE frames is broker-specific. The Active STOMP adapter supports a
number of different destination types:

Topic: SEND and SUBSCRIBE to transient and durable topics.
Queue: SEND and SUBSCRIBE to queues managed by the STOMP gateway.

Publish Options

Note that STOMP is designed to be as simple as possible - so any scripting language/platform can message any
other with minimal effort. STOMP allows pluggable headers on each request such as sending & receiving mes
sages. ActiveMQ has several extensions to the Stomp protocol, so that JMS semantics can be supported by Stomp
clients. An OpenWire JMS producer can send messages to a Stomp consumer, and a Stomp producer can send
messages to an OpenWire JMS consumer. And Stomp to Stomp configurations, can use the richer JMS message
control.

STOMP supports the following standard JMS properties on SENT messages:

CorrelationId: Good consumers will add this header to any responses they send.
Expires: Expiration time of the message.
JMSXGroupID: Specifies the Message Groups.
JMSXGroupSeq: Optional header that specifies the sequence number in the Message Groups.
Persistent: Whether or not the message is persistent.
Priority: Priority on the message.
ReplyTo: Destination you should send replies to.
MsgType: Type of the message.

Methods

 Publish: The SEND frame sends a message to a destination in the messaging system.
PublishTopic
PublishQueue

 Subscribe: The SUBSCRIBE frame is used to register to listen to a given destination. Supports following sub
scriptions

SubscribeTopic
SubscribeQueue

 UnSubscribe: The UNSUBSCRIBE frame is used to remove an existing subscription. Supports following UnSub
scriptions

UnSubscribeTopic
UnSubscribeQueue

 ACK: ACK is used to acknowledge the consumption of a message from a subscription.

 NACK: NACK is the opposite of ACK. It is used to tell the server that the client did not consume the message.

COMPONENTS

294

 BeginTransaction: is used to start a transaction. Transactions in this case apply to sending and acknowledging -
any messages sent or acknowledged during a transaction will be processed atomically based on the transaction.

 CommitTransaction: is used to commit a transaction in progress.

 AbortTransaction: is used to roll back a transaction in progress.

 Disconnect: use to graceful shutdown connection, where the client is assured that all previous frames have been
received by the server.

Events

 OnActiveMQConnected: this event is fired after a new connection is established.
version : The version of the STOMP protocol the session will be using. See Protocol Negotiation for more
details.
STOMP 1.2 servers MAY set the following headers:
 heart-beat : The Heart-beating settings.
 session : A session identifier that uniquely identifies the session.
 server : A field that contains information about the STOMP server. The field MUST contain a server-name
field and MAY be followed by optional comment fields delimited by a space character.

 OnActiveMQMessage: this event is fired when the client receives a message.

The MESSAGE frame MUST include a destination header indicating the destination the message was sent
to. If the message has been sent using STOMP, this destination header SHOULD be identical to the one
used in the corresponding SEND frame.
The MESSAGE frame MUST also contain a message-id header with a unique identifier for that message
and a subscription header matching the identifier of the subscription that is receiving the message.
If the message is received from a subscription that requires explicit acknowledgment (either client or client-
individual mode) then the MESSAGE frame MUST also contain an ack header with an arbitrary value. This
header will be used to relate the message to a subsequent ACK or NACK frame.
MESSAGE frames SHOULD include a content-length header and a content-type header if a body is present.
MESSAGE frames will also include all user-defined headers that were present when the message was sent
to the destination in addition to the server-specific headers that MAY get added to the frame.

 OnActiveMQReceipt: this event is fired once a server has successfully processed a client frame that requests a
receipt.

A RECEIPT frame is an acknowledgment that the corresponding client frame has been processed by the
server. Since STOMP is stream based, the receipt is also a cumulative acknowledgment that all the previous
frames have been received by the server. However, these previous frames may not yet be fully processed. If
the client disconnects, previously received frames SHOULD continue to get processed by the server.

 OnActiveMQError: this event is fired if something goes wrong.

The ERROR frame SHOULD contain a message header with a short description of the error, and the body
MAY contain more detailed information (or MAY be empty).
If the error is related to a specific frame sent from the client, the server SHOULD add additional headers to
help identify the original frame that caused the error. For example, if the frame included a receipt header, the
ERROR frame SHOULD set the receipt-id header to match the value of the receipt header of the frame
which the error is related to.
ERROR frames SHOULD include a content-length header and a content-type header if a body is present.

Properties

 Authentication: disabled by default, if True a UserName and Password are sent to the server to try user authen
tication.

 HeartBeat: Heart-beating can optionally be used to test the healthiness of the underlying TCP connection and to
make sure that the remote end is alive and kicking. In order to enable heart-beating, each party has to declare what
it can do and what it would like the other party to do. 0 means it cannot send/receive heart-beats, otherwise it is the
desired number of milliseconds between heart-beats.

COMPONENTS

295

 Options: The name of a virtual host that the client wishes to connect to. It is recommended clients set this to the
host name that the socket was established against, or to any name of their choosing. If this header does not match
a known virtual host, servers supporting virtual hosting MAY select a default virtual host or reject the connection.

 Versions: Set which STOMP versions are supported.

COMPONENTS

296

Protocol AppRTC
WebRTC (Web Real-Time Communication) is an API definition being drafted by the World Wide Web Consortium
(W3C) to enable browser to browser applications for voice calling, video chat and P2P file sharing without plugins.
The RTC in WebRTC stands for Real-Time Communications, a technology that enables audio/video streaming and
data sharing between browser clients (peers). As a set of standards, WebRTC provides any browser with the ability
to share application data and perform teleconferencing peer to peer, without the need to install plug-ins or third-par
ty software.

WebRTC components are accessed with JavaScript APIs. Currently, in development are the Network Stream API,
which represents an audio or video data stream, and the PeerConnection API, which allows two or more users to
communicate browser-to-browser. Also under development is a DataChannel API that enables communication of
other types of data for real-time gaming, text chat, file transfer, and so forth.

appr.tc is a WebRTC demo application developed by Google and Mozilla, it enables both browsers to “talk” to each
other using the WebRTC API.

Components

 TsgcWSPServer_AppRTC: Server Protocol AppRTC VCL Component.

https://appr.tc

COMPONENTS

297

•
•
•

TsgcWSPServer_AppRTC
This is Server Protocol AppRTC Component, you need to drop this component in the form and select a TsgcWeb
SocketServer Component using Server Property.

Parameters

IceServers: here you can configure turn/stun servers for WebRTC connections.
RoomLink: URL base to access room. Example: https://mydemo.com/r/
WebSocketURL: URL to WebSocket server. Example: wss://mydemo.com

WebRTC Protocol requires STUN/TURN server, demos use public STUN/TURN servers for testing purposes. In or
der to put in a production system, a dedicated STUN/TURN server is required.
Registered users can download compiled binaries of Coturn server for Windows. Read more about COTURN
STUN/TURN.

IceServers Configuration

If you are running your STUN/TURN server in the following IP Address: 51.122.4.88 and is listening port 3478. User
to connect is "apprtc" and credential is "secret". Configure the IceServers as follows:

{

 "lifetimeDuration": "86400s",

 "iceServers": [{

 "urls": "stun:51.122.4.88:3478",

 "username": "apprtc",

 "credential": "secret"

 }, {

 "urls": "turn:51.122.4.88:3478",

 "username": "apprtc",

 "credential": "secret"

 }],

 "blockStatus": "NOT_BLOCKED",

 "iceTransportPolicy": "all"

}

COMPONENTS

298

•

Protocol WebRTC
WebRTC (Web Real-Time Communication) is an API definition being drafted by the World Wide Web Consortium
(W3C) to enable the browser to browser applications for voice calling, video chat and P2P file sharing without plug
ins. The RTC in WebRTC stands for Real-Time Communications, a technology that enables audio/video streaming
and data sharing between browser clients (peers). As a set of standards, WebRTC provides any browser with the
ability to share application data and perform teleconferencing peer to peer, without the need to install plug-ins or
third-party software.

WebRTC components are accessed with JavaScript APIs. Currently, in development are the Network Stream API,
which represents an audio or video data stream, and the PeerConnection API, which allows two or more users to
communicate browser-to-browser. Also under development is a DataChannel API that enables communication of
other types of data for real-time gaming, text chat, file transfer, and so forth.

Components

 TsgcWSPServer_WebRTC: Server Protocol WebRTC VCL Component.

Parameters

IceServers: here you can configure turn/stun servers for WebRTC connections. By default uses the follow
ing public STUN servers

{"iceServers": [{"url": "stun:stun.l.google.com:19302"}]}

Browser Test

If you want to test this protocol with your favourite Web Browser, please type this url (you need to define your cus
tom host and port)

 http://host:port/webrtc.esegece.com.html

COMPONENTS

299

•

•

TsgcWSPServer_WebRTC
This is Server Protocol WebRTC Component, you need to drop this component in the form and select a TsgcWeb
SocketServer Component using Server Property.

WebRTC Protocol requires STUN/TURN server, demos use public STUN/TURN servers for testing purposes. In or
der to put in a production system, a dedicated STUN/TURN server is required.

Registered users can download compiled binaries of Coturn server for Windows. Read more about COTURN
STUN/TURN.

Properties

ICEServers: define here the ICE Servers you want to use in the WebRTC sessions. Example:

{"iceServers": [{"url": "stun:stun.l.google.com:19302"}]}

CloseSessionOnHangup: by default true, if enabled when a remote peer closes the connection, the other
peer is disconnected too. If you want maintain the other peer connection when the peer disconnects, set this
property to false.

COMPONENTS

300

Protocol WebRTC Javascript
Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con
figure:

<script src="http://www.example.com:80/sgcWebSockets.js"></script>

<script src="http://www.example.com:80/webrtc.esegece.com.js"></script>

Open Connection

When a WebSocket connection is opened, browser request access to local camera and microphone,
you need to allow access.

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/webrtc.esegece.com.js"></script>

<script>

 var socket = new sgcws_webrtc('ws://{%host%}:{%port%}');

</script>

Open WebRTC Channel

When a browser has access to local camera and microphone, 'sgcmediastart' event is fired and then
you can try to connect to another client using webrtc_connect procedure

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/webrtc.esegece.com.js"></script>

<script>

 var socket = new sgcws_webrtc('ws://{%host%}:{%port%}');

 socket.on('sgcmediastart', function(event)

 {

 socket.webrtc_connect('custom channel');

 }

</script>

Close WebRTC channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/webrtc.esegece.com.js"></script>

<script>

 socket.webrtc_disconnect('custom channel');

</script>

COMPONENTS

301

•
•
•

•
•
•

Protocol WAMP
WAMP is an open WebSocket subprotocol that provides two asynchronous messaging patterns: RPC and PubSub.

Technically, WAMP is an officially registered WebSocket subprotocol (runs on top of WebSocket) that uses JSON
as message serialization format.

What is RPC?

Remote Procedure Call (RPC) is a messaging pattern involving peers to two roles: client and server.
A server provides methods or procedure to call under well-known endpoints.
A client calls remote methods or procedures by providing the method or procedure endpoint and any arguments for
the call.
The server will execute the method or procedure using the supplied arguments to the call and return the result of
the call to the client.

What is PubSub?

Publish & Subscribe (PubSub) is a messaging pattern involving peers of three roles: publisher, subscriber and bro
ker.
A publisher sends (publishes) an event by providing a topic (aka channel) as the abstract address, not a specific
peer.
A subscriber receives events by first providing topics (aka channels) he is interested. Subsequently, the subscriber
will receive any events publishes to that topic.
The broker sits between publishers and subscribers and mediates messages publishes to subscribers. A broker will
maintain lists of subscribers per topic so it can dispatch new published events to the appropriate subscribers.
A broker may also dispatch events on its own, for example when the broker also acts as an RPC server and a
method executed on the server should trigger a PubSub event.
In summary, PubSub decouples publishers and receivers via an intermediary, the broker.

Components

 TsgcWSPServer_WAMP: Server Protocol WAMP VCL Component.

 TsgcWSPClient_WAMP: Client Protocol WAMP VCL Component.

 Javascript Component: Client Javascript Reference.

Most Common Uses

RPC
Simple RPC
RPC Progress Results

PubSub
Subscribers
Publishers

Browser Test

If you want to test this protocol with your favourite Web Browser, please type this URL(you need to define your cus
tom host and port)

 http://host:port/wamp.esegece.com.html

COMPONENTS

302

•
•

•
•

•
•
•
•

•
•

•
•
•

•
•

•
•

TsgcWSPServer_WAMP
This is Server Protocol WAMP Component, you need to drop this component in the form and select a TsgcWeb
SocketServer Component using Server Property.

Methods

 CallResult: When the execution of the remote procedure finishes successfully, the server responds by sending a
message with the result.

CallId: this is the ID generated by client when request a call to a procedure
Result: is the result, can be a number, a JSON object...

 CallProgressResult: when rpc has multiple results, this method is called when still there are more results to
send. Example: if method has 20 results, from method 1 to 19, CallProgressResult must be called. And the final
method, number 20, must be called with CallResult to finish method.

CallId: this is the ID generated by client when request a call to a procedure
Result: is the result, can be a number, a JSON object...

 CallError: When the remote procedure call could not be executed, an error or exception occurred during the exe
cution or the execution of the remote procedure finishes unsuccessfully for any other reason, the server responds
by sending a message with error details.

CallId: this is the ID generated by the client when requesting a call to a procedure
ErrorURI: identifies the error.
ErrorDesc: error description.
ErrorDetails: application error details, is optional.

 Event: Subscribers receive PubSub events published by subscribers via the EVENT message.

TopicURI: channel name where is subscribed.
Event: message text.

Events

 OnCall: event fired when the server receives RPC called by the client

CallId: this is the ID generated by the client when requesting a call to a procedure
ProcUri: procedure identifier...
Arguments: procedure params, can be a integer, a JSON object, a list...

 OnBeforeCancelCall: event fired when the server receives a request to cancel a Call from client.

CallId: this is the ID generated by the client when requesting a call to a procedure
Cancel: by default is True, which means that Call will be cancelled. If server doesn't want cancel this
call, set this parameter to false.

 OnPrefix: Procedures and Errors are identified using URIs or CURIEs, this event is fired when a client sends a
new prefix

Prefix: compact URI expression.
URI: full URI.

COMPONENTS

303

COMPONENTS

304

•
•

•

•

•
•
•

•

•
•

•

•

•

•
•
•

TsgcWSPClient_WAMP
This is Client Protocol WAMP Component, you need to drop this component in the form and select a TsgcWeb
SocketClient Component using Client Property.

Methods

 Prefix: Procedures and Errors are identified using URIs or CURIEs, the client uses this method to send a new
prefix.

aPrefix: compact URI expression.
aURI: full URI.

 Subscribe: A client requests access to a valid topicURI (or CURIE from Prefix) to receive events published to the
given topicURI. The request is asynchronous, the server will not return an acknowledgement of the subscription.

aTopicURI: channel name.

 UnSubscribe: Calling unsubscribe on a topicURI informs the server to stop delivering messages to the client pre
viously subscribed to that topicURI.

aTopicURI: channel name.

 Call: sent by the client when requests a Remote Procedure Call (RPC)

aCallId: this is the UUID generated by client
aProcURI: procedure identifier.
aArguments: procedure params, can be a integer, a JSON object, a list...

 CancelCall: method called when the client wants cancel an active Call.

aCallId: this is the UUID generated by client

 Publish: The client will send an event to all clients connected to the server who have subscribed to the topicURI.

TopicURI: channel name.
Event: message text.

Events

 OnWelcome: is the first server-to-client message sent by a WAMP server

SessionId: is a string that is randomly generated by the server and unique to the specific WAMP ses
sion. The sessionId can be used for at least two situations: 1) specifying lists of excluded or eligible
clients when publishing event and 2) in the context of performing authentication or authorization.
ProtocolVersion: is an integer that gives the WAMP protocol version the server speaks, currently it
MUST be 1.
ServerIdent: is a string the server may use to disclose it's version, software, platform or identity.

 OnCallError: event fired when the remote procedure call could not be executed, an error or exception occurred
during the execution or the execution of the remote procedure finishes unsuccessfully for any other reason, the
server responds by sending a message with error details

CallId: this is the ID generated by the client when requesting a call to a procedure
ErrorURI: identifies the error.
ErrorDesc: error description.

COMPONENTS

305

•

•
•

•
•

•
•

ErrorDetails: application error details, is optional.

 OnCallResult: event fired when the execution of the remote procedure finishes successfully, the server responds
by sending a message with the result.

CallId: this is the ID generated by client when request a call to a procedure
Result: is the result, can be a number, a JSON object...

 OnCallProgressResult: event fired when the execution of the remote procedure is in progress and there are still
more pending results.

CallId: this is the ID generated by client when request a call to a procedure
Result: is the result, can be a number, a JSON object...

 OnEvent: event fired when the client receives PubSub events published by subscribers via the EVENT message.

TopicURI: channel name where is subscribed.
Event: message text.

COMPONENTS

306

Protocol WAMP Javascript

Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con
figure:

<script src="http://www.example.com:80/sgcWebSockets.js"></script>

<script src="http://www.example.com:80/wamp.esegece.com.js"></script>

Open Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 var socket = new sgcws_wamp('ws://{%host%}:{%port%}');

</script>

Send New Prefix

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 var socket = new sgcws_wamp('ws://{%host%}:{%port%}');

 socket.prefix('sgc', 'http://www.esegece.com');

</script>

Request RPC (Remote Procedure Call)

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 var socket = new sgcws_wamp('ws://{%host%}:{%port%}');

 socket.call('', 'sgc:CallTest', '20')

</script>

Subscribe to a TopicURI

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 var socket = new sgcws_wamp('ws://{%host%}:{%port%}');

 socket.subscribe('sgc:test)

</script>

COMPONENTS

307

UnSubscribe to a TopicURI

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 var socket = new sgcws_wamp('ws://{%host%}:{%port%}');

 socket.unsubscribe('sgc:test)

</script>

Publish message

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 var socket = new sgcws_wamp('ws://{%host%}:{%port%}');

 socket.publish('sgc:channel', 'Test Message', [], []);

</script>

Show Alert with Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcmessage', function(event)

 {

 alert(event.message);

 }

</script>

Show Alert OnCallResult or OnCallError

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 var socket = new sgcws_wamp('ws://{%host%}:{%port%}');

 socket.on('wampcallresult', function(event)

 {

 alert('call result: ' + event.CallId + ' - ' + event.CallResult);

 }

 socket.on('wampcallprogressresult', function(event)

 {

 alert('call progress result: ' + event.CallId + ' - ' + event.CallResult);

 }

 socket.on('wampcallerror', function(event)

 {

 alert('call error: ' + event.CallId + ' - ' + event.ErrorURI + ' - ' + event.ErrorDesc +

 ' - ' + event.ErrorDetails);

 }

</script>

Show Alert OnEvent

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

COMPONENTS

308

<script>

 var socket = new sgcws_wamp('ws://{%host%}:{%port%}');

 socket.on('wampevent', function(event)

 {

 alert('call result: ' + event.TopicURI + ' - ' + event.Event);

 }

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 var socket = new sgcws_wamp('ws://{%host%}:{%port%}');

 socket.on('open', function(event)

 {

 alert('sgcWebSocket Open!');

 };

 socket.on('close', function(event)

 {

 alert('sgcWebSocket Closed!');

 };

 socket.on('error', function(event)

 {

 alert('sgcWebSocket Error: ' + event.message);

 };

</script>

Close Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 socket.close();

</script>

Get Connection Status

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/wamp.esegece.com.js"></script>

<script>

 socket.state();

</script>

COMPONENTS

309

WAMP | Subscribers
A subscriber receives events by first providing topics (aka channels) he is interested. Subsequently, the subscriber
will receive any events publishes to that topic.
To receive events from a topic, first has to subscribe to this topic.

WAMP Client

void OnMessageEvent(TsgcWSConnection *Connection, string Text)

{

 ShowMessage(Text);

}

oClient = new TsgcWebSocketClient();

oClient->Host = "127.0.0.1";

oClient->Port = 80;

oClientWAMP = new TsgcWSPClient_WAMP();

oClientWAMP->Client = oClient.

oClientWAMP->OnMessage = OnMessageEvent;

oClient->Active = true;

// Subscribe to topic after successful connect

oClient->Subscribe("myTopic");

WAMP Server

void OnSubscriptionEvent(TsgcWSConnection *Connection, string Subscription)

{

 ShowMessage("Subscribed: " + Subscription);

}

oServer = new TsgcWebSocketServer();

oServer->Port = 80;

oServerWAMP = new TsgcWSPServer_WAMP();

oServerWAMP->OnSubscription = OnSubscriptionEvent;

oServerWAMP->Server = oServer;

oServerWAMP->Active = true;

COMPONENTS

310

WAMP | Publishers
A publisher sends (publishes) an event by providing a topic (aka channel) as the abstract address, not a specific
peer. Just call Publish method and pass as arguments the name of the topic and the message you want to send.
This message will be delivered to all subscribers of this topic. As a note, there is no need to subscribe to a topic to
publish messages on this topics.

There is no need to configure anything on server side, because messages are automatically broadcasted to clients
when a publish message is received.

WAMP Client

oClient = new TsgcWebSocketClient();

oClient->Host = "127.0.0.1";

oClient->Port = 80;

oClientWAMP = new TsgcWSPClient_WAMP();

oClientWAMP->Client = oClient.

oClientWAMP->OnMessage = OnMessageEvent;

oClient->Active = true;

// Publish a message to all subscribers

oClient->Publish("myTopic", "Hello subscribers myTopic");

COMPONENTS

311

WAMP | Simple RPC
The most common use of WAMP component is client requests a method server and server sends response to
client. Client can send only the name of the method and/or can pass some parameters required by server to calcu
late the result. Server processes requests and if successful sends a response to client with the result. If there is any
error, server sends an error response to client.
As you see, there is only One request and One response (successful or not).

Example: server has a method called GetTime, so every time a client requests this method, server returns server
time.

WAMP Server

void OnServerCall(TsgcWSConnection *Connection, const string CallId, const string ProcUri, const string Arguments)

{

 if (ProcUri == "GetTime")

 {

 oServerWAMP->CallResult(CallId, FormatDateTime("yyyymmdd hh:nn:ss", Now));

 }

 else

 {

 oServer->WAMP->CallError(CallId, "Unknown method");

 }

}

oServer = new TsgcWebSocketServer();

oServer->Port = 80;

oServerWAMP = new TsgcWSPServer_WAMP();

oServerWAMP->OnCall = OnServerCallEvent();

oServerWAMP->Server = oServer;

oServer->Active = true;

WAMP Client

void OnCallResultClient(TsgcWSConnection *Connection, string CallId, string Result);

{

 ShowMessage(Result);

}

void OnCallErrorClient(TsgcWSConnection *Connection, string Error)

{

 ShowMessage(Error);

}

oClient = new TsgcWebSocketClient();

oClient->Host = "127.0.0.1";

oClient->Port = 80;

oClientWAMP = new TsgcWSPClient_WAMP();

oClientWAMP->OnCallResult = OnCallResultClient;

oClientWAMP->OnCallError = OnCallErrorClient;

oClientWAMP->Client = oClient;

oClient->Active = true;

// After client has connected, request GetTime from server

oClientWAMP->Call("GetTime");

COMPONENTS

312

WAMP | RPC Progress Results
Sometimes, Remote Produce Calls require more than one result to finish requests, by default WAMP 1.0 protocol
doesn't allow Partial results in a call, this is a feature only for sgcWebSockets library.
The flow is very similar to a simple RPC, but here there are 1 or more partial results before CallResult is called to
finish the process.
Basically, a client requests a procedure to server and server can send a result or an error. If send a result, this can
be the final result or it must send most results later. If it's final result, will call method CallResult and the process
will be finished. If there are more results to send, will call method CallProgressResult.

Example: client requests server a method to receive every second the server time and stop after 20 messages.

WAMP Server

void OnServerCall(TsgcWSConnection *Connection, const string CallId, const string ProcUri, const string Arguments)

{

 if (ProcUri == "GetProgressiveTime")

 {

 int vNum = StrToInt(Arguments);

 for (int i = 1; i = vNum; i++)

 {

 if (i == 20)

 {

 oServerWAMP->CallResult(CallId, FormatDateTime("yyyymmdd hh:nn:ss", Now));

 }

 else

 {

 oServerWAMP->CallProgressiveResult(CallId, FormatDateTime("yyyymmdd hh:nn:ss", Now));

 }

 }

 }

 else

 {

 oServer->WAMP->CallError(CallId, "Unknown method");

 }

}

oServer = new TsgcWebSocketServer();

oServer->Port = 80;

oServerWAMP = new TsgcWSPServer_WAMP();

oServerWAMP->OnCall = OnServerCallEvent();

oServerWAMP->Server = oServer;

oServer->Active = true;

WAMP Client

void OnCallResultClient(TsgcWSConnection *Connection, string CallId, string Result);

{

 ShowMessage(Result);

}

void OnCallProgressResultClient(TsgcWSConnection *Connection, string CallId, string Result);

{

 ShowMessage(Result);

}

void OnCallErrorClient(TsgcWSConnection *Connection, string Error)

{

 ShowMessage(Error);

}

oClient = new TsgcWebSocketClient();

oClient->Host = "127.0.0.1";

oClient->Port = 80;

oClientWAMP = new TsgcWSPClient_WAMP();

oClientWAMP->OnCallResult = OnCallResultClient;

oClientWAMP->OnCallProgressResult = OnCallProgressResultClient;

oClientWAMP->OnCallError = OnCallErrorClient;

oClientWAMP->Client = oClient;

COMPONENTS

313

oClient->Active = true;

// After client has connected, request GetTime from server

oClientWAMP->Call("GetProgressTime");

COMPONENTS

314

•

•

Protocol WAMP 2
WAMP provides Unified Application Routing in an open WebSocket protocol that works with different languages.

Using WAMP you can build distributed systems out of application components which are loosely coupled and com
municate in (soft) real-time.

At its core, WAMP offers two communication patterns for application components to talk to each other:

Publish & Subscribe (PubSub)

Remote Procedure Calls (RPC)

WAMP is easy to use, simple to implement and based on modern Web standards: WebSocket, JSON and URIs.

Components

 TsgcWSPClient_WAMP2: Client Protocol WAMP2 VCL Component.

COMPONENTS

315

•

•

•

•

•

TsgcWSPClient_WAMP2
This is Client Protocol WAMP Component, you need to drop this component in the form and select a TsgcWeb
SocketClient Component using Client Property.

Session Methods

ABORT: Both the Router and the Client may abort the opening of a WAMP session by sending an
ABORT message.

Reason MUST be an URI.
Details MUST be a dictionary that allows to provide additional, optional closing information
(see below).

No response to an ABORT message is expected.

GOODBYE: A WAMP session starts its lifetime with the Router sending a WELCOME message to the
Client and ends when the underlying transport disappears or when the WAMP session is closed ex
plicitly by a GOODBYE message sent by one Peer and a GOODBYE message sent from the other
Peer in response.

Reason MUST be a URI.
Details MUST be a dictionary that allows providing additional, optional closing information.

Publish/Subscribe Methods

PUBLISH: When a Publisher requests to publish an event to some topic, it sends a PUBLISH mes
sage to a Broker:

Request is a random, ephemeral ID chosen by the Publisher and used to correlate the
Broker's response with the request.
Options is a dictionary that allows to provide additional publication request details in an exten
sible way. This is described further below.
Topic is the topic published to.
Arguments is a list of application-level event payload elements. The list may be of zero length.
ArgumentsKw is an optional dictionary containing application-level event payload, provided as
keyword arguments. The dictionary may be empty.

If the Broker is able to fulfil and allowing the publication, the Broker will send the event to all current
Subscribers of the topic of the published event.
By default, publications are unacknowledged, and the Broker will not respond, whether the publication
was successful indeed or not.

SUBSCRIBE: A Subscriber communicates its interest in a topic to a Broker by sending a SUB
SCRIBE message:

Request MUST be a random, ephemeral ID chosen by the Subscriber and used to correlate
the Broker's response with the request.
Options MUST be a dictionary that allows providing additional subscription request details in
an extensible way.
Topic is the topic the Subscriber wants to subscribe to and MUST be a URI.

UNSUBSCRIBE: When a Subscriber is no longer interested in receiving events for a subscription it
sends an UNSUBSCRIBE message

Request MUST be a random, ephemeral ID chosen by the Subscriber and used to correlate
the Broker's response with the request.
SUBSCRIBED.Subscription MUST be the ID for the subscription to unsubscribe from, origi
nally handed out by the Broker to the Subscriber.

COMPONENTS

316

•

•

•

•

•

•
•

RPC Methods

CALL: When a Caller wishes to call a remote procedure, it sends a CALL message to a Dealer:

Request is a random, ephemeral ID chosen by the Caller and used to correlate the Dealer's
response with the request.
Options is a dictionary that allows to provide additional call request details in an extensible
way. This is described further below.
Procedure is the URI of the procedure to be called.
Arguments is a list of positional call arguments (each of arbitrary type). The list may be of zero
length.
ArgumentsKw is a dictionary of keyword call arguments (each of arbitrary type). The dictio
nary may be empty.

REGISTERCALL: A Callee announces the availability of an endpoint implementing a procedure with
a Dealer by sending a REGISTER message:

Request is a random, ephemeral ID chosen by the Callee and used to correlate the Dealer's
response with the request.
Options is a dictionary that allows providing additional registration request details in a extensi
ble way. This is described further below.
Procedure is the procedure the Callee wants to register

UNREGISTERCALL: When a Callee is no longer willing to provide an implementation of the regis
tered procedure, it sends an UNREGISTER message to the Dealer:

Request is a random, ephemeral ID chosen by the Callee and used to correlate the Dealer's
response with the request.
REGISTERED.Registration is the ID for the registration to revoke, originally handed out by
the Dealer to the Callee.

INVOCATION: If the Dealer is able to fulfil (mediate) the call and it allows the call, it sends a INVOCA
TION message to the respective Callee implementing the procedure:

Request is a random, ephemeral ID chosen by the Dealer and used to correlate the Callee's
response with the request.
REGISTERED.Registration is the registration ID under which the procedure was registered at
the Dealer.
Details is a dictionary that allows to provide additional invocation request details in an extensi
ble way. This is described further below.
CALL.Arguments is the original list of positional call arguments as provided by the Caller.
CALL.ArgumentsKw is the original dictionary of keyword call arguments as provided by the
Caller.

YIELD: If the Callee is able to successfully process and finish the execution of the call, it answers by
sending a YIELD message to the Dealer:

INVOCATION.Request is the ID from the original invocation request.
Options is a dictionary that allows providing additional options.
Arguments is a list of positional result elements (each of arbitrary type). The list may be of ze
ro length.
ArgumentsKw is a dictionary of keyword result elements (each of arbitrary type). The dictio
nary may be empty.

Events

 OnWAMPSession: After the underlying transport has been established, the opening of a WAMP session is initiat
ed by the Client sending a HELLO message to the Router

Realm: is a string identifying the realm this session should attach to
Details: is a dictionary that allows to provide additional opening information

COMPONENTS

317

•

•

•
•
•

•
•

•
•

 OnWAMPWelcome: A Router completes the opening of a WAMP session by sending a WELCOME reply mes
sage to the Client.

Session: MUST be a randomly generated ID specific to the WAMP session. This applies for the
lifetime of the session.
Details: is a dictionary that allows to provide additional information regarding the open session.

 OnWAMPChallenge: this event is raised when server requires client authenticate against server.

Authmethod: this is the authentication method requested by server, example: ticket.
Details: optional
Secret: here client can set secret key which will be used to authenticate.

Example: Authentication using ticket method.

 OnWAMPAbort: Both the Router and the Client may abort the opening of a WAMP session by sending an ABORT
message.

Reason: MUST be an URI.
Details: MUST be a dictionary that allows providing additional, optional closing information.

 OnWAMPGoodBye: A WAMP session starts its lifetime with the Router sending a WELCOME message to the Client
and ends when the underlying transport disappears or when the WAMP session is closed explicitly by a GOODBYE
message sent by one Peer and a GOODBYE message sent from the other Peer in response.

Reason: MUST be an URI.
Details: MUST be a dictionary that allows to provide additional, optional closing information.

OnWAMPSubscribed: If the Broker is able to fulfill and allow the subscription, it answers by sending a SUB
SCRIBED message to the Subscriber

// First OnWAMPSession event will be called asking details about new session, set realm and authentication id

// which will be sent to serve

void OnWAMPSession(TsgcWSConnection *Connection, ref string aRealm, ref string aDetails)

{

 aRealm = "realm1";

 aDetails = "{"authmethods": ["ticket"], "authid": "joe"}";

}

// If AuthId parameter is accepted by server, it will request an authentication through Challenge message,

// here you can set "secret key" of "authid" param.

void OnWAMPChallenge(TsgcWSConnection *Connection, string AuthMethod, string Details, ref string Secret)

{

 Secret = "your secret key";

}

// If Authentication is successful, server will send a Welcome message

void OnWAMPWelcome(TsgcWSConnection *Connection, int64 SessionId, string Details)

{

 ShowMessage("authenticated");

}

COMPONENTS

318

•
•

•

•
•

•

•
•
•

•

•
•
•
•
•

•

•
•
•
•

•
•

•

SUBSCRIBE.Request: MUST be the ID from the original request.
Subscription: MUST be an ID chosen by the Broker for the subscription.

OnWAMPUnSubscribed: Upon successful unsubscription, the Broker sends an UNSUBSCRIBED message to the
Subscriber

UNSUBSCRIBE.Request: MUST be the ID from the original request.

OnWAMPPublished: If the Broker is able to fulfill and allowing the publication, and
PUBLISH.Options.acknowledge == true, the Broker replies by sending a PUBLISHED message to the Publisher:

PUBLISH.Request: is the ID from the original publication request.
Publication: is a ID chosen by the Broker for the publication.

OnWAMPEvent: When a publication is successful and a Broker dispatches the event, it determines a list of re
ceivers for the event based on Subscribers for the topic published to and, possibly, other information in the event.
Note that the Publisher of an event will never receive the published event even if the Publisher is also a Subscriber
of the topic published to. The Advanced Profile provides options for more detailed control over publication. When a
Subscriber is deemed to be a receiver, the Broker sends the Subscriber an EVENT message.

SUBSCRIBED.Subscription: is the ID for the subscription under which the Subscriber receives the
event - the ID for the subscription originally handed out by the Broker to the Subscribe*.
PUBLISHED.Publication: is the ID of the publication of the published event.
DETAILS: is a dictionary that allows the Broker to provide additional event details in a extensible way.
PUBLISH.Arguments: is the application-level event payload that was provided with the original publi
cation request.
PUBLISH.ArgumentKw: is the application-level event payload that was provided with the original
publication request.

OnWAMPError: When the request fails, the Broker sends an ERROR

METHOD: is the ID of the Method.
REQUEST.ID: is the ID of the Request.
DETAILS: is a dictionary that allows the Broker to provide additional event details in a extensible way.
ERROR: describes the message error.
PUBLISH.Arguments: is the application-level event payload that was provided with the original publi
cation request.
PUBLISH.ArgumentKw: is the application-level event payload that was provided with the original
publication request.

OnWAMPResult: The Dealer will then send a RESULT message to the original Caller:

CALL.Request: is the ID from the original call request.
DETAILS: is a dictionary of additional details.
YIELD.Arguments: is the original list of positional result elements as returned by the Callee.
YIELD.ArgumentsKw: is the original dictionary of keyword result elements as returned by the Callee.

OnWAMPRegistered: If the Dealer is able to fulfill and allowing the registration, it answers by sending a REGIS
TERED message to the Callee:

REGISTER.Request: is the ID from the original request.
Registration: is an ID chosen by the Dealer for the registration.

OnWAMPUnRegistered: When a Callee is no longer willing to provide an implementation of the registered proce
dure, it sends an UNREGISTER message to the Dealer:

Request: is a random, ephemeral ID chosen by the Callee and used to correlate the Dealer's re
sponse with the request.

COMPONENTS

319

• REGISTERED.Registration: is the ID for the registration to revoke, originally handed out by the
Dealer to the Callee.

COMPONENTS

320

•

•
•
•

•

Protocol Default
This is default sub-protocol implemented using "JSONRPC 2.0" messages, every time you send a message using
this protocol, a JSON object is created with the following properties:

jsonrpc: A String specifying the version of the JSON-RPC protocol. MUST be exactly "2.0".

method: A String containing the name of the method to be invoked. Method names that begin with the word rpc fol
lowed by a period character (U+002E or ASCII 46) are reserved for rpc-internal methods and extensions and
MUST NOT be used for anything else.

params: A Structured value that holds the parameter values to be used during the invocation of the method. This
member MAY be omitted.

id: An identifier established by the Client that MUST contain a String, Number, or NULL value if included. If it is not
included it is assumed to be a notification. The value SHOULD normally not be Null [1] and Numbers SHOULD
NOT contain fractional parts [2]

JSON object example:

{"jsonrpc": "2.0", "method": "subtract", "params": [42, 23], "id": 1}

Features

Publish/subscribe message pattern to provide one-to-many message distribution and decou
pling of applications. Supports Wildcard characters, so you can subscribe to a hierarchy of
channels. Example: if you want to subscribe to all channels which start with 'news', then call
Subscribe('news*').
A messaging transport that is agnostic to the content of the payload
Acknowledgment of messages sent.
Supports transactional messages through server local transactions. When the client com
mits the transaction, the server processes all messages queued. If client rollback the transac
tion, then all messages are deleted.
Implements QoS (Quality of Service) for message delivery.

Components

 TsgcWSPClient_sgc: Server Protocol Default VCL Component.

 TsgcWSPClient_sgc: Client Protocol Default VCL Component.

 Javascript Component: Client Javascript Reference.

Browser Test

If you want to test this protocol with your favourite Web Browser, please type this URL (you need to define your
custom host and port)

 http://host:port/esegece.com.html

COMPONENTS

321

COMPONENTS

322

TsgcWSPServer_sgc
This is Server Protocol Default Component, you need to drop this component in the form and select a TsgcWeb
SocketServer Component using Server Property.

Methods

 Subscribe / UnSubscribe: subscribe/unsubscribe to a channel. Supports wildcard characters, so you can sub
scribe to a hierarchy of channels. Example: if you want to subscribe to all channels which start with 'news', then call
Subscribe('news*').

 Publish: sends a message to all subscribed clients. Supports wildcard characters, so you can publish to a hierar
chy of channels. Example: if you want to send a message to all subscribers to channels which start with 'news',
then call Publish('news*').

 RPCResult: if a call RPC from the client is successful, the server will respond with this method.

 RPCError: if a call RPC from the client it has an error, the server will respond with this method.

 Broadcast: sends a message to all connected clients, if you need to broadcast a message to selected channels,
use Channel argument.

 WriteData: sends a message to single or multiple selected clients.

Properties

 RPCAuthentication: if enabled, every time a client requests an RPC, method name needs to be authenticated
against a username and password.

 Methods: is a list of allowed methods. Every time a client sends an RPC first it will search if this method is de
fined on this list, if it's not in this list, OnRPCAuthentication event will be fired.

 Subscriptions: returns a list of active subscriptions.

 UseMatchesMasks: if enabled, subscriptions and publish methods accepts wildcards, question marks... check
MatchesMask Delphi function to see all supported masks.

Events

 OnRPCAuthentication: if RPC Authentication is enabled, this event is fired to define if a client can call this
method or not.

 OnRPC: fired when the server receives an RPC from a client.

 OnNotification: fired every server receive a Notification from a client.

 OnBeforeSubscription: fired every time before a client subscribes to a custom channel. Allows denying a sub
scription.

 OnSubscription: fired every time a client subscribes to a custom channel.

 OnUnSubscription: fired every time a client unsubscribes from a custom channel.

 OnRawMessage: this event is fired before a message is processed by component.

COMPONENTS

323

COMPONENTS

324

TsgcWSPClient_sgc
This is Client Protocol Default Component, you need to drop this component in the form and select a TsgcWeb
SocketClient Component using Client Property.

Methods

 Publish: sends a message to all subscribed clients.

 RPC: Remote Procedure Call, client request a method and response will be handled OnRPCResult or OnRPCEr
ror events.

 Notify: the client sends a notification to a server, this notification doesn't need a response.

 Broadcast: sends a message to all connected clients, if you need to broadcast a message to selected channels,
use Channel argument.

 WriteData: sends a message to a server. If you need to send a message to a custom
TsgcWSProtocol_Server_sgc, use "Guid" Argument. If you need to send a message to a single channel, use
"Channel" Argument.

 Subscribe: subscribe client to a custom channel. If the client is subscribed, OnSubscription event will be fired.

 Unsubscribe: unsubscribe client to a custom channel. If the client is unsubscribed, OnUnsubscription event will
be fired.

 UnsubscribeAll: unsubscribe client from all subscribed channel. If the client is unsubscribed, OnUnsubscription
event will be fired for every channel.

 GetSession: requests to server session id, data session is received OnSession Event.

 StartTransaction: begins a new transaction.

 Commit: server processes all messages queued in a transaction.

 RollBack: server deletes all messages queued in a transaction.

Events

 OnEvent: this event is fired every time a client receives a message from a custom channel.

 OnRPCResult: this event is fired when the client receives a successful response from the server after a RPC is
sent.

 OnRPCError: this event is fired when the client receives a error response from the server after an RPC is sent.

 OnAcknowledgment: this event is fired when the client receives error an acknowledgment from the server that
message has been received.

 OnRawMessage: this event is fired before a message is processed by the component.

 OnSession: this event is fired after a successful connection or after a GetSession request.

COMPONENTS

325

Properties

 Queue: disabled by default, if True all text/binary messages are not processed and queued until queue is dis
abled.

 QoS: Three "Quality of Service" provided:

Level 0: "At most once", the message is delivered according to the best efforts of the underlying TCP/IP net
work. A response is not expected and no retry semantics are defined in the protocol. The message arrives at
the server either once or not at all.

Level 1: "At least once", the receipt of a message by the server is acknowledged by an ACKNOWLEDG
MENT message. If there is an identified failure of either the communications link or the sending device, or
the acknowledgement message is not received after a specified period of time, the sender resends the mes
sage. The message arrives at the server at least once. A message with QoS level 1 has an ID param in the
message.

Level 2: "Exactly once", where message are assured to arrive exactly once. This level could be used, for ex
ample, with billing systems where duplicate or lost messages could lead to incorrect charges being applied.
If there is an identified failure of either the communications link or the sending device, or the acknowledge
ment message is not received after a specified period of time, the sender resends the message.

 Subscriptions: returns a list of active subscriptions.

COMPONENTS

326

TsgcIWWSPClient_sgc
This is Intraweb Client Protocol Default Component, you need to drop this component in the form and select a Tsg
cIWWebSocketClient Component using Client Property.

Methods

 WriteData: sends a message to a server. If you need to send a message to a custom
TsgcWSProtocol_Server_sgc, use "Guid" Argument. If you need to send a message to a single channel, use
"Channel" Argument.

 Subscribe: subscribe client to a custom channel. If the client is subscribed, OnSubscription event will be fired.

 Unsubscribe: unsubscribe client to a custom channel. If client is unsubscribed, OnUnsubscription event will be
fired.

COMPONENTS

327

Protocol Default Javascript
Default Protocol Javascript sgcWebSockets uses sgcWebSocket.js and esegece.com.js files.

Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con
figure:

<script src="http://www.example.com:80/sgcWebSockets.js"></script>

<script src="http://www.example.com:80/esegece.com.js"></script>

Open Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

</script>

Send Message

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.send('Hello sgcWebSockets!');

</script>

Show Alert with Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcmessage', function(event)

 {

 alert(event.message);

 }

</script>

Publish Message to test channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.publish('Hello sgcWebSockets!', 'test');

</script>

COMPONENTS

328

Show Alert with Event Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcevent', function(event)

 {

 alert('channel:' + event.channel + '. message: ' + event.message);

 }

</script>

Call RPC

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 var params = {param:10};

 socket.rpc(GUID(), 'test', JSON.stringify(params));

</script>

Handle RPC Response

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcrpcresult', function(event)

 {

 alert('result:' + event.result);

 }

 socket.on('sgcrpcerror', function(event)

 {

 alert('error:' + event.code + ' ' + event.message);

 }

</script>

Call Notify

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 var params = {param:10};

 socket.notify('test', JSON.stringify(params));

</script>

Send Messages in a Transaction

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.starttransaction('sgc:test');

 socket.publish('Message1', 'sgc:test');

 socket.publish('Message2', 'sgc:test');

COMPONENTS

329

 socket.publish('Message3', 'sgc:test');

 socket.commit('sgc:test');

</script>

Show Alert OnSubscribe or OnUnSubscribe to a channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcsubscribe', function(event)

 {

 alert('subscribed: ' + event.channel);

 }

 socket.on('sgcunsubscribe', function(event)

 {

 alert('unsubscribed: ' + event.channel);

 }

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.on('open', function(event)

 {

 alert('sgcWebSocket Open!');

 };

 socket.on('close', function(event)

 {

 alert('sgcWebSocket Closed!');

 };

 socket.on('error', function(event)

 {

 alert('sgcWebSocket Error: ' + event.message);

 };

</script>

Get Session

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcsession', function(event)

 {

 alert(event.guid);

 };

 socket.getsession();

</script>

Close Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 socket.close();

</script>

COMPONENTS

330

Get Connection Status

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.state();

</script>

Set QoS

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.qoslevel1();

 socket.publish('message', 'channel');

</script>

Set Queue Level

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.queuelevel2();

 socket.publish('message1', 'channel1');

 socket.publish('message2', 'channel1');

</script>

COMPONENTS

331

•
•
•

Protocol Dataset
This protocol inherits from Protocol Default and it's useful if you want to broadcast dataset changes over clients
connected to this protocol. It can be used in 2 modes:

1. Replicate database: the database changes are replicated to all client databases, example: a server has a data
base with stock quotes and all connected clients receive quotes changes. There is a single database (in server)
and every client has his own database. Every time a quote is updated, this change is broadcasted to all connected
clients and every client update his own record database. Use UpdateMode: upWhereAll or upWhereChanged for
this mode type.

2. Database updates: here there is a single database shared by server and clients, and every time there is a client
that updates a record in a database, all other clients want to be notified about this update. Use UpdateMode: upRe
freshAll for this mode.

Most common uses

Update Mode
How Replicate Table
How Notify Updates

It uses "JSON-RPC 2.0" Object, and every time there is a dataset change, it sends all field values (* only fields sup
ported) using Dataset Object.

To allow the component to search records on the dataset, you need to specify which fields are the Key, example: if
in your dataset, ID field is the key you will need to write a code like this

void OnAfterOpenDataSet(TDataSet *DataSet)

{

 DataSet->FieldByName("ID")->ProviderFlags =

 Dataset->FieldByName("ID")->ProviderFlags + [pfInKey];

}

Components

 TsgcWSPServer_Dataset: Server Protocol Dataset VCL Component.

 TsgcWSPClient_Dataset: Client Protocol Dataset VCL Component.

 Javascript Component: Client Javascript Reference.

Browser Test

If you want to test this protocol with your favourite Web Browser, please type this URL (you need to define your
custom host and port)

 http://host:port/dataset.esegece.com.html

COMPONENTS

332

•
•
•
•
•

•
•
•

TsgcWSPServer_Dataset
This is Server Protocol Dataset Component, you need to drop this component in the form and select a TsgcWeb
SocketServer Component using Server Property and select a Dataset Component using Dataset Property.

This component inherits from TsgcWSProtocol_Server_sgc all methods and properties.

Properties

 ApplyUpdates: if enabled, every time the server receives a dataset update from client, it will be saved on the
server side.

 NotifyUpdates: if enabled, every time dataset server changes, server broadcasts this change to all connected
clients.

 NotifyDeletes: if enabled, every time a record is deleted, server broadcasts this to all connected clients.

 AutoEscapeText: if enabled (disabled by default), automatically escape/unescape characters inside field values
like "{", "["...

 AutoSynchronize: if enabled, every time a client connects to the server, the server will send metadata and all
dataset records to client.

 FormatSettings: allows to set the format of double and datetime fields (to avoid conflicts between diffferent for
mat settings of peers). This format must be the same for server and clients.

DecimalSeparator: ","
ThousandSeparator: "."
DateSeparator: "/"
TimeSeparator: ":"
ShortDateFormat: "dd/mm/yyyy hh:nn:ss:zzz"

 UpdateMode:

upWhereAll: (by default) all fields are broadcasted to clients,
upWhereChanged: only Fields that have changed will be broadcasted to connected clients.
upRefreshAll: dataset is refreshed to get the latest changes.

Methods

 BroadcastRecord: sends dataset record values to all connected clients.

 MetaData: sends metadata info to a client.

 Synchronize: sends all dataset records to a client.

Events

 These events are specific on the dataset protocol.

 OnAfterDeleteRecord: event fired after a record is deleted from Dataset.

 OnAfterNewRecord: event fired after a record is created on Dataset.

 OnAfterUpdateRecord: event fired after a record is updated on Dataset.

 OnBeforeDeleteRecord: event fired before a record is deleted from Dataset. If Argument "Handled" is True,
means that the user handles this event and if won't be deleted (by default this argument is False)

COMPONENTS

333

 OnBeforeNewRecord: event fired before a record is created on Dataset. If Argument "Handled" is True, means
that the user handles this event and if won't be inserted (by default this argument is False)

 OnBeforeUpdateRecord: event fired before a record is updated on Dataset. If Argument "Handled" is True,
means that the user handles this event and if won't be updated (by default this argument is False)

 OnBeforeDatasetUpdate: event fired before a dataset record is updated.

COMPONENTS

334

TsgcWSPClient_Dataset
This is Client Protocol Dataset Component, you need to drop this component in the form and select a TsgcWeb
SocketClient Component using Client Property and select a Dataset Component using Dataset Property.

This component inherits from TsgcWSProtocol_Client_sgc all methods and properties.

Methods

 Subscribe_all: subscribe to all available channels

new: fired on new dataset record.
update: fired on post dataset record.
delete: fired on delete dataset record.

 Synchronize: requests all dataset records from the server

 GetMetaData: requests all dataset fields from server

Events

 These events are specific on the dataset protocol.

 OnAfterDeleteRecord: event fired after a record is deleted from Dataset.

 OnAfterNewRecord: event fired after a record is created on Dataset.

 OnAfterUpdateRecord: event fired after a record is updated on Dataset.

 OnAfterSynchronize: event fired after synchronization has ended.

 OnBeforeDeleteRecord: event fired before a record is deleted from Dataset. If Argument "Handled" is True,
means that the user handles this event and if won't be deleted (by default this argument is False)

 OnBeforeNewRecord: event fired before a record is created on Dataset. If Argument "Handled" is True, means
that user the handles this event and if won't be inserted (by default this argument is False)

 OnBeforeUpdateRecord: event fired before a record is updated on Dataset. If Argument "Handled" is True,
means that user the handles this event and if won't be updated (by default this argument is False)

 OnBeforeSynchronization: event fired before a synchronization starts.

 OnMetaData: event fired after a GetMetaData request. Example:

procedure OnMetaData(TsgcWSConnection *Connection, const TsgcObjectJSON *JSON)

{

 int i = 0;

 string vFieldName = "";

 string vDataType = "";

 int vDataSize = 0;

 bool vKeyField = false;

 for (int i = 0; i Count; i++)

 {

 vFieldName = JSON->Item[i]->Node["fieldname"]->Value;

 vDataType = JSON->Item[i]->Node["datatype"]->Value;

 vDataSize = JSON->Item[i]->Node["datasize"]->Value;

 vKeyField = JSON->Item[i]->Node["keyfield"]->Value;

COMPONENTS

335

•
•
•
•
•

•
•
•

 }

}

Properties

 AutoSubscribe: enabled by default, if True, client subscribes to all available channels after successful connec
tion.

 ApplyUpdates: if enabled, every time the client receives a dataset update from server, it will be saved on the
client side.

 AutoEscapeText: if enabled (disabled by default), automatically escape/unescape characters inside field values
like "{", "["...

 NotifyUpdates: if enabled, every time dataset client changes, it sends a message to server notifying this change.

 FormatSettings: allows to set the format of double and datetime fields (to avoid conflicts between diffferent for
mat settings of peers). This format must be the same for server and clients.

DecimalSeparator: ","
ThousandSeparator: "."
DateSeparator: "/"
TimeSeparator: ":"
ShortDateFormat: "dd/mm/yyyy hh:nn:ss:zzz"

 UpdateMode:

upWhereAll: (by default) all fields are transmitted to the server,
upWhereChanged: only Fields that have changed will be transmitted to the server.
upRefreshAll: dataset is refreshed to get the latest changes.

COMPONENTS

336

TsgcIWWSPClient_Dataset
This is Intraweb Client Protocol Dataset Component, you need to drop this component in the form and select a Tsg
cIWWebSocketClient Component using Client Property and select a Dataset Component using Dataset Property.

This component inherits from TsgcIWWSPClient_sgc all methods and properties.

Methods

 Subscribe_New: fired on new dataset record
 Subscribe_Update: fired on post dataset record
 Subscribe_Delete: fired on delete dataset record

COMPONENTS

337

Protocol Dataset Javascript
Dataset Protocol Javascript sgcWebSockets uses sgcWebSocket.js and dataset.esegece.com.js files.

Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con
figure:

<script src="http://www.example.com:80/sgcWebSockets.js"></script>

<script src="http://www.example.com:80/dataset.esegece.com.js"></script>

Open Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 var socket = new sgcws_dataset('ws://{%host%}:{%port%}');

</script>

Send Message

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 var socket = new sgcws_dataset('ws://{%host%}:{%port%}');

 socket.send('Hello sgcWebSockets!');

</script>

Show Alert with Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 var socket = new sgcws('ws://{%host%}:{%port%}');

 socket.on('sgcdataset', function(event)

 {

 alert(event.dataset);

 }

</script>

Show Alert with Dataset Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 var socket = new sgcws_dataset('ws://{%host%}:{%port%}');

 socket.on('sgcmessage', function(event)

 {

 alert(event.message);

COMPONENTS

338

 }

</script>

Show Alert OnSubscribe or OnUnSubscribe to a channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 var socket = new sgcws_dataset('ws://{%host%}:{%port%}');

 socket.on('sgcsubscribe', function(event)

 {

 alert('subscribed: ' + event.channel);

 }

 socket.on('sgcunsubscribe', function(event)

 {

 alert('unsubscribed: ' + event.channel);

 }

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 var socket = new sgcws_dataset('ws://{%host%}:{%port%}');

 socket.on('open', function(event)

 {

 alert('sgcWebSocket Open!');

 };

 socket.on('close', function(event)

 {

 alert('sgcWebSocket Closed!');

 };

 socket.on('error', function(event)

 {

 alert('sgcWebSocket Error: ' + event.message);

 };

</script>

Subscribe All Dataset Changes

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 socket.subscribe_all();

</script>

UnSubscribe All Dataset Changes

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 socket.unsubscribe_all();

</script>

COMPONENTS

339

Handle Dataset Changes

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

var socket = new sgcws_dataset('ws://{%host%}:{%port%}');

socket.on('sgcdataset', function(evt){

if ((evt.channel == "sgc@dataset@new") || (evt.channel == "sgc@dataset@update")) {

... here you need to implement your own code insert/update records ...

}

else if (evt.channel == "sgc@dataset@delete") {

... here you need to implement your own code to delete records ...

}

});

</script>

Close Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 socket.close();

</script>

Get Connection Status

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/dataset.esegece.com.js"></script>

<script>

 socket.state();

</script>

COMPONENTS

340

•
•

•

•
•

•

Protocol Dataset | Replicate Table
This mode tries to solve a common scenario where a table is replicated for all connected clients, example, if you
have a server with a stock quotes table, you want broadcast stock changes to all clients, but you don't want
that a client can connect to your database. So, every time there is a change in any stock quotes, the record infor
mation will be broadcasted to all connected clients. Every client will read the record and update his own table.

You can check in Demos folder, SQLLite/MultipleDatabase demo.

Configure Dataset Server

Create a new Dataset Protocol Server and configure using the following properties

ApplyUpdates: set to True, every time there is a change, this will be broadcasted to clients
AutoSynchronize: set to True, every time a new client connects to server, server will send all records
(metadata and data), so client will get latest information from server.
UpdateMode: set to upWhereAll or upWhereChanged. The difference is the first send all fields of a record
and second only fields changed in a update.

TsgcWebSocketServer oServer = new TsgcWebSocketServer();

TsgcWSPServer_Dataset oProtocolDataset = new TsgcWSPServer_Dataset();

oProtocolDataset->Server = oServer;

oProtocolDataset->Dataset = <...your dataset..>;

oProtocolDataset->ApplyUpdates = true;

oProtocolDataset->AutoSynchronize = true;

oProtocolDataset->NotifyUpdates = true;

oProtocolDataset->UpdateMode = upWhereAll

oServer->Port = 80;

oServer->Active = true;

Configure Dataset Client

Create a new Dataset Protocol Client and configure using the following properties

ApplyUpdates: set to True, every time there is a change, this will be sent to server.
AutoSubscribe: set to True, every time a new client connects to server, client subscribe automatically to
update, delete and new record.
UpdateMode: set to upWhereAll or upWhereChanged. The difference is the first send all fields of a record
and second only fields changed in a update.

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSPClient_Dataset oProtocolDataset = new TsgcWSPClient_Dataset();

oProtocolDataset->Client = oClient;

oProtocolDataset->Dataset = <...your dataset..>;

oProtocolDataset->ApplyUpdates = true;

oProtocolDataset->AutoSubscribe = true;

oProtocolDataset->NotifyUpdates = true;

oProtocolDataset->UpdateMode = upWhereAll

oClient->Host := "127.0.0.1";

oClient->Port := 80;

oClient->Active = true;

COMPONENTS

341

•
•

•

•
•

•

Protocol Dataset | Notify Updates
This mode tries to solve an scenario where server and clients share a single database (server and clients are
connected to the same physical database) and clients want to be notified every time other client has done any
change on a dataset.

You can check in Demos folder, SQLLite/SingleDatabase demo.

Configure Dataset Server

Create a new Dataset Protocol Server and configure using the following properties

ApplyUpdates: set to True, every time there is a change, this will be broadcasted to clients
AutoSynchronize: set to False, here is not needed to set to true, because client is connected to the same
database than server.
UpdateMode: set to upRefreshAll.

TsgcWebSocketServer oServer = new TsgcWebSocketServer();

TsgcWSPServer_Dataset oProtocolDataset = new TsgcWSPServer_Dataset();

oProtocolDataset->Server = oServer;

oProtocolDataset->Dataset = <...your dataset..>;

oProtocolDataset->ApplyUpdates = true;

oProtocolDataset->AutoSynchronize = false;

oProtocolDataset->NotifyUpdates = true;

oProtocolDataset->UpdateMode = upRefreshAll;

oServer->Port = 80;

oServer->Active = true;

Configure Dataset Client

Create a new Dataset Protocol Client and configure using the following properties

ApplyUpdates: set to True, every time there is a change, this will be sent to server.
AutoSubscribe: set to True, every time a new client connects to server, client subscribe automatically to
update, delete and new record.
UpdateMode: set to upRefreshAll.

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSPServer_Dataset oProtocolDataset = new TsgcWSPServer_Dataset();

oProtocolDataset->Client = oClient;

oProtocolDataset->Dataset = <...your dataset..>;

oProtocolDataset->ApplyUpdates = true;

oProtocolDataset->AutoSubscribe = true;

oProtocolDataset->NotifyUpdates = true;

oProtocolDataset->UpdateMode = upRefreshAll;

oClient->Host := "127.0.0.1";

oClient->Port := 80;

oClient->Active = true;

COMPONENTS

342

•

•
•
•
•

•
•
•

•
•

Protocol Files
This protocol allows sending files using binary WebSocket transport. It can handle big files with a low memory us
age.

Features

Publish/subscribe message pattern to provide one-to-many message distribution and decou
pling of applications.
Acknowledgment of messages sent.
Implements QoS (Quality of Service) for file delivery.
Optionally can request Authorization for files received.
Low memory usage.

Components

 TsgcWSPServer_Files: Server Protocol Files VCL Component.

 TsgcWSPClient_Files: Client Protocol Files VCL Component.

Classes

 TsgcWSMessageFile: the object which encapsulates file packet information.

Most common uses

Send Files
How Send Files To Server
How Send Files To Clients

Big Files
How Send Big Files

COMPONENTS

343

TsgcWSPServer_Files
This is the Server Files Protocol Component, you need to drop this component in the form and select a TsgcWeb
SocketServer Component using Server Property.

Methods

 SendFile: sends a file to a client, you can set the following parameters
aSize: size of every packet in bytes.
aData: user custom data, here you can write any text you think is useful for client.
aChannel: if you only want to send data to all clients subscribed to this channel.
aQoS: type of quality of service.
aFileId: if empty, will be set automatically.

 BroadcastFile: sends a file to all connected clients. You can set several parameters:

aSize: size of every packet in bytes.
aData: user custom data, here you can write any text you think is useful for client.
aChannel: if you only want to send data to all clients subscribed to this channel.
aExclude: connection guids separated by a comma, which you don't want to send this file.
aInclude: connection guids separated by a comma, which you want to send this file.
aQoS: type of quality of service.
aFileId: if empty, will be set automatically.

Properties

 Files: files properties.

 BufferSize: default size of every packet sent, in bytes.

 SaveDirectory: the directory where all files will be stored.

 QoS: quality of service

 Interval: interval to check if a qosLevel2 message has been sent.

 Level: level of quality of service.

qosLevel0: the message is sent.

qosLevel1: the message is sent and you get an acknowledgment if the message has been
processed.

qosLevel2: the message is sent, you get an acknowledgment if the message has been processed
and packets are requested by the receiver.

 Timeout: maximum wait time.

 ClearReceivedStreamsOnDisconnect: if disabled, when reconnects, try to resume file download for qosLevel2,
by default is enabled.

 ClearSentStreamsOnDisconnect: tif disabled, when reconnects, try to resume file upload for qosLevel2, by de
fault is enabled.

COMPONENTS

344

Events

 OnFileBeforeSent: fired before a file is sent. You can use this event to check file data before is sent.

 OnFileReceived: fired when a file is successfully received.

 OnFileReceivedAuthorization: fired to check if a file can be received.

 OnFileReceivedError: fired when an error occurs receiving a file.

 OnFileReceivedFragment: fired when a fragment file is received. Useful to show progress.

 OnFileSent: fired when a file is successfully sent.

 OnFileSentAcknowledgment: fired when a fragment is sent and the receiver has processed.

 OnFileSentError: fired when an error occurs sending a file.

 OnFileSentFragment: fired when a fragment file is sent. Useful to show progress.

COMPONENTS

345

TsgcWSPClient_Files
This is the Server Files Protocol Component, you need to drop this component in the form and select a TsgcWeb
SocketClient Component using Client Property.

Methods

 SendFile: sends a file to the server, you can set the following parameters
aSize: size of every packet in bytes.
aData: user custom data, here you can write any text you think is useful for the server.
aQoS: type of quality of service.
aFileId: if empty, will be set automatically.

Properties

 Files: files properties

 BufferSize: default size of every packet sent, in bytes.

 SaveDirectory: the directory where all files will be stored.

 QoS: quality of service

 Interval: interval to check if a qosLevel2 message has been sent.

 Level: level of quality of service.

qosLevel0: the message is sent.

qosLevel1: the message is sent and you get an acknowledgment if the message has been
processed.

qosLevel2: the message is sent, you get an acknowledgment if the message has been processed
and packets are requested by the receiver.

 Timeout: maximum wait time.

 ClearReceivedStreamsOnDisconnect: if disabled, when reconnects, try to resume file download for qosLevel2,
by default is enabled.

 ClearSentStreamsOnDisconnect: tif disabled, when reconnects, try to resume file upload for qosLevel2, by de
fault is enabled.

Events

 OnFileBeforeSent: fired before a file is sent. You can use this event to check file data before is sent.

 OnFileReceived: fired when a file is successfully received.

 OnFileReceivedAuthorization: fired to check if a file can be received.

 OnFileReceivedError: fired when an error occurs receiving a file.

 OnFileReceivedFragment: fired when a fragment file is received. Useful to show progress.

 OnFileSent: fired when a file is successfully sent.

COMPONENTS

346

 OnFileSentAcknowledgment: fired when a fragment is sent and the receiver has processed.

 OnFileSentError: fired when an error occurs sending a file.

 OnFileSentFragment: fired when a fragment file is sent. Useful to show progress.

COMPONENTS

347

•
•
•
•
•
•
•
•
•
•
•
•

TsgcWSMessageFile
This object is passed as a parameter every time a file protocol event is raised.

Properties

BufferSize: default size of the packet.
Channel: if specified, this file only will be sent to clients subscribed to specific channel.
Method: internal method.
FileId: identifier of a file, is unique for all files received/sent.
Data: user custom data. Here the user can set whatever text.
FileName: name of the file.
FilePosition: file position in bytes.
FileSize: Total file size in bytes.
Id: identifier of a packet, is unique for every packet.
QoS: quality of service of the message.
Streaming: for internal use.
Text: for internal use.

COMPONENTS

348

Protocol Files | How Send Files To Server
To send a File to Server, just call the method SendFile of Files Protocol and pass the full FileName as argument.
The file received by server, will be saved by default in the same directory where is the server executable or in the
Path set in the Files.SaveDirectory property.

// ... Create Server

TsgcWebSocketServer oServer = new TsgcWebSocketServer();

TsgcWSPServer_Files oServer_Files = new TsgcWSPServer_Files();

oServer_Files->Server = oServer;

oServer->Host = "127.0.0.1";

oServer->Port = 8080;

// ... Create Client

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

oClient->URL = "ws://127.0.0.1:8080";

// ... Create Protocol

TsgcWSPClient_Files oClient_Files = new TsgcWSPClient_Files();

oClient_Files->Client = oClient;

// ... Start Server

oServer->Active = true;

// ... Connect client and Send File

if oClient->Connect() then

 oClient_Files->SendFile("c:\Documents\yourfile.txt");

COMPONENTS

349

Protocol Files | How Send Files To Clients
To send a File to a Client, just call the method SendFile of Files Protocol and pass the Guid of the Connection and
the full FileName as argument. The Guid of the client connection can be captured OnConnect event of Server Pro
tocol Files.
The file received by client, will be saved by default in the same directory where is the client executable or in the
Path set in the Files.SaveDirectory property.

// ... capture the guid of the client connection to send later the file

void OnConnectEvent(TsgcWSConnection *Connection)

{

 FGuid = Connection->Guid;

}

// ... Create Server

TsgcWebSocketServer oServer = new TsgcWebSocketServer();

TsgcWSPServer_Files oServer_Files = new TsgcWSPServer_Files();

oServer_Files->Server = oServer;

oServer_Files->OnConnect = OnConnectEvent;

oServer->Host = "127.0.0.1";

oServer->Port = 8080;

// ... Create Client

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

oClient->URL = "ws://127.0.0.1:8080";

// ... Create Protocol

TsgcWSPClient_Files oClient_Files = new TsgcWSPClient_Files();

oClient_Files->Client = oClient;

// ... Start Server

oServer->Active = true;

oClient->Connect();

// ... Send File to the client connected

oServer_Files->SendFile(FGuid, "c:\Documents\yourfile.txt");

COMPONENTS

350

Protocol Files | How Send Big Files
When you want to send big files to Server or Client, for example a File of some Gigabytes, you can experience
some memory problems trying to load the full file. The Protocol Files allows to send the files in smaller packets that
when received by other peer are reassembled in a single file. Just use the Size parameter of SendFile method to
set the Size in Bytes of every single packet.

// ... Create Server

TsgcWebSocketServer oServer = new TsgcWebSocketServer();

TsgcWSPServer_Files oServer_Files = new TsgcWSPServer_Files();

oServer_Files->Server = oServer;

oServer->Host = "127.0.0.1";

oServer->Port = 8080;

// ... Create Client

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

oClient->URL = "ws://127.0.0.1:8080";

// ... Create Protocol

TsgcWSPClient_Files oClient_Files = new TsgcWSPClient_Files();

oClient_Files->Client = oClient;

// ... Start Server

oServer->Active = true;

// ... Connect client and Send File in packets of 100000 bytes

if oClient->Connect() then

 oClient_Files->SendFile("c:\Documents\yourfile.txt", 100000, qosLevel0, "");

COMPONENTS

351

•

•
•
•
•

Protocol Presence
Presence protocol allows to know who is subscribed to a channel, this makes more easy to create chat applications
and know who is online, example: game users, chat rooms, users viewing the same document...

Features

By default user is identified by a name, but this can be customized passing more data: email, company,
twitter...
Events to Authorize if a Channel can be created, if a member is allowed...
Every time a new member joins a channel, all members are notified.
Publish messages to all channel subscribers.
Low memory usage.

Components

 TsgcWSPServer_Presence: Server Protocol Presence VCL Component.

 TsgcWSPClient_Presence: Client Protocol Presence VCL Component.

Classes

 TsgcWSPresenceMessage: the object which encapsulates presence packet information.

COMPONENTS

352

•

•

•

TsgcWSPServer_Presence
This is Server Presence Protocol Component, you need to drop this component in the form and select a TsgcWeb
SocketServer Component using Server Property.

Methods

All methods are handled internally by the server in response to client requests.

Properties

You must link this component to a Server or to a Broker if you are using more than one protocol.

EncodeBase64: by default is disabled, string values are encoded in base64 to avoid problems with JSON
encoding.

Acknowledgment: if enabled, every time a server sends a message to client assign an ID to this message
and queues in a list. When the client receives a message, if detect it has an ID, it sends an Acknowledgment
to the server, which means the client has processed message and server can delete from the queue.

Interval: interval in seconds where server checks if there are messages not processed by
client.
Timeout: maximum wait time before the server sends the message again.

Methods

Broadcast: use the method broadcast to send a message to all connected clients using this protocol
or to a clients subscribed to a specific channel.

Events

There are several events to handle actions like: a new member request to join a channel, a new channel is
created by a member, a member unsubscribes from a channel...

New Member

// When a new client connects to a server, first sends member data to the server to request a new member.

// Following events can be called:

// OnBeforeNewMember:

// Server receives a request from the client to join and the server accepts or not this member.

// Use Accept parameter to allow or not this member. By default all members are accepted.

void OnBeforeNewMember(TsgcWSConnection *aConnection, const TsgcWSPresenceMember *aMember, ref bool Accept)

{

 if (aMember->Name == "Spam"

 {

 Accept = false;

 }

}

// OnNewMember:

// After a new member is accepted, then this event is called and means this member has join member list.

// You can use aMember. Data property to store objects in memory like database access, session objects...

void OnNewMember(TsgcWSConnection *aConnection, const TsgcWSPresenceMember *aMember)

{

}

Subscriptions

COMPONENTS

353

// When a client has joined as a member, can subscribe to new channels, if a channel not exists,

// the following events can be called:

// OnBeforeNewChannel:

// Server receives a subscription request from the client to join this channel but the channel doesn't exist,

// the server can accept or not to create this channel. Use Accept parameter to allow or not this channel.

// By default, all channels are accepted.

void OnBeforeNewChannelBeforeNewChannel(TsgcWSConnection *Connection, const TsgcWSPresenceChannel *aChannel,

 const TsgcWSPresenceMember *aMember, ref bool Accept)

begin

 if (aChannel->Name == "Spam")

 {

 Accept = false;

 }

end;

// OnNewChannel: After a new channel is accepted, then this event is called and means a new channel has been created.

// Channel properties can be customized in this event.

void OnNewChannel(TsgcWSConnection *Connection, ref TsgcWSPresenceChannel *aChannel)

{

}

// If the channel already exists or has been created, the server can accept or no new subscriptions.

// OnBeforeNewChannelMembers:

// Server receives a subscription request from a client to join this channel, the server can accept

// or not a member join. Use Accept parameter to allow or not this member. By default, all members are accepted.

void OnBeforeNewChannelMember(TsgcWSConnection *Connection, const TsgcWSPresenceChannel *aChannel,

 const TsgcWSPresenceMember *aMember, ref bool Accept)

{

 if (aMember->Name == "John")

 {

 Accept = true

 }

 else

 {

 if (aMember->Name = "Spam")

 {

 Accept = false;

 }

 }

}

// OnNewChannelMember:

// After a new member is accepted, then this event is called and means a new member has joined the channel.

// All subscribers to this channel, will be notified about new members.

void OnNewChannelMember(TsgcWSConnection *Connection, const TsgcWSPresenceChannel *aChannel,

 const TsgcWSPresenceMember *aMember)

{

}

UnSubscriptions

// Every time a member unjoin a channel or disconnects, the server is notified by following events:

// OnRemoveChannelMember:

// Server receives a subscription request from a client to join this channel but the channel doesn't exist,

// the server can accept or not to create this channel. Use Accept parameter to allow or not this channel.

// By default all channels are accepted.

void OnRemoveChannelMember(TsgcWSConnection *Connection, const TsgcWSPresenceChannel *aChannel,

 const TsgcWSPresenceMember *aMember)

{

 Log("Member: " + aMember->Name + " unjoin channel: " + aChannel->Name);

}

// When a member disconnects, automatically server is notified:

// OnRemoveMember: when the client disconnects from protocol, this event is called and server is notified of

// which never has disconnected.

void OnRemoveMember(TsgcWSConnection *Connection, TsgcWSPresenceMember *aMember)

{

 Log("Member: " + aMember->Name);

};

Errors

// Every time there is an error, these events are called, example: server has denied a member

// to subscribe to a channel, a member try to subscribe to an already subscribed channel...

//OnErrorMemberChannel: this event is called every time there is an error trying to create a new channel,

// join a new member, subscribe to a channel...

COMPONENTS

354

void OnErrorMemberChannel(TsgcWSConnection *Connection, const TsgcWSPresenceError *aError,

 const TsgcWSPresenceChannel *aChannel, const TsgcWSPresenceMember *aMember)

{

 Log("#Error: " + aError->Text);

}

// When a member disconnects, automatically server is notified:

// OnErrorPublishMsg: when a client publish a message and this is denied by the server, this event is raised.

void OnErrorPublishMsg(TsgcWSConnection *Connection, const TsgcWSPresenceError *aError, const TsgcWSPresenceMsg *aMsg,

 const TsgcWSPresenceChannel *aChannel; const TsgcWSPresenceMember *aMember)

{

 Log("#Error: " + aError->Text);

}

COMPONENTS

355

TsgcWSPresenceMessage
This object encapsulates all internal messages exchange by server and client presence protocol.

TsgcWSPresenceMember

 ID: internal identifier
 Name: member name, provided by the client.
 Info: member additional info, provided by the client.
 Data: TObject which can be used for server purposes.

TsgcWSPresenceMemberList

 Member[i]: member of a list by index
 Count: number of members of the list

TsgcWSPresenceChannel

 Name: channel name, provided by the client.

TsgcWSPresenceMsg

 Text: text message, provided by the client when call Publish method

TsgcWSPresenceError

 Code: integer value identifying the error
 Text: error description.

COMPONENTS

356

•
•

•

•

TsgcWSPClient_Presence
This is Server Presence Protocol Component, you need to drop this component in the form and select a TsgcWeb
SocketClient Component using Client Property.

Properties

 EncodeBase64: by default is disabled, string values are encoded in base64 to avoid problems with JSON encod
ing.

 Presence: member data

 Name: member name.
 Info: any additional info related to member (example: email, twitter, company...)

Acknowledgment: if enabled, every time a client sends a message to server assign an ID to this message and
queues in a list. When the server receives the message, if detect it has an ID, it sends an Acknowledgment to the
client, which means the server has processed message and the client can delete from the queue.

Interval: interval in seconds where the client checks if there are messages not processed by serv
er.
Timeout: maximum wait time before the client sends the message again.

Methods

There are several methods to subscribe to a channel, get a list of members...

Connect

// When a client connects, the first event called is OnSession, the server sends a session ID to the client,

// which identifies this client in the server connection list.

// After OnSession event is called, automatically client sends a request to the server to join as a member,

// if successful, OnNewMember event is raised

void OnNewMember(TsgcWSConnection *aConnection, const TsgcWSPresenceMember *aMember)

{

}

Subscriptions

// When a client wants subscribe to a channel, use method "Subscribe" and pass channel name as argument

Client->Subscribe("MyChannel");

// If the client is successfully subscribed, OnNewChannelMember event is called. All members of this channel

// will be notified using the same event.

void OnNewChannelMember(TsgcWSConnection *aConnection, const TsgcWSPresenceChannel *aChannel,

 const TsgcWSPresenceMember *aMember)

{

 Log("Subscribed: " + aChannel->Name);

}

// if server denies access to a member, OnErrorMemberChannel event is raised.

void OnErrorMemberChannel(TsgcWSConnection *aConnection, const TsgcWSPresenceError *aError;

 const TsgcWSPresenceChannel *aChannel,

 const TsgcWSPresenceMember *aMember)

{

 Log("Error: " + aError->Text);

}

UnSubscriptions

COMPONENTS

357

// When a client unsubscribe from a channel, use method "Unsubscribe" and pass channel name as argument

Client->Unsubscribe("MyChannel");

// If a client is successfully unsubscribed, OnRemoveChannelMember event is called. All members of this channel

// will be notified using the same event.

// All members of this channel will be notified using the same event.

void OnNewChannelMember(TsgcWSConnection *aConnection, const TsgcWSPresenceChannel *aChannel,

 const TsgcWSPresenceMember *aMember)

{

 Log("Unsubscribed: " + aChannel->Name);

}

// if a client can't unsubscribe from a channel, example: because is not subscribed,

// OnErrorMemberChannel event is raised.

void OnErrorMemberChannel(TsgcWSConnection *aConnection, const TsgcWSPresenceError *aError,

 const TsgcWSPresenceChannel *aChannel, const TsgcWSPresenceMember *aMember)

{

 Log("Error: " + aError->Text);

}

// When a client disconnects from the server, OnRemoveEvent is called.

void OnRemoveMember(TsgcWSConnection *aConnection, TsgcWSPresenceMember *aMember)

{

 Log("#RemoveMember: " + aMember->Name);

}

Publish

// When a client wants to send a message to all members or all subscribers of a channel, use "Publish" method

Client->Publish("Hello All Members");

Client->Publish("Hello All Members of this channel", "MyChannel");

// If a message is successfully published, OnPublishMsg event is called. All members of this channel

// will be notified using the same event.

void OnPublishMsg(TsgcWSConnection *aConnection, const TsgcWSPresenceMsg *aMsg,

 const TsgcWSPresenceChannel *aChannel, const TsgcWSPresenceMember *aMember)

{

 Log("#PublishMsg: " + aMsg->Text + " " + aMember->Name);

}

// if a message can't be published, OnErrorPublishMsg event is raised.

void OnErrorPublishMsg(TsgcWSConnection *aConnection, const TsgcWSPresenceError *aError,

 const TsgcWSPresenceMsg *aMsg, const TsgcWSPresenceChannel *aChannel, const TsgcWSPresenceMember *aMember)

{

 Log("#Error: " + aError->Text);

}

GetMembers

// A client can request to the server a list of all members or all members subscribed to a channel.

// Use "GetMembers" method

Client->GetMembers;

Client->GetMembers("MyChannel");

// If a message is successfully processed by the server, OnGetMembers event is called

void OnGetMembers(TsgcWSConnection *aConnection, const TsgcWSPresenceMemberList *aMembers,

 const TsgcWSPresenceChannel *aChannel)

{

 for (int i = 0; i Count; i++)

 {

 Log("#GetMembers: " + aMembers->Member[i]->ID + " " + aMembers->Member[i]->Name);

 }

}

// If there is an error because the member is not allowed or is not subscribed to channel,

// OnErrorMemberChannel event is raised

void OnErrorMemberChannel(TsgcWSConnection *aConnection, const TsgcWSPresenceError: +aError,

 const TsgcWSPresenceChannel *aChannel, const TsgcWSPresenceMember *aMember)

{

 Log("Error: " + aError->Text);

}

Invite

COMPONENTS

358

// A client can invite to other member to subscribe to a channel.

Client->Invite("MyChannel", "E54541D0F0E5R40F1E00FEEA");

// When the other member receives the invitation, OnChannelInvitation event is called and member

// can Accept or not the invitation.

void OnChannelInvitation(TsgcWSConnection *aConnection, const TsgcWSPresenceMember *aMember,

 const TsgcWSPresenceChannel *aChannel, ref bool Accept)

{

 if (aChannel == "MyChannel")

 {

 Accept = true

 }

 else

 {

 Accept = false;

 }

}

COMPONENTS

359

Protocol Presence Javascript
Presence Protocol Javascript sgcWebSockets uses sgcWebSocket.js and presence.esegece.com.js files.

Here you can find available methods, you must replace {%host%} and {%port%} variables as needed, example: if
you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to config
ure:

<script src="http://www.example.com:80/sgcWebSockets.js"></script>

<script src="http://www.example.com:80/presence.esegece.com.js"></script>

Open Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 var socket = new sgcws_presence('ws://{%host%}:{%port%}');

</script>

New Member after connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 var socket = new sgcws_presence('ws://{%host%}:{%port%}');

 socket.on('sgcsession', function(event)

 {

 socket.newmember(event.id, 'John', 'Additional Info');

 });

</script>

Subscribe to Topic 1 channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 var socket = new sgcws_presence('ws://{%host%}:{%port%}');

 socket.subscribe('Topic 1');

</script>

Unsubscribe from Topic 1 channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 var socket = new sgcws_presence('ws://{%host%}:{%port%}');

 socket.unsubscribe('Topic 1');

</script>

COMPONENTS

360

Publish Message to Topic 1 channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 var socket = new sgcws_presence('ws://{%host%}:{%port%}');

 socket.publish('Hello sgcWebSockets!', 'Topic 1');

</script>

Receive Message

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 var socket = new sgcws_presence('ws://{%host%}:{%port%}');

 socket.on('sgcpublishmsg', function(event)

 {

 console.log('#publishmsg: ' + event.message.text);

 });

</script>

Get All Members Connected

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 var socket = new sgcws_presence('ws://{%host%}:{%port%}');

 socket.on('sgcgetmembers', function(event)

 {

 for (var i in event.members) {

 console.log(event.members[i].id + ' ' + event.members[i].name);

 }

 });

 socket.getmembers();

</script>

Show Alert when Members subscribe/unsubscribe

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 var socket = new sgcws_presence('ws://{%host%}:{%port%}');

 socket.on('sgcnewmember', function(event)

 {

 alert('#new member: ' + event.member.name);

 }

);

 socket.on('sgcremovemember', function(event)

 {

 alert('#removed member: ' + event.member.name);

 }

);

 socket.on('sgcnewchannelmember', function(event)

 {

 alert('#new member: ' + event.member.name + ' in channel: ' + event.channel.name);

 }

);

 socket.on('sgcremovechannelmember', function(event)

 {

 alert('#remove member: ' + event.member.name + ' from channel: ' + event.channel.name);

 }

);

</script>

COMPONENTS

361

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 var socket = new sgcws_presence('ws://{%host%}:{%port%}');

 socket.on('open', function(event)

 {

 alert('sgcWebSocket Open!');

 };

 socket.on('close', function(event)

 {

 alert('sgcWebSocket Closed!');

 };

 socket.on('sgcerrormemberchannel', function(event)

 {

 alert('#error member channel: ' + event.error.text);

 }

);

 socket.on('sgcerrorpublishmsg', function(event)

 {

 alert('#error publish: ' + event.error.text);

 }

);

</script>

Close Connection

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>

<script src="http://{%host%}:{%port%}/presence.esegece.com.js"></script>

<script>

 socket.close();

</script>

COMPONENTS

362

WebSocket APIs
There are several implementations based on WebSockets: finance, message publishing, queues... sgcWebSockets
implements the most important APIs based on WebSocket protocol. In order to use an API, just attach API compo
nent to the client and all messages will be handled by API component (only one API component can be attached to
a client).

Client APIs

API Description
Binance is an international multi-language cryptocurrency exchange.
Binance Futures allows to connect to Binance Futures WebSocket / REST Market Streams.
FTX FTX it's a Cryptocurrency Derivatives Exchange. Support for WebSocket API and REST API.

Coinbase Pro Coinbase pro is an US-based crypto exchange. Trade Bitcoin (BTC), Ethereum (ETH),
GBP. Support for WebSocket API and REST API.

SignalR is a library for ASP.NET developers that makes developing real-time web functionality using WebSockets as transport.
SignalRCore ASP.NET Core SignalR is an open-source library that simplifies adding real-time web

SocketIO is a JavaScript library for real-time web applications. It enables real-time, bi-directional communication between web
clients and servers.

Kraken is a US-based cryptocurrency exchange.
Kraken Futures allows to connect Kraken Futures WebSocket / REST Market data.
Pusher Pusher is an easy and reliable platform with flexible pub/sub messaging, live user lists, authentication...
FXCM also known as Forex Capital Markets, is a retail broker for trading on the foreign exchange market.

Bitfinex Bitfinex is one of the world's largest and most advanced cryptocurrency trading platform. Users can exchange Bitcoin,
Ethereum, Ripple, EOS, Bitcoin Cash, Iota, NEO, Litecoin, Ethereum Classic...

Bitstamp Bitstamp is one of the world's longest standing crypto exchange, supporting the blockchain ecosystem since 2011.
Huobi is an international multi-language cryptocurrency exchange.
Cex is a cryptocurrency exchange and former Bitcoin cloud mining provider.
Cex Plus CEX.IO Exchange Plus is the ultimate crypto trading platform that features deep liquidity and advanced trading tools
Bitmex is a cryptocurrency exchange and derivative trading platform.
3Commas it's a crypto trading bot.
Kucoin is a cryptocurrency exchange that allows to buy, sell, and store cryptocurrencies like BTC, ETH, KCS, SHIB, DOGE
Kucoin Futures allows to connect to Kucoin Futures Servers (WebSocket and REST)
OKX formerly known as OKEx, is one of the largest crypto spot and derivatives trading exchanges.
XTB FX and CFD trading, providing access to over +2000 financial markets.
Discord is one of the most popular communication tools for online gaming and streaming.
Bybit cryptocurrency exchange and trading platform
Blockchain Blockchain WebSocket API allows developers to receive Real-Time notifications about new transactions and blocks.

WebSocket APIs can be registered at runtime, just call Method RegisterAPI and pass API component as a para
meter.

Other Client APIs

API Description

COMPONENTS

363

Telegram is a cloud-based instant messaging and voice over IP service. Users can send messages and exchange photos, videos,
stickers, audio and files of any type.

Whatsapp is an internationally available American freeware, cross-platform centralized instant messaging and voice-over-IP service
RCON is a TCP/IP-based communication protocol which allows console commands to be issued to the server.
CryptoHopper it's a crypto trading bot and portfolio manager.
CryptoRobotics it's a crypto trading robot.

Server APIs

API Description

RTCMultiConnection RTCMultiConnection is a WebRTC JavaScript library for peer-to-peer applications (screen sharing, audio/video
conferencing, file sharing, media streaming etc.)

WebPush The Web Push protocol allows web applications to send notifications to users even when the application is not
open or active.

COMPONENTS

364

1.

2.

3.
1.
2.
3.

4.

1.

2.

3.

•
•

•
•

•
•
•

•
•

•

•

•

◦

◦

◦

•

API Binance
Binance

Binance is an international multi-language cryptocurrency exchange. It offers some APIs to access Binance data.
The following APIs are supported:

WebSocket streams: allows to subscribe to some methods and get data in real-time. Events are pushed to
clients by server to subscribers. Uses WebSocket as protocol.
UserData stream: subscribed clients get account details. Requires an API key to authenticate and uses
WebSocket as protocol.
REST API: Requires an API Key and Secret to authenticate and uses HTTPs as protocol.

Market Data
Account and Trading Data
Wallet

Futures: WebSocket Futures Market Data Streams are supported through the Binance Futures Client API.

The client supports Binance.us too, the following APIs are supported:

WebSocket streams: allows to subscribe to some methods and get data in real-time. Events are pushed to
clients by server to subscribers. Uses WebSocket as protocol.
UserData stream: subscribed clients get account details. Requires an API key to authenticate and uses
WebSocket as protocol.
REST API: clients can request to server market and account data. Requires an API Key and Secret to au
thenticate and uses HTTPs as protocol.

Properties

Binance API has 2 types of methods: public and private. Public methods can be accessed without authentication,
example: get ticker prices. Only are only private and related to user data, those methods requires the use of Bi
nance API keys.

ApiKey: you can request a new api key in your binance account, just copy the value to this property.
ApiSecret: API secret is only required for REST_API, websocket api only requires ApiKey for some meth
ods.
TestNet: if enabled it will connect to Binance Demo Account (by default false).

HTTPLogOptions: stores in a text file a log of HTTP requests
Enabled): if enabled, will store all HTTP requests of WebSocket API.
FileName: full path of filename where logs will be stored
REST: stores in a text file a log of REST API requests

Enabled: if enabled, will store all HTTP Requests of REST API.
FileName: full path of filename where logs will be stored.

UserStream: if enabled the client will receive notifications on Account, Orders or Balance Updates (by de
fault true).
BinanceUS: if enabled, will connect to Binance.us Servers (instead of Binance.com servers which is the de
fault).
ListenKeyOnDisconnect: this property specifies what to do when the client disconnect from Binance
servers with an Active ListenKey.

blkodDeleteListenKey: Delete the Active ListenKey doing an HTTP Request to Binance Servers
(this is the default).
blkodClearListenKey: Doesn't deletes the ListenKey from Binance Servers and just clear the value
of the field.
blkodDoNothing: does nothing, so the next time that connects to Binance will try to use the same
ListenKey.

UseCombinedStreams: if enabled, will combine streams as
follows: {"stream":"<streamName>","data":<rawPayload>} (by default disabled)

https://www.binance.com/
https://binance-docs.github.io/apidocs/spot/en/#market-data-endpoints
https://binance-docs.github.io/apidocs/spot/en/#spot-account-trade
https://binance-docs.github.io/apidocs/spot/en/#wallet-endpoints

COMPONENTS

365

•
•
•

•
•
•
•
•
•

Most common uses

WebSockets API
How Connect WebSocket API
How Subscribe WebSocket Channel

REST API
How Get Market Data
How Use Private REST API
How Trade Spot
Private Requests Time
Withdraw

WebSocket Stream API

Base endpoint is wss://stream.binance.com:9443, client can subscribe / unsubscribe from events after a successful
connection.
The following Subscription / Unsubscription methods are supported.

Method Parame
ters Description

AggregateTrades Symbol push trade information that is aggregated for a single taker order
Trades Symbol push raw trade information; each trade has a unique buyer and seller

KLine
Symbol, In
terval

push updates to the current klines/candlestick every second, minute, hour...

MiniTicker Symbol
24hr rolling window mini-ticker statistics. These are NOT the statistics of the
UTC day, but a 24hr rolling window for the previous 24hrs.

AllMiniTickers

24hr rolling window mini-ticker statistics for all symbols that changed in an
array. These are NOT the statistics of the UTC day, but a 24hr rolling win
dow for the previous 24hrs. Note that only tickers that have changed will be
present in the array.

Ticker Symbol
24hr rolling window ticker statistics for a single symbol. These are NOT the
statistics of the UTC day, but a 24hr rolling window for the previous 24hrs.

AllMarketTickers

24hr rolling window ticker statistics for all symbols that changed in an array.
These are NOT the statistics of the UTC day, but a 24hr rolling window for
the previous 24hrs. Note that only tickers that have changed will be present
in the array.

BookTicker Symbol
Pushes any update to the best bid or ask's price or quantity in real-time for a
specified symbol.

AllBookTickers Pushes any update to the best bid or ask's price or quantity in real-time for
all symbols.

PartialBookDepth
Symbol,
Depth

Top <levels> bids and asks, pushed every second. Valid <levels> are 5, 10,
or 20.

DiffDepth Symbol
Order book price and quantity depth updates used to locally manage an or
der book.

After a successful subcription / unsubscription, client receives a message about it, where id is the result of Sub
scribed / Unsubscribed method.

{

 "result": null,

 "id": 1

}

COMPONENTS

366

•
•

User Data Stream API

Requires a valid ApiKey obtained from your binance account, and ApiKey must be set in Binance.ApiKey property
of component.

The following data is pushed to client every time there is a change. There is no need to subscribe to any method,
this is done automatically if you set a valid ApiKey.

Method Description
Account Update Account state is updated with the outboundAccountInfo event.

Balance Update

Balance Update occurs during the following:

Deposits or withdrawals from the account
Transfer of funds between accounts (e.g. Spot to Margin)

Order Update Orders are updated with the executionReport event.

REST API

The base endpoint is: https://api.binance.com. All endpoints return either a JSON object or array. Data is returned
in ascending order. Oldest first, newest last.

Public API EndPoints

These endpoints can be accessed without any authorization.

General EndPoints

Method Parameters Description
Ping Test connectivity to the Rest API.

GetServerTime Test connectivity to the Rest API and get the current server
time.

GetExchangeIn
formation

 Current exchange trading rules and symbol information

Market Data EndPoints

Method Parameters Description
GetOrderBook Symbol Get Order Book.
GetTrades Symbol Get recent trades
GetHistorical
Trades

Symbol Get older trades.

GetAggregate
Trades

Symbol
Get compressed, aggregate trades. Trades that fill at the time,
from the same order, with the same price will have the quantity
aggregated.

GetKLines Symbol, Interval
Kline/candlestick bars for a symbol. Klines are uniquely identi
fied by their open time.

GetAver
agePrice

Symbol Current average price for a symbol.

Get24hrTicker Symbol
24 hour rolling window price change statistics. Careful when ac
cessing this with no symbol.

GetPriceTicker Symbol Latest price for a symbol or symbols.

COMPONENTS

367

•
•
•

GetBookTicker Symbol Best price/qty on the order book for a symbol or symbols.

Private API EndPoints

Requires an APIKey and APISecret to get authorized by server.

Account Data EndPoints

Method Parameters Description
NewOrder Symbol, Side, Type Send in a new order.
PlaceMarke
tOrder

Side, Symbol, Quantity Places a New Market Order

PlaceLimitOrder
Side, Symbol, Quantity, Limit
Price

Places a New Limit Order

PlaceStopOrder
Side, Symbol, Quantity, Stop
Price, LimitPrice

Places a New Stop Order

TestNewOrder Symbol, Side, Type
Test new order creation and signature/recvWindow long. Cre
ates and validates a new order but does not send it into the
matching engine.

QueryOrder Symbol Check an order's status.

CancelOrder Symbol
Cancel an active order. Cancel an active order. Either OrderId or
OrigClientOrderId must be sent.

CancelAl
lOpenOrders

Symbol (optional)

GetOpenOrders Get all open orders on a symbol. Careful when accessing this
with no symbol.

GetAllOrders Symbol Get all account orders; active, canceled, or filled.

NewOCO
Symbol, Side, Quantity, Price,
StopPrice

Send in a new OCO

CancelOCO Symbol Cancel an entire Order List

QueryOCO Symbol
Retrieves a specific OCO based on provided optional parame
ters

GetAllOCO Retrieves all OCO based on provided optional parameters
GetOpenOCO Get All Open OCO.
GetAccountIn
formation

 Get current account information.

GetAccount
TradeList

Symbol Get trades for a specific account and symbol.

Wallet EndPoints
(*wallet endpoints only work with production server, not demo)

Method Description
GetWalletSystemStatus Fetch system status.
GetWalletAllCoinsInfor
mation

Get information of coins (available for deposit and withdraw) for user.

GetWalletDailyAc
countSnapshot

Type: "SPOT", "MARGIN", "FUTURES"
The query time period must be less then 30 days
Support query within the last one month only
If startTimeand endTime not sent, return records of the last 7 days by default

COMPONENTS

368

•
•
•
•

•
•
•
•
•
•

•

•

•
•
•
•
•
•
•
•
•

•

•
•

SetWalletDisableFast
WithdrawSwitch

This request will disable fastwithdraw switch under your account.
You need to enable "trade" option for the api key which requests this endpoint.

SetWalletEnableFast
WithdrawSwitch

This request will enable fastwithdraw switch under your account.
You need to enable "trade" option for the api key which requests this endpoint.
When Fast Withdraw Switch is on, transferring funds to a Binance account will be done in
stantly. There is no on-chain transaction, no transaction ID and no withdrawal fee.

WalletWithdraw Submit a withdraw request.

GetWalletDepositHistory Fetch deposit history.
GetWalletWithdrawHisto
ry

Fetch Withdraw history.

GetWalletDepositAd
dress

Fetch deposit address with network.

GetWalletAccountStatus Fetch account status detail.
GetWalletAccountAPI
TradingStatus

Fetch account api trading status detail.

GetWalletDustLog
Only return last 100 records
Only return records after 2020/12/01

GetWalletAssetsCon
vertedBNB

WalletDustTransfer
Convert dust assets to BNB.
You need to openEnable Spot & Margin Trading permission for the API Key which requests
this endpoint.

GetWalletAssetDividen
dRecord

Query asset dividend record.

GetWalletAssetDetail Fetch details of assets supported on Binance.
GetWalletTradeFee Fetch trade fee

WalletUserUniver
salTransfer

You need to enable Permits Universal Transfer option for the API Key which requests this
endpoint.MAIN_UMFUTURE Spot account transfer to USDⓈ-M Futures account
ENUM of Type:

MAIN_CMFUTURE Spot account transfer to COIN-M Futures account
MAIN_MARGIN Spot account transfer to Margin（cross）account
UMFUTURE_MAIN USDⓈ-M Futures account transfer to Spot account
UMFUTURE_MARGIN USDⓈ-M Futures account transfer to Margin（cross）
account
CMFUTURE_MAIN COIN-M Futures account transfer to Spot account
CMFUTURE_MARGIN COIN-M Futures account transfer to Margin(cross) account
MARGIN_MAIN Margin（cross）account transfer to Spot account
MARGIN_UMFUTURE Margin（cross）account transfer to USDⓈ-M Futures
MARGIN_CMFUTURE Margin（cross）account transfer to COIN-M Futures
ISOLATEDMARGIN_MARGIN Isolated margin account transfer to Margin(cross) ac
count
MARGIN_ISOLATEDMARGIN Margin(cross) account transfer to Isolated margin ac
count
ISOLATEDMARGIN_ISOLATEDMARGIN Isolated margin account transfer to Isolat
ed margin account
MAIN_FUNDING Spot account transfer to Funding account
FUNDING_MAIN Funding account transfer to Spot account
FUNDING_UMFUTURE Funding account transfer to UMFUTURE account
UMFUTURE_FUNDING UMFUTURE account transfer to Funding account
MARGIN_FUNDING MARGIN account transfer to Funding account
FUNDING_MARGIN Funding account transfer to Margin account
FUNDING_CMFUTURE Funding account transfer to CMFUTURE account
CMFUTURE_FUNDING CMFUTURE account transfer to Funding account

GetWalletQueryUserUni
versalTransferHistory

fromSymbol must be sent when type are ISOLATEDMARGIN_MARGIN and
ISOLATEDMARGIN_ISOLATEDMARGIN
toSymbol must be sent when type are MARGIN_ISOLATEDMARGIN and
ISOLATEDMARGIN_ISOLATEDMARGIN
Support query within the last 6 months only
If startTimeand endTime not sent, return records of the last 7 days by default

COMPONENTS

369

GetWalletFundingWallet
Currently supports querying the following business assets：Binance Pay, Binance Card, Bi
nance Gift Card, Stock Token

GetWalletUserAsset Get user assets, just for positive data.
GetWalletApiKeyPermis
sion

Events

Binance Messages are received in TsgcWebSocketClient component, you can use the following events:

OnConnect
After a successful connection to Binance server.

OnDisconnect
After a disconnection from Binance server

OnMessage
Messages sent by server to client are handled in this event.

OnError
If there is any error in protocol, this event will be called.

OnException
If there is an unhandled exception, this event will be called.

Additionally, there is a specific event in Binance API Component, called OnBinanceHTTPException, which is
raised every time there is an error calling an HTTP Request (REST API or WebSocket User Stream).

(*) Due to changes in Binance Servers, Indy versions before Rad Studio 10.1, won't be able to connect to
Test Servers. This issue doesn't affect to Enterprise Edition or if the Indy version has been upgraded to lat
est.

COMPONENTS

370

Binance | Connect WebSocket API
In order to connect to Binance WebSocket API, just create a new Binance API client and attach to TsgcWebSocket
Client.
See below an example:

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_Binance oBinance = new TsgcWSAPI_Binance();

oBinance->Client = oClient;

oClient->Active = true;

COMPONENTS

371

Binance | Subscribe WebSocket Channel
Binance offers a variety of channels where you can subscribe to get real-time updates of market data, orders...
Find below a sample of how subscribe to a Ticker:

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_Binance oBinance = new TsgcWSAPI_Binance();

oBinance->Client = oClient;

oBinance->SubscribeTicker("bnbbtc");

void OnMessage(TsgcWSConnection *Connection, const string aText)

{

// here you will receive the ticker updates

}

COMPONENTS

372

Binance | Get Market Data
Binance offers public Market Data through REST Endpoints, when you call one of these endpoints, you will get an
snapshot of the market data requested.
The Market Data Endpoints doesn't require authentication, so are freely available to all users.

Example: to get an snapshot of the ticker BNBBTC, do the following call

TsgcWSAPI_Binance *oBinance = new TsgcWSAPI_Binance(this);

ShowMessage(oBinance->REST_API->GetPriceTicker("BNBBTC"));

COMPONENTS

373

•
•

Binance | Private REST API
The Binance REST API offer public and private endpoints. The Private endpoints requires that messages signed to
increase the security of transactions.
First you must login to your Binance account and create a new API, you will get the following values:

ApiKey
ApiSecret

These fields must be configured in the Binance property of the Binance API client component.
Once configured, you can start to do private requests to the Binance Pro REST API

*Private Requests, require that your local machine has the local time synchronized, if not, the requests will be re
jected by Binance server. Check the following article about this, Binance Private Requests Time.

TsgcWSAPI_Binance oBinance = new TsgcWSAPI_Binance(this);

oBinance->Binance->ApiKey = "<your api key>";

oBinance->Binance->ApiSecret = "<your api secret>";

ShowMessage(oBinance->REST_API->GetAccountInformation());

COMPONENTS

374

•
•
•

•
•
•
•
•
•
•

•
•
•
•
•

Binance | Trade Spot
Binance allows to trade with spot using his REST API.

Configuration

First you must create an API Key in your binance account and add privileges to trading with Spot.
Once this is done, you can start spot trading.
First, set your ApiKey and your ApiSecret in the Binance Client Component, this will be used to sign the re
quests sent to Binance server.

Place an Order

To place a new order, just call to method REST_API.NewOrder of Binance Client Component.

Depending of the type of the order (market, limit...) the API requires more or less fields.

Mandatory Fields

Symbol: the product id symbol, example: BNBBTC
Side: BUY or SELL
type: the order type

LIMIT
MARKET
STOP_LOSS
STOP_LOSS_LIMIT
TAKE_PROFIT
TAKE_PROFIT_LIMIT
LIMIT_MAKER

Additional Mandatory Fields based on Type

LIMIT: timeInForce, quantity, price
MARKET: quantity or quoteOrderQty
STOP_LOSS / TAKE_PROFIT: quantity, stopPrice
STOP_LOSS_LIMIT / TAKE_PROFIT_LIMIT: timeInForce, quantity, price, stopPrice
LIMIT_MAKER: quantity, price

When you send an order, there are 2 possibilities:

1. Successful: the function NewOrder returns the message sent by binance server.
2. Error: the exception is returned in the event OnBinanceHTTPException.

Place Market Order 1 BNBBTC

TsgcWSAPI_Binance *oBinance = new TsgcWSAPI_Binance(this);

oBinance->Binance->ApiKey = "<api key>";

oBinance->Binance->ApiSecret = "<api secret>";

ShowMessage(oBinance->REST_API->NewOrder("BNBBTC", "BUY", "MARKET", "", 1));

Place Limit Order 1 BNBBTC at 0.009260

TsgcWSAPI_Binance *oBinance = new TsgcWSAPI_Binance(this);

oBinance->Binance->ApiKey = "<api key>";

COMPONENTS

375

oBinance->Binance->ApiSecret = "<api secret>";

ShowMessage(oBinance->REST_API->NewOrder("BNBBTC", "BUY", "LIMIT", "GTC", 1, 0, 0.009260));

COMPONENTS

376

Binance | Private Requests Time
When you do a private request to Binance, the message is signed so increase the security of requests. The mes
sage takes the local time and sends inside the signed message, if the local time has a difference greater than 5
seconds with Binance servers, the request will be rejected. So, it's important verify that your local time is synchro
nized, you can do this using the synchronization time method for your OS.

The logic is as follows:

if (timestamp < (serverTime + 1000) && (serverTime - timestamp) <= recvWindow) {
 // process request
} else {
 // reject request
}

It is recommended to use a small recvWindow of 5000 or less! The max cannot go beyond 60000 milliseconds.

You can check the Binance server time, calling method GetServerTime, which will return the time of the Binance
server

COMPONENTS

377

•
•
•

Binance | Withdraw
Binance allows to use the Wallet API to submit a Withdraw request, only the followin parameters are mandatory:

Coin
Address
Amount

TsgcWSAPI_Binance oBinance = new TsgcWSAPI_Binance(this);

oBinance->Binance->ApiKey = "<your api key>";

oBinance->Binance->ApiSecret = "<your api secret>";

ShowMessage(oBinance->REST_API->WalletWithdraw("BTC", "7213fea8e94b4a5593d507237e5a555b", 0.25));

COMPONENTS

378

•
•

•
•

•
•
•

•
•

•

•

◦

◦

◦

•

•
•

API Binance Futures
Binance

Binance is an international multi-language cryptocurrency exchange. It offers some APIs to access Binance data.
This component allows to get Binance Futures WebSocket Market Streams.

https://binance-docs.github.io/apidocs/futures/en
https://binance-docs.github.io/apidocs/delivery/en

Futures Contracts

Binance API has 2 types of methods: public and private. Public methods can be accessed without authentication,
example: get ticker prices. Only are only private and related to user data, those methods requires the use of Bi
nance API keys.

ApiKey: you can request a new api key in your binance account, just copy the value to this property.
ApiSecret: API secret is only required for REST_API, websocket api only requires ApiKey for some meth
ods.
TestNet: if enabled it will connect to Binance Demo Account (by default false).

HTTPLogOptions: stores in a text file a log of HTTP requests
Enabled): if enabled, will store all HTTP requests of WebSocket API.
FileName: full path of filename where logs will be stored
REST: stores in a text file a log of REST API requests

Enabled: if enabled, will store all HTTP Requests of REST API.
FileName: full path of filename where logs will be stored.

UserStream: if enabled the client will receive notifications on Account, Orders or Balance Updates (by de
fault true).
ListenKeyOnDisconnect: this property specifies what to do when the client disconnect from Binance
servers with an Active ListenKey.

blkodDeleteListenKey: Delete the Active ListenKey doing an HTTP Request to Binance Servers
(this is the default).
blkodClearListenKey: Doesn't deletes the ListenKey from Binance Servers and just clear the value
of the field.
blkodDoNothing: does nothing, so the next time that connects to Binance will try to use the same
ListenKey.

UseCombinedStreams: if enabled, will combine streams as
follows: {"stream":"<streamName>","data":<rawPayload>} (by default disabled)

Client can connect to USDT or COIN Binance Futures, set which contract you want to trade using FuturesCon
tracts property:

bfcUSDT: connects to USD-M Futures API.
bfcCOIN: connects to COIN-M Futures API.

Client can connect to Production or Demo Binance accounts. If TestNet property is enabled, it will connect to Demo
account, otherwise will connect to production Binance Servers.

WebSocket Stream API

Client can subscribe / unsubscribe from events after a successful connection.
The following Subscription / Unsubscription methods are supported.

Method Parame
ters Description

AggregateTrades Symbol
The Aggregate Trade Streams push trade information that is aggregated for a
single taker order every 100 milliseconds.

https://www.binance.com/
https://binance-docs.github.io/apidocs/futures/en
https://binance-docs.github.io/apidocs/delivery/en
https://binance-docs.github.io/apidocs/futures/en
https://binance-docs.github.io/apidocs/delivery/en

COMPONENTS

379

MarkPrice
Symbol, Up
dateSpeed

Mark price and funding rate for a single symbol pushed every 3 seconds or
every second.

AllMarkPrice
Update
Speed

Mark price and funding rate for all symbols pushed every 3 seconds or every
second.

KLine
Symbol, In
terval

The Kline/Candlestick Stream push updates to the current klines/candlestick
every 250 milliseconds (if existing).

MiniTicker Symbol
24hr rolling window mini-ticker statistics for a single symbol. These are NOT
the statistics of the UTC day, but a 24hr rolling window from requestTime to
24hrs before.

AllMiniTicker

24hr rolling window mini-ticker statistics for all symbols. These are NOT the
statistics of the UTC day, but a 24hr rolling window from requestTime to
24hrs before. Note that only tickers that have changed will be present in the
array.

Ticker Symbol
24hr rolling window ticker statistics for a single symbol. These are NOT the
statistics of the UTC day, but a 24hr rolling window from requestTime to
24hrs before.

AllMarketTickers
24hr rolling window ticker statistics for all symbols. These are NOT the statis
tics of the UTC day, but a 24hr rolling window from requestTime to 24hrs be
fore. Note that only tickers that have changed will be present in the array.

BookTicker Symbol
Pushes any update to the best bid or ask's price or quantity in real-time for a
specified symbol.

AllBookTickers Pushes any update to the best bid or ask's price or quantity in real-time for all
symbols.

LiquidationOrders Symbol
The Liquidation Order Streams push force liquidation order information for
specific symbol

AllLiquidationOrders The All Liquidation Order Streams push force liquidation order information for
all symbols in the market.

PartialBookDepth
Symbol,
Depth

Top bids and asks, Valid are 5, 10, or 20.

DiffDepth Symbol
Bids and asks, pushed every 250 milliseconds, 500 milliseconds, 100 mil
liseconds or in real time(if existing)

After a successful subcription / unsubscription, client receives a message about it, where id is the result of Sub
scribed / Unsubscribed method.

{

 "result": null,

 "id": 1

}

User Data Stream API

Requires a valid ApiKey obtained from your binance account, and ApiKey must be set in Binance.ApiKey property
of component.

The following data is pushed to client every time there is a change. There is no need to subscribe to any method,
this is done automatically if you set a valid ApiKey.

Method Description

Margin Call

When the user's position risk ratio is too high, this stream will be pushed. This message
is only used as risk guidance information and is not recommended for investment strate
gies. In the case of a highly volatile market, there may be the possibility that the user's
position has been liquidated at the same time when this stream is pushed out.

COMPONENTS

380

•
•
•

Balance and Position Up
date

Balance Update occurs during the following:

When balance or position get updated, this event will be pushed.
When "FUNDING FEE" changes to the user's balance.

Order Update When new order created, order status changed will push such event.

REST API

All endpoints return either a JSON object or array. Data is returned in ascending order. Oldest first, newest last.

Public API EndPoints

These endpoints can be accessed without any authorization.

General EndPoints

Method Parameters Description
Ping Test connectivity to the Rest API.

GetServerTime Test connectivity to the Rest API and get the current server
time.

GetExchangeIn
formation

 Current exchange trading rules and symbol information

Market Data EndPoints

Method Parameters Description
GetOrderBook Symbol Get Order Book.
GetTrades Symbol Get recent trades
GetHistorical
Trades

Symbol Get older trades.

GetAggregate
Trades

Symbol
Get compressed, aggregate trades. Trades that fill at the time,
from the same order, with the same price will have the quantity
aggregated.

GetKLines Symbol, Interval
Kline/candlestick bars for a symbol. Klines are uniquely identi
fied by their open time.

Get24hrTicker Symbol
24 hour rolling window price change statistics. Careful when ac
cessing this with no symbol.

GetPriceTicker Symbol Latest price for a symbol or symbols.
GetBookTicker Symbol Best price/qty on the order book for a symbol or symbols.
GetMarkPrice Symbol Mark Price and Funding Rate
GetFundin
gRateHistory

Symbol

GetOpenInterest Symbol Get present open interest of a specific symbol.
GetOpenInter
estStatistics

Symbol, Period

GetTopTrader
AccountRatio

Symbol, Period

GetTopTrader
PositionRatio

Symbol, Period

GetGlobalAc
countRatio

Symbol, Period

COMPONENTS

381

GetTakerVolume Symbol, Period

Private API EndPoints

Requires an APIKey and APISecret to get authorized by server.

Account and Trades EndPoints

Method Parameters Description
ChangePosition
Mode

DualPosition
Change user's position mode (Hedge Mode or One-way Mode)
on EVERY symbol

GetCurrentPosi
tionMode

 Get user's position mode (Hedge Mode or One-way Mode) on
EVERY symbol

NewOrder
Symbol, Side, PositionSide,
Type

Send in a new order.

PlaceMarke
tOrder

Side, Symbol, Quantity

PlaceLimitOrder
Side, Symbol, Quantity, Limit
Price

PlaceStopOrder
Side, Symbol, Quantity, Stop
Price, LimitPrice

PlaceTrail
ingStopOrder

Side, Symbol, Quantity, aActi
vationPrice, aCallbackRate

QueryOrder Symbol Check an order's status.

CancelOrder Symbol
Cancel an active order. Either OrderId or OrigClientOrderId
must be sent.

CancelAl
lOpenOrders

Symbol

AutoCancelAl
lOpenOrders

Symbol, CountDownTimer
Cancel all open orders of the specified symbol at the end of the
specified countdown.

QueryCurren
tOpenOrder

Symbol

GetOpenOrders Symbol
Get all open orders on a symbol. Careful when accessing this
with no symbol.

GetAllOrders Symbol Get all account orders; active, canceled, or filled.
GetAccountBal
ance

GetAccountIn
formation

 Get current account information.

ChangeInitial
Leverage

Symbol, Leverage Change user's initial leverage of specific symbol market.

ChangeMargin
Type

Symbol, MarginType

ModifyIsolated
PositionMargin

Symbol, Amount, Type

GetPositionMar
ginChangeHis
tory

Symbol

GetPositionIn
formation

Symbol

GetAccount
TradeList

Symbol

COMPONENTS

382

GetIncomeHis
tory

Symbol

GetNotional
LeverageBrack
et

Symbol

Events

Binance Futures Messages are received in TsgcWebSocketClient component, you can use the following events:

OnConnect
After a successful connection to Binance server.

OnDisconnect
After a disconnection from Binance server

OnMessage
Messages sent by server to client are handled in this event.

OnError
If there is any error in protocol, this event will be called.

OnException
If there is an unhandled exception, this event will be called.

Additionally, there is a specific event in Binance API Component, called OnBinanceHTTPException, which is
raised every time there is an error calling an HTTP Request (REST API or WebSocket User Stream).

(*) Due to changes in Binance Servers, Indy versions before Rad Studio 10.1, won't be able to connect to
Test Servers. This issue doesn't affect to Enterprise Edition or if the Indy version has been upgraded to the
latest.

COMPONENTS

383

•
•
•

•
•
•
•
•
•
•

•
•
•
•
•

API Binance Futures | Trade
Binance allows to trade with futures using his REST API.

Configuration

First you must create an API Key in your binance account and add privileges to trading with Futures.
Once this is done, you can start to trading with futures.
First you must select if you want to trade with USDT or COIN futures, there is a property called FuturesContracts
where you can set which future contract you want to trade
Then, set your ApiKey and your ApiSecret in the Binance Futures Client Component, this will be used to sign the
requests sent to Binance server.

Place an Order

To place a new order, just call to method REST_API.NewOrder of Binance Futures Client Component.

Depending of the type of the order (market, limit...) the API requires more or less fields.

Mandatory Fields

Symbol: the product id symbol, example: BTCUSD_210326
Side: BUY or SELL
type: the order type

LIMIT
MARKET
STOP
TAKE_PROFIT
STOP_MARKET
TAKE_PROFIT_MARKET
TRAILING_STOP_MARKET

Additional Mandatory Fields based on Type

LIMIT: timeInForce, quantity, price
MARKET: quantity
STOP/TAKE_PROFIT: quantity, price, stopPrice
STOP_MARKET/TAKE_PROFIT_MARKET: stopPrice
TRAILING_STOP_MARKET: callbackRate

When you send an order, there are 2 possibilities:

1. Successful: the function NewOrder returns the message sent by binance server.
2. Error: the exception is returned in the event OnBinanceHTTPException.

COMPONENTS

384

API SocketIO
SocketIO

Socket.IO is a JavaScript library for real-time web applications. It enables real-time, bi-directional communication
between web clients and servers. It has two parts: a client-side library that runs in the browser, and a server-side li
brary for Node.js. Both components have a nearly identical API. Like Node.js, it is event-driven.

Messages Types

 0: open (Sent from the server when a new transport is opened (recheck))

 1: close (Request the close of this transport but does not shut down the connection itself.)

 2: ping (Sent by the client. The server should answer with a pong packet containing the same data)
 example
 client sends: 2probe
 server sends: 3probe

 3: pong (Sent by the server to respond to ping packets.)

 4: string message (actual message, client and server should call their callbacks with the data.)
 example:
 42/chat,[“join”,”{room:1}"]
 4 is the message packet type in the engine.io protocol
 2 is the EVENT type in the socket.io protocol
 /chat is the data which is processed by socket.io
 socket.io will fire the “join” event
 will pass "room: 1" data. It is possible to omit namespace only when it is /.

 5: upgrade (Before engine.io switches a transport, it tests, if server and client can communicate over this trans
port. If this test succeeds, the client sends an upgrade packets which requests the server to flush its cache on the
old transport and switch to the new transport.)

 6: noop (A noop packet. Used primarily to force a poll cycle when an incoming WebSocket connection is re
ceived.)

Properties

 API: specifies SocketIO version:

ioAPI0: supports socket.io 0.* servers (selected by default)

ioAPI1: supports socket.io 1.* servers

ioAPI2: supports socket.io 2.* servers

ioAPI3: supports socket.io 3.* servers

ioAPI4: supports socket.io 4.* servers

 Base64: if enabled, binary messages are received as base64.

 HandShakeCustomURL: allows customizing URLl to get socket.io session.

 HandShakeTimestamp: only enable if you want to send timestamp as a parameter when a new session is re
quested (enable this property if you try to access a gevent-socketio python server).

https://socket.io

COMPONENTS

385

 Namespace: allows setting a namespace when connects to the server.

 Polling: disabling this property, client will connect directly to server using websocket as transport.

 Parameters: allows to set connection parameters.

 EncodeParameters: if enabled, parameters are encoded.

Methods

Use WriteData method to send messages to socket.io server (following Message Types sections)
1. call method add user and one parameter with John as user name

WriteData("42[\"add user\", \"John\"]");

Events

OnHTTPRequest

Before a new websocket connection is established, socket.io server requires client open a new HTTP connection to
get a new session id. In some cases, socket.io server requires authentication using HTTP headers, you can use
this event to add custom HTTP headers, like Basic authorization or Bearer token authentication.

OnAfterConnect

This event is called after socket.io connection is successful and client can send messages to server. Here you can
subscribe to namespaces for example.

OnHTTPConnectionSSL

When a WebSocket server requires secure connections, you can get an error message like this when a client tries
to connect to server:
Error connecting with SSL. error:XXXXXXXX:SSL routines:ssl3_read_bytes:tlsv1 alert protocol version
This error means that your client is trying to connect using a TLS version which is not supported by the server.
To resolve this error you must handle OnSSLAfterCreateHandler of WebSocket client component and set a newer
TLS version.
For example: here we are setting TLS 1.2 as a protocol version.

void OnHTTPConnectionSSL(TObject *Sender; TIdSSLIOHandlerSocketBase *aSSLHandler)

{

 static_cast<tidssliohandlersocketopenssl*>(aSSLHandler)->SSLOptions->Method = sslvTLSv1_2;

}

COMPONENTS

386

•
•

•
•
•

•
•
•
•
•
•

API Coinbase Pro
Coinbase Pro

APIs supported

WebSockets API: connect to a public websocket server and provides real-time market data updates.
REST API: The REST API has endpoints for account and order management as well as public market data.

Most common uses

WebSockets API
How Connect WebSocket API
How Subscribe WebSocket Channel

REST API
How Get Market Data
How Use Private REST API
How Place Orders
How Use SandBox Account
Private Requests Time

WebSockets API

The websocket feed provides real-time market data updates for orders and trades. The websocket feed is publicly
available, but connections to it are rate-limited to 1 per 4 seconds per IP.
The websocket feed uses a bidirectional protocol, which encodes all messages as JSON objects. All messages
have a type attribute that can be used to handle the message appropriately.

You can subscribe to the following channels:

Method Arguments Description

SubscribeHeart
Beat

aProductId: id of the
product

To receive heartbeat messages for specific products once a second
subscribe to the heartbeat channel. Heartbeats also include sequence
numbers and last trade ids that can be used to verify no messages
were missed.

SubscribeStatus The status channel will send all products and currencies on a preset
interval.

SubscribeTicker aProductId: id of the
product

The ticker channel provides real-time price updates every time a
match happens. It batches updates in case of cascading matches,
greatly reducing bandwidth requirements.

SubscribeLevel2 aProductId: id of the
product

The easiest way to keep a snapshot of the order book is to use the
level2 channel. It guarantees delivery of all updates, which reduce a
lot of the overhead required when consuming the full channel.

SubscribeMatch
es

aProductId: id of the
product

If you are only interested in match messages you can subscribe to the
matches channel. This is useful when you're consuming the remain
ing feed using the level 2 channel.

SubscribeFull aProductId: id of the
product

The full channel provides real-time updates on orders and trades.
These updates can be applied on to a level 3 order book snapshot to
maintain an accurate and up-to-date copy of the exchange order
book.

https://pro.coinbase.com/
https://docs.pro.coinbase.com/#websocket-feed
https://docs.pro.coinbase.com/#api

COMPONENTS

387

•
•
•

1.
2.

•
•
•

•
•

•

SubscribeUser
This channel is a version of the full channel that only contains mes
sages that include the authenticated user. Consequently, you need to
be authenticated to receive any messages.

Some of this channels requires Authenticate against Coinbase Pro servers. So first request your API keys in your
Coinbase Pro Account and then set the values in the property Coinbase of the component:

ApiKey
ApiSecret
Passphrase

Authentication will result in a couple of benefits:

Messages where you're one of the parties are expanded and have more useful fields
You will receive private messages, such as lifecycle information about stop orders you placed

REST API

Private Endpoints

Private endpoints are available for order management, and account management.
Before being able to sign any requests, you must create an API key via the Coinbase Pro website. The API key will
be scoped to a specific profile. Upon creating a key you will have 3 pieces of information which you must remem
ber:

Key
Secret
Passphrase

The Key and Secret will be randomly generated and provided by Coinbase Pro; the Passphrase will be provided by
you to further secure your API access. Coinbase Pro stores the salted hash of your passphrase for verification, but
cannot recover the passphrase if you forget it.

You can restrict the functionality of API keys. Before creating the key, you must choose what permissions you
would like the key to have. The permissions are:

View - Allows a key read permissions. This includes all GET endpoints.
Transfer Allows a key to transfer currency on behalf of an account, including deposits and withdraws. En
able with caution - API key transfers WILL BYPASS two-factor authentication.
Trade - Allows a key to enter orders, as well as retrieve trade data. This includes POST /orders and several
GET endpoints.

Accounts

Method Arguments Description
ListAccounts Get a list of trading accounts from the profile of the

API key.

GetAccount aAccountId: id of the account
Information for a single account. Use this endpoint
when you know the account_id. API key must belong
to the same profile as the account.

GetAccountHistory aAccountId: id of the account
List account activity of the API key's profile. Account
activity either increases or decreases your account
balance.

GetHolds aAccountId: id of the account

List holds of an account that belong to the same pro
file as the API key. Holds are placed on an account
for any active orders or pending withdraw requests.
As an order is filled, the hold amount is updated. If
an order is canceled, any remaining hold is re

COMPONENTS

388

moved. For a withdraw, once it is completed, the
hold is removed.

Orders

Method Arguments Description
ListAccounts Get a list of trading accounts from the profile of the

API key.

GetAccount aAccountId: id of the account
Information for a single account. Use this endpoint
when you know the account_id. API key must be
long to the same profile as the account.

GetAccountHistory aAccountId: id of the account
List account activity of the API key's profile. Account
activity either increases or decreases your account
balance.

GetHolds aAccountId: id of the account

List holds of an account that belong to the same
profile as the API key. Holds are placed on an ac
count for any active orders or pending withdraw re
quests. As an order is filled, the hold amount is up
dated. If an order is canceled, any remaining hold is
removed. For a withdraw, once it is completed, the
hold is removed.

PlaceNewOrder aOrder: class that contains all pos
sible fields of an order

Places a new order. Use only if you need to access
to advanced order options.

PlaceMarketOrder

aSide: buy or sell aProductId: id of
the product aAmount: amount of
order aUseFunds: by default false
aClient_oid: Order ID selected by
you to identify your order

Places a new Market order.

PlaceLimitOrder

aSide: buy or sell aProductId: id of
the product aSize: size of the order
aLimitPrice: price limit aTimeIn
Force: GTC by default aPostOnly:
post only flag aClient_oid: Order
ID selected by you to identify your
order

Places a new Limit order.

PlaceStopOrder

aSide: buy or sell aProductId: id of
the product aSize: size of the order
aStopPrice: price of the stop
aStop: loss or entry aTimeInForce:
GTC by default aClient_oid: Order
ID selected by you to identify your
order

Places a new Stop Order

CancelOrder aOrderId: id the of the order
Cancel a previously placed order. Order must be
long to the profile that the API key belongs to.

CancelOrdersClient aClient_oid: Order ID selected by
you to identify your order

Cancel a previously placed order. Order must be
long to the profile that the API key belongs to.

CancelAllOrders
With best effort, cancel all open orders from the pro
file that the API key belongs to. The response is a
list of ids of the canceled orders.

Other

Method Arguments Description
GetFillsByOrderId aOrderId: id the of the order Get a list of recent fills of the API key's profile.

COMPONENTS

389

GetFillsByProduc
tId aProductId: id of the product Get a list of recent fills of the API key's profile.

GetCurrentEx
changeLimits

This request will return information on your payment
method transfer limits, as well as buy/sell limits per
currency.

ListDeposits
aProfileId: id of the profile
aBefore: as DateTime aAfter: as
DateTime aLimit: by default 100

Get a list of deposits from the profile of the API key,
in descending order by created time.

GetDeposit aTransferId: id of the transfer Get information on a single deposit.

DepositPayment
Method

aAmount: The amount to deposit
aCurrency: the type of currency
aPaymentMethodId: ID of the pay
ment method

Deposit funds from a payment method

DepositCoinbase
aAmount: The amount to deposit
aCurrency: the type of currency
aCoinbaseAccountId: ID of the
coinbase account

Deposit funds from a coinbase account. You can
move funds between your Coinbase accounts and
your Coinbase Pro trading accounts within your dai
ly limits.

DepositGener
ateAddress You can generate an address for crypto deposits.

ListWithdrawals
aProfileId: id of the profile
aBefore: as DateTime aAfter: as
DateTime aLimit: by default 100

Get a list of withdrawals from the profile of the API
key, in descending order by created time.

GetWithdrawal aTransferId: id of the transfer Get information on a single withdrawal.

WithdrawalPay
mentMethod

aAmount: The amount to withdraw
al aCurrency: the type of currency
aPaymentMethodId: ID of the pay
ment method

Withdraw funds to a payment method.

WithdrawalCoin
base

aAmount: The amount to deposit
aCurrency: the type of currency
aCoinbaseAccountId: ID of the
coinbase account

Withdraw funds to a coinbase account. You can
move funds between your Coinbase accounts and
your Coinbase Pro trading accounts within your dai
ly limits.

WithdrawalCrypto
aAmount: The amount to deposit
aCurrency: the type of currency
aCryptoAddress: a crypto address
of the recipient

Withdraws funds to a crypto address.

GetWith
drawalFeeEstimate

aCurrency: the type of currency
aCryptoAddress: a crypto address
of the recipient

Gets the network fee estimate when sending to the
given address.

CreateConversion
aFromCurrencyId: currency origin
aToCurrencyId: currency destina
tion aAmount: amount of from to
convert to

Convert between currencies.

ListPaymentMeth
ods Get a list of your payment methods.

CoinbaseListAc
counts Get a list of your coinbase accounts.

GetFees This request will return your current maker & taker
fee rates, as well as your 30-day trailing volume.

CreateReportFills
aStartDate: from Date aEndDate:
to Date aProductId: id of the prod
uct aFormat: pdf or csv aEmail:
optional e-mail

Reports provide batches of historic information
about your profile in various human and machine
readable forms.

COMPONENTS

390

CreateReportAc
count

aStartDate: from Date aEndDate:
to Date aAccountId: id of the ac
count aFormat: pdf or csv aEmail:
optional e-mail

Reports provide batches of historic information
about your profile in various human and machine
readable forms.

GetReportStatus aReportId: id of the report
Once a report request has been accepted for pro
cessing, the status is available by polling the report
resource endpoint.

ListProfiles aOnlyActive: by default False List your profiles.
GetProfile aProfileId: id of the profile Get a single profile by profile id.

CreateProfileTrans
fer

aFromProfileId: The profile id the
API key belongs to and where the
funds are sourced aToProfileId:The
target profile id of where funds will
be transferred to aCurrency: i.e.
BTC or USD aAmount: Amount of
currency to be transferred

Transfer funds from API key's profile to another user
owned profile.

GetMarginProfileIn
formation aProductId: id of the product.

Get information about your margin profile, such as
your current equity percentage.

GetMarginBuying
Power aProductId: id of the product.

Get your buying power and selling power for a par
ticular product.
For example: On BTC-USD, "buying power" refers
to how much USD you can use to buy
BTC, and "selling power" refers to how much BTC
you can sell for USD.

GetMarginWith
drawalPower aCurrency: i.e. BTC or USD

Returns the max amount of the given currency that
you can withdraw from your margin profile.

GetMarginAllWith
drawalPowers Returns the max amount of each currency that you

can withdraw from your margin profile.

GetMarginExitPlan
Returns a liquidation strategy that can be performed
to get your equity percentage back to an acceptable
level (i.e. your initial equity percentage).

GetMarginListLiq
uidationHistory

aAfterDate: Request liquidation
history after this date.

Returns a list of liquidations that were performed to
get your equity percentage back to an acceptable
level.

GetMarginPosition
RefreshAmounts Returns the amount in USD of loans that will be re

newed in the next day and then the day after.
GetMarginStatus Returns whether margin is currently enabled.

GetOracle
Get cryptographically signed prices ready to be
posted onchain using Open Oracle smart con
tracts.

COMPONENTS

391

Coinbase Pro | Connect WebSocket API
In order to connect to Coinbase Pro WebSocket API, just create a new Coinbase API client and attach to TsgcWeb
SocketClient. See below an example:

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_Coinbase oCoinbase = new TsgcWSAPI_Coinbase();

oCoinbase->Client = oClient;

oClient->Active = true;

COMPONENTS

392

Coinbase Pro | Subscribe WebSocket Chan
nel
Coinbase Pro offers a variety of channels where you can subscribe to get realtime updates of market data, or
ders... Find below a sample of how subscribe to a Ticker:

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_Coinbase oCoinbase = new TsgcWSAPI_Coinbase();

oCoinbase->Client = oClient;

oCoinbase->SubscribeTicker("ETH-USD");

void OnCoinbaseMessage(TObject *Sender, string aType, string aRawMessage)

{

// here you will receive the ticker updates

}

COMPONENTS

393

Coinbase Pro | Get Market Data
Coinbase Pro offers public Market Data through REST Endpoints, when you call one of these endpoints, you will
get an snapshot of the market data requested.
The Market Data Endpoints doesn't require authentication, so are freely available to all users.

Example: to get an snapshot of the ticker BTC-USD, do the following call

TsgcWSAPI_Coinbase oCoinbase = new TsgcWSAPI_Coinbase(this);

ShowMessage(oCoinbase->REST_API->GetProductTicker("BTC-USD"));

COMPONENTS

394

•
•
•

Coinbase Pro | Private REST API
The Coinbase REST API offer public and private endpoints. The Private endpoints requires that messages signed
to increase the security of transactions.
First you must login to your Coinbase Pro account and create a new API, you will get the following values:

ApiKey
ApiSecret
Passpfrase

These fields must be configured in the Coinbase property of the Coinbase Pro API client component.
Once configured, you can start to do private requests to the Coinbase Pro REST API

TsgcWSAPI_Coinbase oCoinbase = new TsgcWSAPI_Coinbase(this);

oCoinbase->Coinbase->ApiKey = "<your api key>";

oCoinbase->Coinbase->ApiSecret = "<your api secret>";

ShowMessage(oCoinbase->REST_API->GetAccountInformation);

COMPONENTS

395

Coinbase Pro | Private Requests Time
When you do a private request to Coinbase Pro, the message is signed so increase the security of requests. The
message takes the local time and sends inside the signed message, if the local time has a difference greater than
30 seconds with Coinbase Pro servers, the request will be rejected. So, it's important verify that your local time is
synchronized, you can do this using the synchronization time method for your OS.

You can check the Coinbase Pro server time, calling method GetTime, which will return the time of the Coinbase
Pro server

COMPONENTS

396

Coinbase Pro | Place Orders
In order to place new orders in Coinbase Pro, you require first your APIs to access your private data, check the fol
lowing article How Use Private REST API.

Once you have configured your API keys, you can start to place orders

Market Order

Place a new Market Order, buy 0.002 contracts of BTC-USD

TsgcWSAPI_Coinbase oCoinbase = new TsgcWSAPI_Coinbase(this);

oCoinbase->Coinbase->ApiKey = "your api key";

oCoinbase->Coinbase->ApiSecret = "your api secret";

oCoinbase->Coinbase->ApiPassphrase = "your passphrase";

ShowMessage(oCoinbase->REST_API>PlaceMarketOrder(coisBuy, "BTC-USD", 0.002));

Limit Order

Place a new Limit Order, buy 0.002 contracts of BTC-USD at price limit of 10000

TsgcWSAPI_Coinbase oCoinbase = new TsgcWSAPI_Coinbase(this);

oCoinbase->Coinbase->ApiKey = "your api key";

oCoinbase->Coinbase->ApiSecret = "your api secret";

oCoinbase->Coinbase->ApiPassphrase = "your passphrase";

ShowMessage(oCoinbase->REST_API>PlaceLimitOrder(coisBuy, "BTC-USD", 0.002, 10000));

COMPONENTS

397

Coinbase Pro SandBox Account
Coinbase Pro allows to use a SandBox account where you can trade without real funds. This account requires to
create API keys different from production account.
To use the SandBox account, just set Coinbase.SandBox property to true, before do any request to API.

TsgcWSAPI_Coinbase oCoinbase = new TsgcWSAPI_Coinbase(this);

oCoinbase->Coinbase->ApiKey = "your api key";

oCoinbase->Coinbase->ApiSecret = "your api secret";

oCoinbase->Coinbase->ApiPassphrase = "your passphrase";

oCoinbase->Coinbase->SandBox = true;

ShowMessage(oCoinbase->REST_API>ListAccounts);

COMPONENTS

398

•

•

•
•

•
•

•

•

API SignalRCore
SignalRCore

ASP.NET Core SignalR is an open-source library that simplifies adding real-time web functionality to apps. Real-
time web functionality enables server-side code to push content to clients instantly.

Good candidates for SignalR:

Apps that require high-frequency updates from the server. Examples are gaming, social networks, voting,
auction, maps, and GPS apps.
Dashboards and monitoring apps. Examples include company dashboards, instant sales updates, or travel
alerts.
Collaborative apps. Whiteboard apps and team meeting software are examples of collaborative apps.
Apps that require notifications. Social networks, email, chat, games, travel alerts, and many other apps use
notifications.

SignalRCore sgcWebSockets component uses WebSocket as transport to connect to a SignalRCore server, if this
transport is not supported, an error will be raised.

Hubs

SignalRCore uses hubs to communicate between clients and servers. SignalRCore provides 2 hub protocols: text
protocol based on JSON and binary protocol based on MessagePack. The sgcWebSockets component only imple
ments JSON text protocol to communicate with SignalRCore servers.
To configure which Hub client will use, just set in SignalRCore/Hub property the name of the Hub before the client
connects to the server.

Connection

When a client opens a new connection to the server, sends a request message which contains format protocol and
version. sgcWebSockets always sends format protocol as JSON. The server will reply with an error if the protocol is
not supported by the server, this error can be handled using OnSignalRCoreError event, and if the connection is
successful, OnSignalRCoreConnect event will be called.

When a client connects to a SignalRCore server, it can send a ConnectionId which identifies client between ses
sions, so if you get a disconnection client can reconnect to server passing same prior connection id. In order to get
a new connection id, just connect normally to the server and you can know ConnectionId using OnBeforeCon
nectEvent. If you want to reconnect to the server and pass a prior connection id, use ReConnect method and
pass ConnectionId as a parameter.

SignalRCore Protocol

The SignalR Protocol is a protocol for two-way RPC over any Message-based transport. Either party in the connec
tion may invoke procedures on the other party, and procedures can return zero or more results or an error. Exam
ple: the client can request a method from the server and server can request a method to the client. There are the
following messages exchanged between server and clients:

HandshakeRequest: the client sends to the server to agree on the message format.
HandshakeResponse: server replies to the client an acknowledgement of the previous HandshakeRequest
message. Contains an error if the handshake failed.
Close: called by client or server when a connection is closed. Contains an error if the connection was closed
because of an error.
Invocation: client or server sends a message to another peer to invoke a method with arguments or not.

https://docs.microsoft.com/en-us/aspnet/core/signalr

COMPONENTS

399

•

•
•

•
•

•
•

•
•
•
•

•

•
•

•
•

StreamInvocation: client or server sends a message to another peer to invoke a streaming method with ar
guments or not. The Response will be split into different items.
StreamItem: is a response from a previous StreamInvocation.
Completion: means a previous invocation or StreamInvocation has been completed. Can contain a result if
the process has been successful or an error if there is some error.
CancelInvocation: cancel a previous StreamInvocation request.
Ping: is a message to check if the connection is still alive.

SignalRCore Encoding

SignalRCore allows to use the following encodings:

JSON: currently the only supported encoding.
MessagePack

Currently, only JSON is supported although MessagePack can be used encoding the messages sent using an ex
ternal messagepack library. See the section MessagePack below for more information.

The configuration of the Encoding Protocol is defined in the property SignalRCore.Protocol. By default the value
is srcpJSON.

Authorization

Authentication can be enabled to associate a user with each connection and filter which users can access to re
sources. Authentication is implemented using Bearer Tokens, client provide an access token and server validates
this token and uses it to identify then user.
In standard Web APIs, bearer tokens are sent in an HTTP Header, but when using websockets, token is transmit
ted as a query string parameter.
The following methods are supported:

srcaRequestToken

If Authentication is enabled, the flow is:

1. First tries to get a valid token from server. Opens an HTTP connection against
Authentication.RequestToken.URL and do a POST using User and Password data.
2. If previous is successful, a token is returned. If not, an error is returned.
3. If token is returned, then opens a new HTTP connection to negotiate a new connection. Here, token is passed as
an HTTP Header.
4. If previous is successful, opens a websocket connection and pass token as query string parameter.

Authentication.Enabled: if active, authorization will be used before a websocket connection is established.
Authentication.Username: the username provided to server to authenticate.
Authentication.Password: the secret word provided to server to authenticate.
Authentication.RequestToken.PostFieldUsername: name of field to transmit username (depends of con
figuration, check http javascript page to see which name is used).
Authentication.RequestToken.PostFieldPassword: name of field to transmit password (depends of con
figuration, check http javascript page to see which name is used).
Authentication.RequestToken.URL: url where token is requested.
Authentication.RequestToken.QueryFieldToken: name of query string parameter using in websocket con
nection.

srcaSetToken

Here, you pass token directly to SignalRCore server (because token has been obtained from another server).

Authentication.Enabled: if active, authorization will be used before a websocket connection is established.
Authentication.SetToken.Token: token value obtained.

COMPONENTS

400

•
•

The Access token can be sent as a query parameter (this is the option by default) or sent as an HTTP Header as a
Bearer Token. Use the property Authentication.TokenParam to configure this behaviour.

srctQuery: the access_token is passed in the query url of the websocket connection.
srctHeader: the access_token is passed as an http header as a Bearer Token.

srcaBasic

This option uses Basic Authentication, this authentication method requires to configure the SignalRCore compo
nent and the TsgcWebSocketClient.

Example: if the server requires basic authentication and the username is "user" and the password is "secret", con
figure the components as shown below.

// websocket client

TsgcWebSocketClient* WSClient = new TsgcWebSocketClient();

WSClient->Authentication->Enabled = true;

WSClient->Authentication->Basic->Enabled = true;

WSClient->Authentication->URL->Enabled = false;

WSClient->Authentication->Session->Enabled = false;

WSClient->Authentication->Token->Enabled = false;

WSClient->Authentication->User = "user";

WSClient->Authentication->Password = "secret";

// signalrcore

TsgcWSAPI_SignalRCore* Signal = new TsgcWSAPI_SignalRCore();

Signal->SignalRCore->Authentication->Enabled = true;

Signal->SignalRCore->Authentication->Authentication = srcaBasic;

Signal->SignalRCore->Authentication->Username = "user";

Signal->SignalRCore->Authentication->Password = "secret";

Signal->Client = WSClient;

Communication between Client an Server

There are three kinds of interactions between server and clients:

Invocations

The Caller sends a message to the Callee and expects a message indicating that the invocation has been complet
ed and optionally a result of the invocation

Example: client invokes SendMessage method and passes as parameters user name and text message. Sends an
Invocation Id to
get a result message from the server.

SignalRCore->Invoke("SendMessage", ARRAYOFCONST(("John", "Hello All.")), "id-000001");

void OnSignalRCoreCompletion(TObject *Sender, TSignalRCore_Completion *Completion)

{

 if (Completion->Error != "")

 {

 ShowMessage("Something goes wrong.")

 }

 else

 {

 ShowMessage("Invocation Successful!");

 }

}

Non-Blocking Invocations

The Caller sends a message to the Callee and does not expect any further messages for this invocation. Invoca
tions can be sent without an Invocation ID value. This indicates that the invocation is "non-blocking".

COMPONENTS

401

Example: client invokes SendMessage method and passes as parameters user name and text message. The
client doesn't expect any response from the server about the result of the invocation.

SignalRCore->Invoke("SendMessage", ARRAYOFCONST(("John", "Hello All.")));

Streaming Invocations

The Caller sends a message to the Callee and expects one or more results returned by the Callee followed by a
message indicating the end of invocation.

Example: client invokes Counter method and requests 10 numbers with an interval of 500 milliseconds.

SignalRCore->InvokeStream("Counter", [10, 500], "id-000002");

void OnSignalRCoreStreamItem(TObject *Sender, TSignalRCore_StreamItem *StreamItem, ref bool Cancel);

{

 DoLog("#stream item: " + StreamItem->Item);

}

void OnSignalRCoreCompletion(TObject *Sender, TSignalRCore_Completion *Completion)

{

 if (Completion->Error != "")

 {

 ShowMessage("Something goes wrong.")

 }

 else

 {

 ShowMessage("Invocation Successful!");

 }

}

Invocations

In order to perform a single invocation, the Caller follows the following basic flow:

void Invoke(const string aTarget, const Array of Const aArguments, const string aInvocationId)

void InvokeStream(const string aTarget, const Array of Const aArguments, const String aInvocationId)

Allocate a unique Invocation ID value (arbitrary string, chosen by the Caller) to represent the invocation. Call Invoke
or InvokeStream method containing the Target being invoked, Arguments and InvocationId (if you don't send Invo
cationId, you won't get completion result).

If the Invocation is marked as non-blocking (see "Non-Blocking Invocations" below), stop here and immediately
yield back to the application. Handle StreamItem or Completion message with a matching Invocation ID.

SignalRCore->InvokeStream("Counter", [10, 500], "id-000002");

void OnSignalRCoreStreamItem(TObject *Sender, TSignalRCore_StreamItem *StreamItem, ref bool Cancel)

{

 if (StreamItem->InvocationId == "id-000002")

 {

 DoLog("#stream item: " + StreamItem->Item);

 }

}

void OnSignalRCoreCompletion(TObject *Sender, TSignalRCore_Completion *Completion)

{

 if (StreamItem->InvocationId == "id-000002")

 {

 if (Completion->Error != "")

 {

 ShowMessage("Something goes wrong.")

 }

 else

 {

 ShowMessage("Invocation Successful!");

 }

 }

COMPONENTS

402

}

You can call a single invocation and wait for completion.

bool InvokeAndWait(const String aTarget, System::TVarRec *aArguments, string aInvocationId,

 out TSignalRCore_Completion *Completion, const int aTimeout = 10000)

bool InvokeStreamAndWait(const String aTarget, System::TVarRec *aArguments, string aInvocationId,

 out TSignalRCore_Completion *Completion, const int aTimeout = 10000)

Allocate a unique Invocation ID value (arbitrary string, chosen by the Caller) to represent the invocation. Call In
vokeAndWait or InvokeStreamAndWait method containing the Target being invoked, Arguments and InvocationId.
The program will wait till completion event is called or Time out has been exceeded.

{

 TSignalRCore_Completion oCompletion;

 if (SignalRCore->InvokeStreamAndWait("Counter", ARRAYOFCONST((10, 500)), "id-000002", oCompletion))

 {

 DoLog("#invoke stream ok: " + oCompletion->Result)

 }

 else

 {

 DoLog("#invocke stream error: " + oCompletion->Error);

 }

}

void OnSignalRCoreStreamItem(TObject *Sender, TSignalRCore_StreamItem *StreamItem, ref bool Cancel)

{

 if (StreamItem->InvocationId == "id-000002")

 {

 DoLog("#stream item: " + StreamItem->Item);

 }

}

Cancel Invocation

If the client wants to stop receiving StreamItem messages before the Server sends a Completion message, the
client can send a CancelInvocation message with the same InvocationId used for the StreamInvocation message
that started the stream.

void OnSignalRCoreStreamItem(TObject *Sender, SignalRCore_StreamItem *StreamItem, ref bool Cancel)

{

 if (StreamItem->InvocationId == "id-000002")

 {

 Cancel = true;

 }

}

Client Results

An Invocation is only considered completed when the Completion message is received. If the client receives an In
vocation from the server, OnSignalRCoreInvocation event will be called.

void OnSignalRCoreInvocation(TObject *Sender, TSignalRCore_Invocation *Invocation)

{

 if (Invocation->Target == "SendMessage")

 {

 ... your code here ...

 }

}

// Once invocation is completed, call Completion method to inform server invocation is finished.

// If result is successful, then call CompletionResult method:

SignalRCore->CompletionResult("id-000002", "ok");

// If not, then call CompletionError method:

SignalRCore->CompletionError("id-000002", "Error processing invocation.");

COMPONENTS

403

Close Connection

Sent by the client when a connection is closed. Contains an error reason if the connection was closed because of
an error.

SignalRCore->Close("Unexpected message").

// If the server close connection by any reason, OnSignalRCoreClose event will be called.

void OnSignalRCoreClose(TObject *Sender, TSignalRCore_Close *Close)

{

 DoLog("#closed: " + Close->Error);

}

Ping

The SignalR Hub protocol supports "Keep Alive" messages used to ensure that the underlying transport connection
remains active. These messages help ensure:

Proxies don't close the underlying connection during idle times (when few messages are being sent). If the underly
ing connection is dropped without being terminated gracefully, the application is informed as quickly as possible.

Keep alive behaviour is achieved calling Ping method or enabling HeartBeat on WebSocket client. If the server
sends a ping to the client, the client will send automatically a response and OnSignalRCoreKeepAlive event will be
called.

void OnSignalRCoreKeepAlive(TObject *Sender)

{

 DoLog("#keepalive");

}

MessagePack

In the MsgPack Encoding of the SignalR Protocol, each Message is represented as a single MsgPack array con
taining items that correspond to properties of the given hub protocol message. The array items may be primitive
values, arrays (e.g. method arguments) or objects (e.g. argument value). The first item in the array is the message
type.

Refer to the MessagePack documentation to see how encode the messages sent.

Every time a new message is received, this is dispatched in the event OnSignalRCoreMessagePack event. The
message can be accessed reading the Data Stream parameter. The parameter JSON by default is empty, if you
convert the MessagePack message to JSON, the component will process the JSON message as if the encoding
was using JSON (so the events OnSignalRCoreCompletion, OnSignalRCoreInvocation... will be dispatched).

https://github.com/dotnet/aspnetcore/blob/main/src/SignalR/docs/specs/HubProtocol.md#messagepack-msgpack-encoding

COMPONENTS

404

•
•
•

•
•

API SignalR
SignalR

SignalR component uses WebSocket as transport to connect to a SignalR server, if this transport is not supported,
an error will be raised.
SignalR client component has a property called SignalR where you can set following data:

Hubs: contains a list of hubs the client is subscribing to.
ProtocolVersion: the version of the protocol used by the client, supports protocol versions from 1.2 to 1.5
UserAgent: user agent used to connect to SignalR server.

The client supports sending Text or Binary data.

Hubs Messages

Hubs API makes it possible to invoke server methods from the client and client methods from the server. The proto
col used for persistent connection is not rich enough to allow expressing RPC (remote procedure call) semantics. It
does not mean however that the protocol used for hub connections is completely different from the protocol used
for persistent connections. Rather, the protocol used for hub connections is mostly an extension of the protocol for
persistent connections.

When a client invokes a server method it no longer sends a free-flow string as it was for persistent connections. In
stead, it sends a JSON string containing all necessary information needed to invoke the method. Here is a sample
message a client would send to invoke a server method:

WriteData("{"\"H"\":"\"chathub"\","\"M"\":"\"Send"\","\"A"\":["\"CBuilder Client"\","\"Test message"\"],"\"I"\":0}"

The payload has the following properties:
I – invocation identifier – allows to match up responses with requests
H – the name of the hub
M – the name of the method
A – arguments (an array, can be empty if the method does not have any parameters)

If the string argument has double quotes replace " by \"

Example: if the argument is {"test":1}, send the argument as {\"test\":1}

 WriteData('{"H":"chathub","M":"Send","A":["{\"test\":1}"],"I":0}');

Authorization

Authentication can be enabled to associate a user with each connection and filter which users can access to re
sources. Authentication is implemented using Bearer Tokens, client provide an access token and server validates
this token and uses it to identify then user.

Currently only Bearer Tokens are supported:

Here, you pass token directly to Signal server (because token has been obtained from another server).

Authentication.Enabled: if active, authorization will be used before a websocket connection is established.
Authentication.Authentication: defaults to srcBearerToken, which is currently the only value supported.

https://www.asp.net/signalr

COMPONENTS

405

• Authentication.BearerToken.Token: token value obtained.

TsgcWSAPI_Signal oSignalR = new TsgcWSAPI_Signal();

oSignalR->SignalR->Enabled = true;

oSignalR->SignalR->Authentication = srcBearerToken;

oSignalR->SignalR->BearerToken.Token = "token here";

The component has the following events:

OnSignalRConnect

This event is called when the client connects successfully to the server, this event is raised.

OnSignalRDisconnect

This event is called when the client is disconnected from the server, this event is raised.

OnSignalRError

This event is called when there is an error in WebSocket connection.

OnSignalRMessage

The protocol used for persistent connection is quite simple. Messages sent to the server are just raw strings. There
isn’t any specific format they have to be in. Messages sent to the client are more structured. The properties you can
find in the message are as follows:

C – message id, present for all non-KeepAlive messages
M – an array containing actual data.

{"C":"d-9B7A6976-B,2|C,2","M":["Welcome!"]}

OnSignalRBinary

This event is called when binary data is received from the server.

OnSignalRResult

When a server method is invoked the server returns a confirmation that the invocation has completed by sending
the invocation id to the client and – if the method returned a value – the return value, or – if invoking the method
failed – the error.
Here are sample results of a server method call:

{"I":"0"}

A server void method whose invocation identifier was "0" completed successfully.

COMPONENTS

406

{"I":"0", "R":42}

A server method returning a number whose invocation identifier was "0" completed successfully and returned the
value 42.

{"I":"0", "E":"Error occurred"}

OnSignalRKeepAlive

This event is raised when a KeepAlive message is received from the server.

COMPONENTS

407

•
•

•
•

API Kraken
Kraken

Overview

WebSockets API offers real-time market data updates. WebSockets is a bidirectional protocol offering fastest real-
time data, helping you build real-time applications. The public message types presented below do not require au
thentication. Private-data messages messages can be subscribed on a separate authenticated endpoint.

Kraken offers a REST API too with Public market data and Private user data (which requires an authentication).

Configuration

Private API requires to get create an API from your Kraken account.
Kraken allows Test environment on WebSocket protocol, enable Beta property from Kraken Property to use this be
ta feature.

APIs supported

WebSockets Public API: connects to a public WebSocket server.
WebSockets Private API: connects to a private WebSocket server and requires an API Key and API Secret
to Authenticate against server.
REST Public API: connects to a public REST server.
REST Private API: connects to a public REST server and requires an API Key and API Secret to Authenti
cate against server.

Kraken Examples

How Connect to Public WebSocket Server

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_Kraken oKraken = new TsgcWSAPI_Kraken();

oKraken->Client = oClient;

oClient->Active = true;

How Connect to Private WebSocket Server

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_Kraken oKraken = new TsgcWSAPI_Kraken();

oKraken->Kraken->ApiKey = "your api key";

oKraken->Kraken->ApiSecret = "your api secret";

oKraken->Client = oClient;

oClient->Active = true;

How Get Ticker from REST API

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_Kraken oKraken = new TsgcWSAPI_Kraken();

https://www.kraken.com

COMPONENTS

408

oKraken->Client = oClient;

ShowMessage(oKraken->GetTicker(ARRAYOFCONST(("XBTUSD")));

How Get Account Balance from REST API

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_Kraken oKraken = new TsgcWSAPI_Kraken();

oKraken->Kraken->ApiKey = "your api key";

oKraken->Kraken->ApiSecret = "your api secret";

oKraken->Client = oClient;

ShowMessage(oKraken->GetAccountBalance());

COMPONENTS

409

•
•
•

•

API Kraken | WebSockets Public API
Connection

URL: wss://ws.kraken.com

Once the socket is open you can subscribe to a public channel by sending a subscribe request message.

General Considerations

All messages sent and received via WebSockets are encoded in JSON format
All floating point fields (including timestamps) are quoted to preserve precision.
Format of each tradeable pair is A/B, where A and B are ISO 4217-A3 for standardized assets and popular
unique symbol if not standardized.
Timestamps should not be considered unique and not be considered as aliases for transaction ids. Also, the
granularity of timestamps is not representative of transaction rates.

Supported Pairs

ADA/CAD, ADA/ETH, ADA/EUR, ADA/USD, ADA/XBT, ATOM/CAD, ATOM/ETH, ATOM/EUR, ATOM/USD, ATOM/
XBT, BCH/EUR, BCH/USD, BCH/XBT, DASH/EUR, DASH/USD, DASH/XBT, EOS/ETH, EOS/EUR, EOS/USD,
EOS/XBT, GNO/ETH, GNO/EUR, GNO/USD, GNO/XBT, QTUM/CAD, QTUM/ETH, QTUM/EUR, QTUM/USD,
QTUM/XBT, USDT/USD, ETC/ETH, ETC/XBT, ETC/EUR, ETC/USD, ETH/XBT, ETH/CAD, ETH/EUR, ETH/GBP,
ETH/JPY, ETH/USD, LTC/XBT, LTC/EUR, LTC/USD, MLN/ETH, MLN/XBT, REP/ETH, REP/XBT, REP/EUR, REP/
USD, STR/EUR, STR/USD, XBT/CAD, XBT/EUR, XBT/GBP, XBT/JPY, XBT/USD, BTC/CAD, BTC/EUR, BTC/GBP,
BTC/JPY, BTC/USD, XDG/XBT, XLM/XBT, DOGE/XBT, STR/XBT, XLM/EUR, XLM/USD, XMR/XBT, XMR/EUR,
XMR/USD, XRP/XBT, XRP/CAD, XRP/EUR, XRP/JPY, XRP/USD, ZEC/XBT, ZEC/EUR, ZEC/JPY, ZEC/USD, XTZ/
CAD, XTZ/ETH, XTZ/EUR, XTZ/USD, XTZ/XBT

Methods

Ping

Client can ping server to determine whether connection is alive, server responds with pong.
This is an application level ping as opposed to default ping in WebSockets standard which is server initiated

Ticker

Ticker information includes best ask and best bid prices, 24hr volume, last trade price, volume weighted average
price, etc for a given currency pair. A ticker message is published every time a trade or a group of trade happens.
Subscribe to a ticker calling SubscribeTicker method:

SubscribeTicker([L"XBT/USD"]);

If subscription is successful, OnKrakenSubscribed event will be called:

void OnKrakenSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription, string ChannelName,

 int ReqID)

{

 DoLog("#subscribed: " + Subscription + " " + Pair + " " + ChannelName);

}

UnSubscribe calling UnSubscribeTicker method:

COMPONENTS

410

UnSubscribeTicker(ARRAYOFCONST((L"XBT/USD")));

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

void OnKrakenUnSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#unsubscribed: " + Subscription + " " + Pair);

}

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

void OnKrakenSubscriptionError(TObject *Sender, string ErrorMessage, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#subscription error: " + ErrorMessage);

}

Ticker updates will be notified in OnKrakenData event.

[

 0,

 {

 "a": [

 "5525.40000",

 1,

 "1.000"

],

 "b": [

 "5525.10000",

 1,

 "1.000"

],

 "c": [

 "5525.10000",

 "0.00398963"

],

 "v": [

 "2634.11501494",

 "3591.17907851"

],

 "p": [

 "5631.44067",

 "5653.78939"

],

 "t": [

 11493,

 16267

],

 "l": [

 "5505.00000",

 "5505.00000"

],

 "h": [

 "5783.00000",

 "5783.00000"

],

 "o": [

 "5760.70000",

 "5763.40000"

]

 },

 "ticker",

 "XBT/USD"

]

OHLC

When subscribed for OHLC, a snapshot of the last valid candle (irrespective of the endtime) will be sent, followed
by updates to the running candle. For example, if a subscription is made to 1 min candle and there have been no
trades for 5 mins, a snapshot of the last 1 min candle from 5 mins ago will be published. The endtime can be used
to determine that it is an old candle.
Subscribe to a OHLC calling SubscribeOHLC method, you must pass pair and interval.

COMPONENTS

411

SubscribeOHLC(ARRAYOFCONST((L"XBT/USD")), kin1min);

If subscription is successful, OnKrakenSubscribed event will be called:

void OnKrakenSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription, string ChannelName,

 int ReqID)

{

 DoLog("#subscribed: " + Subscription + " " + Pair + " " + ChannelName);

}

UnSubscribe calling UnSubscribeOHLC method:

UnSubscribeOHLC(ARRAYOFCONST(("XBT/USD")), kin1min);

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

void OnKrakenUnSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#unsubscribed: " + Subscription + " " + Pair);

}

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

void OnKrakenSubscriptionError(TObject *Sender, string ErrorMessage, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#subscription error: " + ErrorMessage);

}

OHLC updates will be notified in OnKrakenData event.

[

 42,

 [

 "1542057314.748456",

 "1542057360.435743",

 "3586.70000",

 "3586.70000",

 "3586.60000",

 "3586.60000",

 "3586.68894",

 "0.03373000",

 2

],

 "ohlc-5",

 "XBT/USD"

]

Trade

Trade feed for a currency pair.
Subscribe to Trade feed calling SubscribeTrade method.

SubscribeTrade(ARRAYOFCONST((L"XBT/USD")));

If subscription is successful, OnKrakenSubscribed event will be called:

void OnKrakenSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription,

 string ChannelName, int ReqID)

{

 DoLog("#subscribed: " + Subscription + " " + Pair + " " + ChannelName);

}

UnSubscribe calling UnSubscribeTrade method:

COMPONENTS

412

UnSubscribeTrade(ARRAYOFCONST((L"XBT/USD")));

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

void OnrakenUnSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#unsubscribed: " + Subscription + " " + Pair);

}

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

void OnKrakenSubscriptionError(TObject *Sender, string ErrorMessage, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#subscription error: " + ErrorMessage);

}

Trade updates will be notified in OnKrakenData event.

[

 0,

 [

 [

 "5541.20000",

 "0.15850568",

 "1534614057.321597",

 "s",

 "l",

 ""

],

 [

 "6060.00000",

 "0.02455000",

 "1534614057.324998",

 "b",

 "l",

 ""

]

],

 "trade",

 "XBT/USD"

]

Book

Order book levels. On subscription, a snapshot will be published at the specified depth, following the snapshot, lev
el updates will be published.
Subscribe to a Book calling SubscribeBook method, you must pass pair and depth.

SubscribeBook(ARRAYOFCONST((L"XBT/USD")), kde10);

If subscription is successful, OnKrakenSubscribed event will be called:

void OnKrakenSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription, string ChannelName,

 int ReqID)

{

 DoLog("#subscribed: " + Subscription + " " + Pair + " " + ChannelName);

}

UnSubscribe calling UnSubscribeBook method:

UnSubscribeBook(ARRAYOFCONST((L"XBT/USD")), kde10);

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

COMPONENTS

413

void OnKrakenUnSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#unsubscribed: " + Subscription + " " + Pair);

}

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

void OnKrakenSubscriptionError(TObject *Sender, string ErrorMessage, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#subscription error: " + ErrorMessage);

}

Book updates will be notified in OnKrakenData event.

[

 0,

 {

 "as": [

 [

 "5541.30000",

 "2.50700000",

 "1534614248.123678"

],

 [

 "5541.80000",

 "0.33000000",

 "1534614098.345543"

],

 [

 "5542.70000",

 "0.64700000",

 "1534614244.654432"

]

],

 "bs": [

 [

 "5541.20000",

 "1.52900000",

 "1534614248.765567"

],

 [

 "5539.90000",

 "0.30000000",

 "1534614241.769870"

],

 [

 "5539.50000",

 "5.00000000",

 "1534613831.243486"

]

]

 },

 "book-100",

 "XBT/USD"

]

Spread

Spread feed to show best bid and ask price for subscribed asset pair. Bid volume and ask volume is part of the
message too.
Subscribe to Spread feed calling SubscribeSpread method.

SubscribeSpread(ARRAYOFCONST(("XBT/USD")));

If subscription is successful, OnKrakenSubscribed event will be called:

void OnKrakenSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription, string ChannelName,

 int ReqID)

{

 DoLog("#subscribed: " + Subscription + " " + Pair + " " + ChannelName);

}

COMPONENTS

414

UnSubscribe calling UnSubscribeSpread method:

UnSubscribeSpread(ARRAYOFCONST((L"XBT/USD")));

If unsubscription is successful, OnKrakenUnSubscribed event will be called:

void OnrakenUnSubscribed(TObject *Sender, int ChannelId, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#unsubscribed: " + Subscription + " " + Pair);

}

If there is an error while trying to subscribe / unsubscribe, OnKrakenSubscriptionError event will be called.

void OnKrakenSubscriptionError(TObject *Sender, string ErrorMessage, string Pair, string Subscription,

 int ReqID)

{

 DoLog("#subscription error: " + ErrorMessage);

}

Spread updates will be notified in OnKrakenData event.

[

 0,

 [

 "5698.40000",

 "5700.00000",

 "1542057299.545897",

 "1.01234567",

 "0.98765432"

],

 "spread",

 "XBT/USD"

]

Other Methods

You can subscribe / unsubscribe to all channels with one method:

SubscribeAll(ARRAYOFCONST((L"XBT/USD")));

UnSubscribeAll(ARRAYOFCONST((L"XBT/USD")));

OHLC interval value is 1 if all channels subscribed.

Events

OnConnect: when websocket client is connected to client.
OnKrakenConnect: called after successful websocket connection and when server send system status.
OnKrakenSystemStatus: called when system status changes.
OnKrakenSubscribed: called after a successful subscription to a channel.
OnKrakenUnSubscribed: called after a successful unsubscription from a channel.
OnKranSubscriptionError: called if there is an error trying to subscribe / unsubscribe.
OnKrakenData: called every time a channel subscription has an update.

COMPONENTS

415

API Kraken | WebSockets Private API
Connection

URL: wss://ws-auth.kraken.com

Once the socket is open you can subscribe to private-data channels by sending an authenticated subscribe request
message.

Authentication

The API client must request an authentication "token" via the following REST API endpoint "GetWebSocketsToken"
to connect to WebSockets Private endpoints. The token should be used within 15 minutes of creation. The token
does not expire once a connection to a WebSockets API private message (openOrders or ownTrades) is main
tained.
In order to get a Websockets Token, an API Key and API Secret must be set in Kraken Options Component, the api
key provided by Kraken in your account

Kraken->ApiKey = "api key";

Kraken->ApiSecret = "api secret";

Methods

OwnTrades

Get a list of own trades, on first subscription, you get a list of latest 50 trades

SubscribeOwnTrades();

Later, you can unsubscribe from OwnTrades, calling UnSubscribeOwnTrades method

UnSubscribeOwnTrades();

Response example from server

[

 [

 {

 "TDLH43-DVQXD-2KHVYY": {

 "cost": "1000000.00000",

 "fee": "600.00000",

 "margin": "0.00000",

 "ordertxid": "TDLH43-DVQXD-2KHVYY",

 "ordertype": "limit",

 "pair": "XBT/EUR",

 "postxid": "OGTT3Y-C6I3P-XRI6HX",

 "price": "100000.00000",

 "time": "1560520332.914664",

 "type": "buy",

 "vol": "1000000000.00000000"

 }

 }

],

 "ownTrades"

]

COMPONENTS

416

Open Orders

Feed to show all the open orders belonging to the user authenticated API key. Initial snapshot will provide list of all
open orders and then any updates to the open orders list will be sent. For status change updates, such as 'closed',
the fields orderid and status will be present in the payload

SubscribeOpenOrders();

Later, you can unsubscribe from OpenOrders, calling UnSubscribeOpenOrders method

UnSubscribeOpenOrders();

Response example from server

[

 [

 {

 "OGTT3Y-C6I3P-XRI6HX": {

 "cost": "0.00000",

 "descr": {

 "close": "",

 "leverage": "0:1",

 "order": "sell 0.00001000 XBT/EUR @ limit 9.00000 with 0:1 leverage",

 "ordertype": "limit",

 "pair": "XBT/EUR",

 "price": "9.00000",

 "price2": "0.00000",

 "type": "sell"

 },

 "expiretm": "0.000000",

 "fee": "0.00000",

 "limitprice": "9.00000",

 "misc": "",

 "oflags": "fcib",

 "opentm": "0.000000",

 "price": "9.00000",

 "refid": "OKIVMP-5GVZN-Z2D2UA",

 "starttm": "0.000000",

 "status": "open",

 "stopprice": "0.000000",

 "userref": 0,

 "vol": "0.00001000",

 "vol_exec": "0.00000000"

 }

 }

],

 "openOrders"

]

Add Order

Send a new Order to Kraken

TsgcWSKrakenOrder oKrakenOrder = new TsgcWSKrakenOrder();

oKrakenOrder->Pair = "XBT/USD";

oKrakenOrder->_Type = kosBuy;

oKrakenOrder->OrderType = kotMarket;

oKrakenOrder->Volume = 1;

AddOrder(oKrakenOrder);

List of Order parameters

pair = asset pair

type = type of order (buy/sell)

ordertype = order type:

 market

 limit (price = limit price)

 stop-loss (price = stop loss price)

 take-profit (price = take profit price)

 stop-loss-profit (price = stop loss price, price2 = take profit price)

 stop-loss-profit-limit (price = stop loss price, price2 = take profit price)

 stop-loss-limit (price = stop loss trigger price, price2 = triggered limit price)

COMPONENTS

417

 take-profit-limit (price = take profit trigger price, price2 = triggered limit price)

 trailing-stop (price = trailing stop offset)

 trailing-stop-limit (price = trailing stop offset, price2 = triggered limit offset)

 stop-loss-and-limit (price = stop loss price, price2 = limit price)

 settle-position

price = price (optional. dependent upon ordertype)

price2 = secondary price (optional. dependent upon ordertype)

volume = order volume in lots

leverage = amount of leverage desired (optional. default = none)

oflags = comma delimited list of order flags (optional):

 viqc = volume in quote currency (not available for leveraged orders)

 fcib = prefer fee in base currency

 fciq = prefer fee in quote currency

 nompp = no market price protection

 post = post only order (available when ordertype = limit)

starttm = scheduled start time (optional):

 0 = now (default)

 +<n> = schedule start time <n> seconds from now

 <n> = unix timestamp of start time

expiretm = expiration time (optional):

 0 = no expiration (default)

 +<n> = expire <n> seconds from now

 <n> = unix timestamp of expiration time

userref = user reference id. 32-bit signed number. (optional)

validate = validate inputs only. do not submit order (optional)

optional closing order to add to system when order gets filled:

 close[ordertype] = order type

 close[price] = price

 close[price2] = secondary price

Response example from server

{

 "descr": "buy 0.01770000 XBTUSD @ limit 4000",

 "event": "addOrderStatus",

 "status": "ok",

 "txid": "ONPNXH-KMKMU-F4MR5V"

}

Cancel Order

Cancel order

CancelOrder("Order Id");

Response example from server

{

 "event": "cancelOrderStatus",

 "status": "ok"

}

COMPONENTS

418

API Kraken | REST Public API
Connection

URL: https://api.kraken.com

Kraken Public API doesn't require any authentication.

Configuration

The only configuration is enable or not a log for REST HTTP requests. Enable HTTPLogOptions if you want to save
in a text file log all HTTP Requests/Responses

Events

 OnKrakenHTTPException: this event is called if there is any exception doing an HTTP Request from REST Api.

Methods

GetServerTime

This method is to aid in approximating the skew time between the server and client. Returns Time in Unix format.

{"error":[],"result":{"unixtime":1586705546,"rfc1123":"Sun, 12 Apr 20 15:32:26 +0000"}}

GetAssets

Returns information about Assets

{"error":[],"result":{"ADA":{"aclass":"currency","altname":"ADA","decimals":8,"display_decimals":6}}}}

GetAssetPairs

Returns information about a pair of assets

Kraken->REST_API->GetAssetPairs(ARRAYOFCONST((L"XBTUSD")));

GetTicker

Returns ticker information

Kraken->REST_API->GetTicker(ARRAYOFCONST((L"XBTUSD")));

GetOHLC

Returns Open-High-Low-Close data.

COMPONENTS

419

Kraken->REST_API->GetOHLC("XBTUSD");

GetOrderBook

Returns Array pair name and market depth.

Kraken->REST_API->GetOrderBook("XBTUSD");

GetTrades

Returns recent trade data of a pair.

Kraken->REST_API->GetTrades("XBTUSD");

GetSpread

Returns recent spread data of a pair.

Kraken->REST_API->GetSpread("XBTUSD");

COMPONENTS

420

API Kraken | REST Private API
Connection

URL: https://api.kraken.com

Authentication

REST Private API requires an API Key and API Secret, these values are provided by Kraken in your account.

Kraken->ApiKey = "api key";

Kraken->ApiSecret = "api secret";

Methods

GetAccountBalance

Returns your account balance.

Kraken->REST_API->GetAccountBalance();

GetTradeBalance

Returns information about your trades.

Kraken->REST_API->GetTradeBalance();

GetOpenOrders

Returns a list of open orders.

Kraken->REST_API->GetOpenOrders();

GetClosedOrders

Returns a list of closed orders.

Kraken->REST_API->GetClosedOrders();

QueryOrders

Query information about an order.

Kraken->REST_API->QueryOrders("1234");

COMPONENTS

421

GetTradesHistory

Returns an array of trade info.

Kraken->REST_API->GetTradesHistory();

QueryTrades

Query information about a trade.

Kraken->REST_API->QueryTrades("1234");

GetOpenPositions

Returns position info.

Kraken->REST_API->GetOpenPositions("1234");

GetLedgers

Returns associative array of ledgers info.

Kraken->REST_API->GetLedgers();

QueryLedgers

Returns associative array of ledgers info.

Kraken->REST_API->QueryLedgers("1234");

GetTradeVolume

Returns trade volume info.

Kraken->REST_API->GetTradeVolume();

AddExport

Adds a new report export.

Kraken->REST_API->AddExport("Report All Trades");

ExportStatus

Get Status of reports

Kraken->REST_API->ExportStatus();

COMPONENTS

422

RetrieveExport

Get Report by report id.

Kraken->REST_API->RetrieveExport("GOCO");

RemoveExport

Remove Report by report id.

Kraken->REST_API->RemoveExport("GOCO");

Add Order

Adds a new order

pair = asset pair

type = type of order (buy/sell)

ordertype = order type:

 market

 limit (price = limit price)

 stop-loss (price = stop loss price)

 take-profit (price = take profit price)

 stop-loss-profit (price = stop loss price, price2 = take profit price)

 stop-loss-profit-limit (price = stop loss price, price2 = take profit price)

 stop-loss-limit (price = stop loss trigger price, price2 = triggered limit price)

 take-profit-limit (price = take profit trigger price, price2 = triggered limit price)

 trailing-stop (price = trailing stop offset)

 trailing-stop-limit (price = trailing stop offset, price2 = triggered limit offset)

 stop-loss-and-limit (price = stop loss price, price2 = limit price)

 settle-position

price = price (optional. dependent upon ordertype)

price2 = secondary price (optional. dependent upon ordertype)

volume = order volume in lots

leverage = amount of leverage desired (optional. default = none)

oflags = comma delimited list of order flags (optional):

 viqc = volume in quote currency (not available for leveraged orders)

 fcib = prefer fee in base currency

 fciq = prefer fee in quote currency

 nompp = no market price protection

 post = post only order (available when ordertype = limit)

starttm = scheduled start time (optional):

 0 = now (default)

 +n = schedule start time n seconds from now

 n = unix timestamp of start time

expiretm = expiration time (optional):

 0 = no expiration (default)

 +n = expire n seconds from now

 n = unix timestamp of expiration time

userref = user reference id. 32-bit signed number. (optional)

validate = validate inputs only. do not submit order (optional)

optional closing order to add to system when order gets filled:

 close[ordertype] = order type

 close[price] = price

 close[price2] = secondary price

TsgcHTTPKrakenOrder oKrakenOrder = new TsgcHTTPKrakenOrder();

oKrakenOrder->Pair = "XBT/USD";

oKrakenOrder->_Type = koshBuy;

oKrakenOrder->OrderType = kothMarket;

oKrakenOrder->Volume = 1;

Kraken->REST_API->AddOrder(oKrakenOrder);

CancelOrder

Cancels an open order by id

Kraken->REST_API->CancelOrder("1234");

COMPONENTS

423

•
•
•
•
•
•
•

•
•

•
•

API Kraken Futures
Kraken Futures

Overview

The REST API allows to securely access the methods of your Kraken Futures account. Examples of REST API
Methods:

request current or historical price information
check your account balance and PnL
your margin parameters and estimated liquidation thresholds
place or cancel orders (individually or in batch)
see your open orders
open positions or trade history
request a digital asset withdrawal

These methods are called "endpoints" and are explained in REST API section.

The Websocket API allows to securely establish a communication channel to the Kraken Futures platform to re
ceive information in real time. This allows listening to updates instead of continuously sending requests. These
channels are called subscriptions.

Some of the endpoints allow performing sensitive tasks, such initiating a digital asset withdrawal. To access these
endpoints securely, the API uses encryption techniques developed by the National Security Agency.

Configuration

In order to use the API, you need to generate a pair of unique API keys (if you want access to private APIs):

1. Sign in to your Kraken Futures account.
2. Click on your name on the upper-right corner.
3. Select "Settings" from the drop-down menu.
4. Select the "Create Key" tab in the API panel.
5. Press the "Create Key" button.
6. View your Public and Private keys and record them somewhere safe.

Copy the Public and Private Keys to the KrakenOptions property of the component.

KrakenOptions.ApiKey
KrakenOptions.ApiSecret

APIs supported

WebSockets Public API: connects to a public WebSocket server.
WebSockets Private API: connects to a private WebSocket server and requires an API Key and API Secret
to Authenticate against server.
REST Public API: connects to a public REST server.
REST Private API: connects to a public REST server and requires an API Key and API Secret to Authenti
cate against server.

https://futures.kraken.com

COMPONENTS

424

API Kraken Futures | WebSockets Public API
Connection

URL: wss://futures.kraken.com/ws/v1

Once the socket is open you can subscribe to a public channel by sending a subscribe request message.

Methods

Ticker

This endpoint returns current market data for all currently listed Futures contracts and indices. Authentication is not
required.
Subscribe to a ticker calling SubscribeTicker method:

SubscribeTicker(ARRAYOFCONST(("PI_XBTUSD")));

If subscription is successful, OnKrakenFuturesSubscribed event will be called:

void OnKrakenFuturesSubscribed(TObject *Sender, string Feed, string ProductId)

{

 DoLog("#subscribed: " + Feed + " " + ProductId);

}

UnSubscribe calling UnSubscribeTicker method:

UnSubscribeTicker(ARRAYOFCONST(("PI_XBTUSD")));

If unsubscription is successful, OnKrakenFuturesUnSubscribed event will be called:

void OnKrakenFuturesUnSubscribed(TObject *Sender, string Feed, string ProductId)

{

 DoLog("#unsubscribed: " + Feed + " " + ProductId);

}

If there is an error while trying to subscribe / unsubscribe, OnKrakenFuturesError event will be called.

void OnKrakenFuturesError(TObject *Sender, string Error)

{

 DoLog("#error: " + Error);

}

Ticker updates will be notified in OnKrakenData event.

{ "result":"success",

 "tickers":[

{

"tag": "perpetual",

"pair": "XBT:USD",

COMPONENTS

425

"symbol": "pi_xbtusd",

"markPrice": 9520.2,

"bid": 9520,

"bidSize": 30950,

"ask": 9520.5,

"askSize": 3779,

"vol24h": 68238712,

"openInterest": 29308193,

"open24h": 10137,

"last": 9521,

"lastTime": "2020-06-03T08:14:26.624Z",

"lastSize": 1,

"suspended": false,

"fundingRate": 4.943012455e-9,

"fundingRatePrediction": 4.414499215e-9

}

{

"tag": "quarter",

"pair": "XBT:USD",

"symbol": "fi_xbtusd_200925",

"markPrice": 9659.8,

"bid": 9659.5,

"bidSize": 6480,

"ask": 9660,

"askSize": 17100,

"vol24h": 4562580,

"openInterest": 3573325,

"open24h": 10370.5,

"last": 9660,

"lastTime": "2020-06-03T08:10:37.800Z",

"lastSize": 5000,

"suspended": false

COMPONENTS

426

},

{

"symbol": "in_xbtusd",

"last": 9519,

"lastTime": "2020-06-03T08:14:49.000Z"

}

],

"serverTime": "2020-06-03T08:14:49.865Z"

}

Trade

The trade feed returns information about executed trades
Subscribe to Trade feed calling SubscribeTrade method.

SubscribeTrade(ARRAYOFCONST(("PI_XBTUSD")));

If subscription is successful, OnKrakenFuturesSubscribed event will be called:

void OnKrakenFuturesSubscribed(TObject *Sender, string Feed, string ProductId,)

{

 DoLog("#subscribed: " + Feed + " " + ProductId);

}

UnSubscribe calling UnSubscribeTrade method:

UnSubscribeTrade(ARRAYOFCONST(("PI_XBTUSD")));

If unsubscription is successful, OnKrakenFuturesUnSubscribed event will be called:

void OnrakenFuturesUnSubscribed(TObject *Sender, string Feed, string ProductId)

{

 DoLog("#unsubscribed: " + Feed + " " + ProductId);

}

If there is an error while trying to subscribe / unsubscribe, OnKrakenFuturesError event will be called.

void OnKrakenFuturesError(TObject *Sender, string Error)

{

 DoLog("#error: " + Error);

}

Trade updates will be notified in OnKrakenData event.

{ "feed": "trade_snapshot",

 "product_id": "PI_XBTUSD",

 "trades": [

COMPONENTS

427

{

 "feed": "trade",

 "product_id": "PI_XBTUSD",

 "uid": "caa9c653-420b-4c24-a9f1-462a054d86f1",

 "side": "sell",

 "type": "fill",

 "seq": 655508,

 "time": 1612269657781,

 "qty": 440,

 "price": 34893

},

{

 "feed": "trade",

 "product_id": "PI_XBTUSD",

 "uid": "45ee9737-1877-4682-bc68-e4ef818ef88a",

 "side": "sell",

 "type": "fill",

 "seq": 655507,

 "time": 1612269656839,

 "qty": 9643,

 "price": 34891

}

]

}

Book

This feed returns information about the order book.
Subscribe to a Book calling SubscribeBook method, you must pass the Symbol.

SubscribeBook(ARRAYOFCONST(("PI_XBTUSD")));

If subscription is successful, OnKrakenFuturesSubscribed event will be called:

void OnKrakenFuturesSubscribed(TObject *Sender, string Feed, string ProductId)

{

 DoLog("#subscribed: " + Feed + " " + ProductId);

}

COMPONENTS

428

UnSubscribe calling UnSubscribeBook method:

UnSubscribeBook(ARRAYOFCONST(("PI_XBTUSD")));

If unsubscription is successful, OnKrakenFuturesUnSubscribed event will be called:

void OnKrakenFuturesUnSubscribed(TObject *Sender, string Feed, string ProductId)

{

 DoLog("#unsubscribed: " + Feed + " " + ProductId);

}

If there is an error while trying to subscribe / unsubscribe, OnKrakenFuturesError event will be called.

void OnKrakenFuturesError(TObject *Sender, string Error)

{

 DoLog("#error: " + Error);

}

Book updates will be notified in OnKrakenData event.

{

"feed": "book_snapshot",

"product_id": "PI_XBTUSD",

"timestamp": 1612269825817,

"seq": 326072249,

"tickSize": null,

"bids": [{

"price": 34892.5,

"qty": 6385

},

{

"price": 34892,

"qty": 10924

}

],

"asks": [{

"price": 34911.5,

"qty": 20598

},

{

"price": 34912,

"qty": 2300

COMPONENTS

429

}

]

}

Ticker Lite

The ticker lite feed returns ticker information about listed products.
Subscribe to Spread feed calling SubscribeTickerLite method.

SubscribeTickerLite(ARRAYOFCONST(("PI_XBTUSD")));

If subscription is successful, OnKrakenFuturesSubscribed event will be called:

void OnKrakenFuturesSubscribed(TObject *Sender, string Feed, string ProductId)

{

 DoLog("#subscribed: " + Feed + " " + ProductId);

}

UnSubscribe calling UnSubscribeTickerLite method:

UnSubscribeTickerLite(ARRAYOFCONST(("PI_XBTUSD")));

If unsubscription is successful, OnKrakenFuturesUnSubscribed event will be called:

void OnKrakenFuturesUnSubscribed(TObject *Sender, string Feed, string ProductId)

{

 DoLog("#unsubscribed: " + Feed + " " + ProductId);

}

If there is an error while trying to subscribe / unsubscribe, OnKrakenFuturesError event will be called.

void OnKrakenFuturesError(TObject *Sender, string Error)

{

 DoLog("#error: " + Error);

}

Spread updates will be notified in OnKrakenData event.

{ "feed": "ticker_lite",

 "product_id": "PI_XBTUSD",

 "bid": 34932,

 "ask": 34949.5,

 "change": 3.3705205220015966,

 "premium": 0.1,

 "volume": 264126741,

 "tag": "perpetual",

 "pair": "XBT:USD",

 "dtm": 0,

COMPONENTS

430

 "maturityTime": 0

}

{

"feed":"ticker_lite",

"product_id":"FI_ETHUSD_210625",

"bid":1753.45,

"ask":1760.35,

"change":13.448175559936647,

"premium":9.1,

"volume":6899673.0,

"tag":"semiannual",

"pair":"ETH:USD",

"dtm":141,

"maturityTime":1624633200000

}

HeartBeat

The heartbeat feed publishes a heartbeat message at timed intervals.

SubscribeHeartBeat();

UnSubscribeHeartBeat();

Events

OnConnect: when websocket client is connected to client.
OnKrakenFuturesConnect: called after successful websocket connection and when server send system status.
OnKrakenFuturesSubscribed: called after a successful subscription to a channel.
OnKrakenFuturesUnSubscribed: called after a successful unsubscription from a channel.
OnKrakenFuturesError: called if there is any error while subscribing/unsubscribing.
OnKrakenData: called every time a channel subscription has an update.

COMPONENTS

431

API Kraken Futures | WebSockets Private
API
Connection

URL: wss://futures.kraken.com/ws/v1

Authentication

The subscribe and unsubscribe requests to WebSocket private feeds require a signed challenge message with the
user api_secret.
The challenge is obtained as is shown in Section WebSocket API Public (using the api_key).
Authenticated requests must include both the original challenge message (original_challenge) and the signed
(signed_challenge) in JSON format.
In order to get a Websockets Challenge, an API Key and API Secret must be set in Kraken Options Component,
the api key provided by Kraken in your account

Kraken->ApiKey = "api key";

Kraken->ApiSecret = "api secret";

Methods

Open Orders Verbose

This subscription feed publishes information about user open orders. This feed adds extra information about all the
post-only orders that failed to cross the book.

SubscribeOpenOrdersVerbose();

Later, you can unsubscribe from OpenOrdersVerbose, calling UnSubscribeOpenOrdersVerbose method

UnSubscribeOpenOrdersVerbose();

Response example from server

{ 'feed':'open_orders_verbose_snapshot', 'account':'0f9c23b8-63e2-40e4-9592-6d5aa57c12ba', 'orders':[

 { 'instrument':'PI_XBTUSD', 'time':1567428848005, 'last_update_time':1567428848005, 'qty':100.0, 'filled':0.0, 'limit_price':8500.0, 'stop_price':0.0, 'type':'limit', 'order_id':'566942c8-a3b5-4184-a451-622b09493129', 'direction':0, 'reduce_only':False }]}

Open Positions

This subscription feed publishes the open positions of the user account.

SubscribeOpenPositions();

Later, you can unsubscribe from OpenPositions, calling UnSubscribeOpenPositions method

UnSubscribeOpenPositions();

COMPONENTS

432

Response example from server

{

 "feed": "open_positions",

 "account": "DemoUser",

 "positions": [{

 "instrument": "fi_xbtusd_180316",

 "balance": 2000.0,

 "entry_price": 11675.86541981,

 "mark_price": 11090.0,

 "index_price": 12290.550000000001,

 "pnl": -0.00905299

 }]

}

Account Log

This subscription feed publishes account information.

SubscribeAccountLog();

Later, you can unsubscribe from AccountLog, calling UnSubscribeAccountLog method

UnSubscribeAccountLog();

Response example from server

{

 'feed': 'account_log_snapshot',

 'logs': [{

 'id': 1690,

 'date': '2019-07-11T08:00:00.000Z',

 'asset': 'bch',

 'info': 'funding

 rate change ','

 booking_uid ':'

 86 fdc252 - 1 b6e - 40 ec - ac1d - c7bd46ddeebf ','

 margin_account ':'

 f - bch: usd ','

 old_balance ':0.01215667051,'

 new_balance ':0.01215736653,'

 old_average_entry_price ':0.0,'

 new_average_entry_price ':0.0,'

 trade_price ':0.0,'

 mark_price ':0.0,'

 realized_pnl ':0.0,'

 fee ':0.0,'

 execution ':'

 ','

 collateral ':'

 bch ','

 funding_rate ':-8.7002552653e-08,'

 realized_funding ':6.9602e-07}]

}

Fills

This subscription feed publishes fills information.

SubscribeFills();

COMPONENTS

433

Later, you can unsubscribe from Fills, calling UnSubscribeFills method

UnSubscribeFills();

Response example from server

{

 "feed":"fills_snapshot",

 "account":"DemoUser",

 "fills":[

 {

 "instrument":"FI_XBTUSD_200925",

 "time":1600256910739,

 "price":10937.5,

 "seq":36,

 "buy":true,

 "qty":5000.0,

 "order_id":"9e30258b5a984002968a5b0e149bcfbf",

 "fill_id":"cad76f07814e4dc684787867407b6bff",

 "fill_type":"maker",

 "fee_paid":0.00009142857,

 "fee_currency":"BTC"

 }]

}

Open Orders

This subscription feed publishes information about user open orders.

SubscribeOpenOrders();

Later, you can unsubscribe from OpenOrders, calling UnSubscribeOpenOrders method

UnSubscribeOpenOrders();

Response example from server

{

"feed": "open_orders_snapshot",

COMPONENTS

434

"account": "e258dba9-4dd4-4da5-bfef-75beb91c098e",

"orders": [

 {

 "instrument": "PI_XBTUSD",

 "time": 1612275024153,

 "last_update_time": 1612275024153,

 "qty": 1000,

 "filled": 0,

 "limit_price": 34900,

 "stop_price": 13789,

 "type": "stop",

 "order_id": "723ba95f-13b7-418b-8fcf-ab7ba6620555",

 "direction": 1,

 "reduce_only": false,

 "triggerSignal": "last"

 }

]

}

Account Balance And Margins

This subscription feed returns balance and margin information for the client's account.

SubscribeAccountBalanceAndMargins();

Later, you can unsubscribe from AccounBalance, calling UnSubscribeAccountBalanceAndMargins method

UnSubscribeAccountBalanceAndMargins();

Response example from server

{

"feed": "account_balances_and_margins",

"account": "DemoUser",

"margin_accounts": [

 {

COMPONENTS

435

 "name": "xbt",

 "balance": 0,

 "pnl": 0,

 "funding": 0,

 "pv": 0,

 "am": 0,

 "im": 0,

 "mm": 0

 },

 {

 "name": "f-xbt:usd",

 "balance": 9.99730211055,

 "pnl": -0.00006034858674327812,

 "funding": 0,

 "pv": 9.997241761963258,

 "am": 9.99666885201038,

 "im": 0.0005729099528781564,

 "mm": 0.0002864549764390782

 },

],

 "seq": 14

}

Notifications

This subscription feed publishes notifications to the client.

SubscribeNotifications();

Later, you can unsubscribe from Notifications, calling UnSubscribeNotifications method

UnSubscribeNotifications();

Response example from server

{

 "feed":"notifications_auth",

COMPONENTS

436

 "notifications":[

 {

 "id":5,

 "type":"market",

 "priority":"low",

 "note":"A note describing the notification.",

 "effective_time":1520288300000

 },

 ...

]

}

COMPONENTS

437

API Kraken Futures | REST Public API
Connection

URL: https://futures.kraken.com/derivatives/api/v3

Kraken Futures Public API doesn't require any authentication.

Configuration

The only configuration is enable or not a log for REST HTTP requests. Enable HTTPLogOptions if you want to save
in a text file log all HTTP Requests/Responses

Events

 OnKrakenHTTPException: this event is called if there is any exception doing an HTTP Request from REST Api.

Methods

GetFeeSchedules

This endpoint lists all fee schedules. Authentication is not required.

KrakenFutures->REST_API->GetFeeSchedules();

Order Book

This endpoint returns the entire non-cumulative order book of currently listed Futures contracts.

KrakenFutures->REST_API->GetOrderBook("PI_XBTUSD");

Tickers

This endpoint returns current market data for all currently listed Futures contracts and indices.

KrakenFutures->REST_API->GetTickers();

Instruments

This endpoint returns specifications for all currently listed Futures contracts and indices.

KrakenFutures->REST_API->GetInstruments();

COMPONENTS

438

History

This endpoint returns the last 100 trades from the specified lastTime value - if no value specified will return the last
100 trades. is endpoint only returns trade history for a maximum of 7 days from the time it is called or since
last .trading engine release (whichever is sooner).

KrakenFutures->REST_API->GetHistory("PI_XBTUSD");

COMPONENTS

439

API Kraken Futures | REST Private API
Connection

URL: https://futures.kraken.com/derivatives/api/v3

Authentication

REST Private API requires an API Key and API Secret, these values are provided by Kraken in your account.

Kraken->ApiKey = "api key";

Kraken->ApiSecret = "api secret";

Methods

EditOrderByOrderId

This endpoint allows editing an existing order for a currently listed Futures contract.

aOrderId: ID of the order you wish to edit
aSize: The size associated with the order
aLimitPrice: The limit price associated with the order.
aStopPrice: The stop price associated with a stop order. Required if old Order Type is Stop.

KrakenFutures->REST_API->EditOrderByOrderId("Order_Id", 2, 1000);

EditOrderByCliOrderId

This endpoint allows editing an existing order for a currently listed Futures contract.

aCliOrderId: The order identity that is specified from the user. It must be globally unique.
aSize: The size associated with the order
aLimitPrice: The limit price associated with the order.
aStopPrice: The stop price associated with a stop order. Required if Order Type is Stop.

KrakenFutures->REST_API->EditOrderByCliOrderId("Cli_Order_Id", 2, 1000);

SendMarketOrder

This endpoint allows to send a Market Order.

aSide: The direction of the order: buy or sell.
aSymbol: The symbol of the futures
aSize: The size associated with the order.

KrakenFutures->REST_API->SendMarketOrder(kosfBuy, "PI_XBTUSD", 1);

COMPONENTS

440

SendLimitOrder

This endpoint allows to send a Limit Order.

aSide: The direction of the order: buy or sell.
aSymbol: The symbol of the futures
aSize: The size associated with the order.
aLimitPrice: The limit price associated with the order.

KrakenFutures->REST_API->SendLimitOrder(kosfBuy, "PI_XBTUSD", 1, 1000);

SendStopOrder

This endpoint allows to send a Stop Order.

aSide: The direction of the order: buy or sell.
aSymbol: The symbol of the futures
aSize: The size associated with the order.
aStopPrice: The stop price associated with a stop order.
aLimitPrice: The limit price associated with the order.

KrakenFutures->REST_API->SendStopOrder(kosfBuy, "PI_XBTUSD", 1, 1000, 900);

SendTakeProfitOrder

This endpoint allows to send a Take Profit Order.

aSide: The direction of the order: buy or sell.
aSymbol: The symbol of the futures
aSize: The size associated with the order.
aStopPrice: The stop price associated with a stop order.
aLimitPrice: The limit price associated with the order.

KrakenFutures->REST_API->SendTakeProfitOrder(kosfBuy, "PI_XBTUSD", 1, 1000, 900);

SendOrder

This endpoint allows sending a limit, stop, take profit or immediate-or-cancel order for a currently listed Futures
contract.

OrderType: select one of the following kotfLMT, kotfPOST, kotfMKT, kotfSTP, kotfTAKE_PROFIT, kotfIOC
Symbol: The symbol of the futures
Side: The direction of the order (buy or sell).
Size: The size associated with the order.
StopPrice: The stop price associated with a stop order.
LimitPrice: The limit price associated with the order.
TriggerSignal: If placing a Stop or TakeProfit order, the signal used for trigger, select one of the following kots
Mark, kotsIndex, kotsLast
CliOrderId: The order identity that is specified from the user. It must be globally unique.
ReduceOnly: Set as true if you wish the order to only reduce an existing position. Any order which increases an
existing position will be rejected. Default false.

TsgcHTTPKrakenFuturesOrder *oOrder = new TsgcHTTPKrakenFuturesOrder(this);

try

{

 oOrder->Side = kosfBuy;

 oOrder->Symbol = "PI_XBTUSD";

 oOrder->OrderType = kotfMKT;

 oOrder->Size = 1;

 KrakenFutures->REST_API->SendOrder(oOrder);

COMPONENTS

441

}

__finally

{

 oOrder->Free;

}

CancelOrderByOrderId

This endpoint allows cancelling an open order for a Futures contract.

aOrderId: ID of the order you wish to edit

KrakenFutures->REST_API->CancelOrderByOrderId("Order_Id");

CancelOrderByCliOrderId

This endpoint allows cancelling an open order for a Futures contract.

aCliOrderId: The order identity that is specified from the user. It must be globally unique.

KrakenFutures->REST_API->CancelOrderByCliOrderId("Cli_Order_Id");

GetFills

This endpoint returns information on filled orders for all futures contracts.

aLastFillDate: If not provided, returns the last 100 fills in any futures contract. If provided, returns the 100 entries
before lastFillTime.

KrakenFutures->REST_API->GetFills("2020-07-22T13:45:00.000Z");

Transfer

This endpoint allows you to transfer funds between two margin accounts with the same collateral currency, or be
tween a margin account and your cash account.

aFromAcocunt: The name of the cash or margin account to move funds from.
aToAcocunt: The name of the cash or margin account to move funds to.
aUnit: The unit to transfer.
aAmount: The amount to transfer.

KrakenFutures->REST_API->Transfer("FI_XBTUSD", "cash", "xbt", 1.5);

GetOpenPositions

This endpoint returns the size and average entry price of all open positions in Futures contracts. This includes Fu
tures contracts that have matured but have not yet been settled.

KrakenFutures->REST_API->GetOpenPositions();

GetNotifications

This endpoint provides the platform's notifications.

COMPONENTS

442

KrakenFutures->REST_API->GetNotifications();

GetAccounts

This endpoint returns key information relating to all your Kraken Futures accounts which may either be cash ac
counts or margin accounts. This includes digital asset balances, instrument balances, margin requirements, margin
trigger estimates and auxiliary information such as available funds, PnL of open positions and portfolio value.

KrakenFutures->REST_API->GetAccounts();

CancelAllOrders

This endpoint allows cancelling an open order for a Futures contract.

Symbol: A futures product to cancel all open orders (optional)

KrakenFutures->REST_API->CancelAllOrders();

CancelAllOrdersAfter

This endpoint provides a Dead Man's Switch mechanism to protect the client from network malfunctions. The client
can send a request with a timeout in seconds which will trigger a countdown timer that will cancel all client orders
when timeout expires.

aTimeout: The timeout specified in seconds.

KrakenFutures->REST_API->CancelAllOrdersAfter(60);

GetOpenOrders

This endpoint returns information on all open orders for all Futures contracts.

KrakenFutures->REST_API->OpenOrders();

GetHistoricalOrders

This endpoint returns historical orders made on an account.

aSince: The DateTime Since
aBefore: The DateTime Before
aSort: "asc" for ascending sort "desc" for descending
aContinuationToken: Continuation token provided from a prior response which can be used in call to return the
next set of available results

KrakenFutures->REST_API->GetHistoricalOrders(Now, Now - 5);

GetHistoricalTriggers

This endpoint returns allows historical triggers made on an account.

aSince: The DateTime Since
aBefore: The DateTime Before
aSort: "asc" for ascending sort "desc" for descending

COMPONENTS

443

aContinuationToken: Continuation token provided from a prior response which can be used in call to return the
next set of available results

KrakenFutures->REST_API->GetHistoricalTriggers(Now, Now - 5);

GetHistoricalExecutions

This endpoint returns allows historical executions made on an account.

aSince: The DateTime Since
aBefore: The DateTime Before
aSort: "asc" for ascending sort "desc" for descending
aContinuationToken: Continuation token provided from a prior response which can be used in call to return the
next set of available results

KrakenFutures->REST_API->GetHistoricalExecutions(Now, Now - 5);

WithdrawalToSpotWallet

This endpoint allows submitting a request to withdraw digital assets from a Kraken Futures wallet to your Kraken
Spot wallet.

aCurrency: The digital asset that shall be withdrawn, e.g. xbt or xrp.
aAmount: The amount of currency that shall be withdrawn.

KrakenFutures->REST_API->WithdrawalToSpotWallet("xbt", 1000);

GetFeeScheduleVolumes

This endpoint returns your 30-day USD volume.

KrakenFutures->REST_API->GetFeeScheduleVolumes();

GetAccountLogCSV

This endpoint allows clients to download a csv file of their account logs.

KrakenFutures->REST_API->GetAccountLogCSV();

COMPONENTS

444

•
•

•
•

•
•

•
•
•

•
•
•
•

API FTX
FTX

APIs supported

WebSockets API: connect to a public websocket server and provides real-time market data updates.
REST API: The REST API has endpoints for account and order management as well as public market data.

Properties

FTX API has 2 types of methods: public and private. Public methods can be accessed without authentication, ex
ample: get ticker prices. Only are only private and related to user data, those methods requires the use of FTX API
keys.

ApiKey: you can request a new api key in your FTX account, just copy the value to this property.
ApiSecret: API secret is only required for REST_API, websocket api only requires ApiKey for some meth
ods.
FtxUS: if enabled, will connect to FTX.us Servers (instead of FTX.com servers which is the default).
SubAccount: allows to set the name of the FTX subaccount.

Most common uses

WebSockets API
How Connect WebSocket API
How Subscribe WebSocket Channel

REST API
How Get Market Data
How Use Private REST API
How Place Orders

WebSockets API

The websocket feed provides real-time market data updates for orders and trades. The websocket feed has some
public channels like ticker, trades... and some private channels which require an API Key and API Secret like Fills
and Orders.
The websocket feed uses a bidirectional protocol, which encodes all messages as JSON objects. All messages
have a type attribute that can be used to handle the message appropriately.

You can subscribe to the following Public channels:

Method Argu
ments Description

SubscribeT
icker

aMarket:
name of the
market

The ticker channel provides
the latest best bid and offer
market data.

Subscribe
Markets

The markets channel provides
information on the full set of
tradable markets and their
specifications. After subscrip
tion and whenever any market
lists, delsists, or changes, you

https://ftx.com/
https://docs.ftx.com/#websocket-api
https://docs.ftx.com/#rest-api

COMPONENTS

445

•
•
•

will receive a partial message
with information on all mar
kets.

Subscribe
Trades

aMarket:
name of the
market

The trades channel provides
data on all trades in the mar
ket.

Sub
scribeOrder
books

aMarket:
name of the
market

The orderbook channel pro
vides data about the
orderbook's best 100 orders
on either side.

Sub
scribeGroupe
dOrderbooks

aMarket:
name of the
market

The grouped orderbooks
channel supplies orderbook
data with grouped (collapsed)
prices.

Some of this channels requires Authenticate against FTX servers. So first request your API keys in your FTX Ac
count and then set the values in the property FTX of the component:

ApiKey
ApiSecret
SubAccount (optional)

When the WebSocket client connects to FTX servers, if detect the ApiKey and ApiSecret are defined automatically
try to login to the FTX Server. If successful, you can subscribe to the following Private Channels:

Method Argu
ments Description

Sub
scribeFills This channel streams your fills

across all markets.

Sub
scribeOrders

This channel streams updates
to your orders across all mar
kets.

REST API

Public Endpoints

Some of the REST Channels are public, so you don't need to configure the API Keys.

Markets

This section covers all types of markets on FTX: spot, perpetual futures, expiring futures, and MOVE contracts. Ex
amples for each type are BTC/USD, BTC-PERP, BTC-0626, and BTC-MOVE-1005.

Method Argu
ments Description

GetMar
kets

GetMar
ket

aMarket:
name of the
market

GetOrder
book

aMarket:
name of the
market

COMPONENTS

446

•
•
•

Get
Trades

aMarket:
name of the
market

GetHis
torical
Prices

aMarket:
name of the
market

Historical prices of expired futures
can be retrieved with this end point
but make sure to specify start time
and end time.

Futures

This section covers all types of futures on FTX: perpetual, expiring, and MOVE. Examples for each type are BTC-
PERP, BTC-0626, and BTC-MOVE-1005.

Method Argu
ments Description

GetFutures

GetFuture
aFuture:
name of the
future

GetFutureStats
aFuture:
name of the
future

GetFundin
gRates

GetIndexWeights
aFuture:
name of the
future

Note that this only applies
to index futures, e.g. ALT/
MID/SHIT/EXCH/DRAG
ON.

GetExpiredFu
tures Returns the list of all ex

pired futures.

GetHistoricalIn
dex

aFuture:
name of the
future

Private Endpoints

Private endpoints are available for order management, and account management.
Before being able to sign any requests, you must create an API key via the FTX website. The API key will be
scoped to a specific profile. Upon creating a key you will have 2 pieces of information which you must remember:

Key
Secret
SubAccount (optional)

Private endpoints require your local time is synchronized with FTX server time, if there is a difference too high,
you will get a 401 Unauthorized error

{"success":false:"error":"Not logged in"}

Account

Method Arguments Description
GetAccount
GetAccoun
tHistory

COMPONENTS

447

ChangeAc
countLever
age

aLeverage: desired
accountwide lever
age setting

Subaccounts

Method Arguments Description
GetAllSub
accounts

CreateSub
account

aNickName: name of the subac
count

ChangeSub
account
Name

aOldNickname: current nickname of
subaccount aNewNickname: new
nickname of subaccount

DeleteSub
account

aNickName: name of the subac
count

GetSubac
countBal
ances

aNickName: name of the subac
count

TransferBe
tweenSub
accounts

aCoin: example XRP aSize: size of
transfer aSource: name of the
source subaccount. "main" for the
main account. aDestination: name
of the destination subaccount.
"main" for the main account.

Wallets

Method Arguments
De
scrip
tion

GetCoins
GetBal
ances

GetBal
ancesAl
lAccounts

GetDeposi
tAddress

aCoin: USDT aMethod: optional, for coins available
on different blockchains, example: USDT

GetDe
positHisto
ry

aStartTime: optional; minimum time of items to return,
in Unix time aEndTime: optional; maximum time of
items to return, in Unix time

GetWith
drawalHis
tory

aStartTime: optional; minimum time of items to return,
in Unix time aEndTime: optional; maximum time of
items to return, in Unix time

Request
Withdrawal

aCoin: coin to withdraw. aSize: amount to withdraw.
aAddress: address to send to (example:
0x83a127952d266A6eA306c40Ac62A4a70668FE3BE)
aTag: optional. aPassword: optional, withdrawal pass
word if it is required for your account aCode: optional;
2fa code if it is required for your account

COMPONENTS

448

GetAir
Drops

aStartTime: optional; minimum time of items to return,
in Unix time aEndTime: optional; maximum time of
items to return, in Unix time

This
end
point
pro
vides
you
with
up
dates
to
your
AMPL
bal
ances
based
on
AMPL
re
bases.

GetWith
drawalFees

aCoin: coin id. aSize: amount. aAddress: address to
withdraw (example:
0x83a127952d266A6eA306c40Ac62A4a70668FE3BE)
aTag: optional.

Get
SavedAd
dresses

aCoin: optional, filters saved addresses by coin;

This
end
point
pro
vides
you
with
your
saved
ad
dress
es

Create
SavedAd
dresses

aCoin: coin id. aAddress: address to create (exam
ple:
0x83a127952d266A6eA306c40Ac62A4a70668FE3BE)
aAddressName: string aIsPrimetrust: boolean aTag:
optional

Delete
SavedAd
dresses

aSavedAddressId: id of the saved address.

Orders

Method Arguments Descrip
tion

GetOpenOrders aMarket: name
of the market

GetOrderHistory aMarket: name
of the market

COMPONENTS

449

GetOpenTriggerOrders

aMarket: name
of the market
aTriggerOrder:
[fttotNone, fttot
Stop,
fttotTrailing_Stop,
fttotTake_Profit]

GetTriggerOrderTriggers
aOrderId: num
ber that identifi
cates the Order.

GetTriggerOrderHistory aMarket: name
of the market

PlaceOrder
aOrder: Ts
gcHTTPFTX
Order instance

Places a
new order.
Passes a Ts
gcHTTPFTX
Order object
as a para
meter.

PlaceMarketOrder

aMarket: name
of the market
aSide: buy or
sell aSize: size
of the order

Places a
new Market
order.

PlaceLimitOrder

aMarket: name
of the market
aSide: buy or
sell aSize: size
of the order
aPrice: price lim
it of the order

Places a
new Limit
Order

PlaceTriggerOrder
aOrder: Ts
gcHTTPFTXTrig
gerOrder in
stance

Places a
new trigger
order. Pass
es a Ts
gcHTTPFTX
TriggerOrder
object as a
parameter.

PlaceTriggerStopOrder

aMarket: name
of the market
aSide: buy or
sell aSize: size
of the order
aTriggerPrice:
trigger price
aOrderPrice: op
tional, order type
is limit if has val
ue greater than
zero, otherwise
market.

PlaceTriggerTrailingStopOrder aMarket: name
of the market

COMPONENTS

450

aSide: buy or
sell aSize: size
of the order
aTrailValue:
negative for
"sell", positive for
"buy"

PlaceTriggerTakeProfitOrder

aMarket: name
of the market
aSide: buy or
sell aSize: size
of the order
aTriggerPrice:
trigger price
aOrderPrice: op
tional, order type
is limit if has val
ue greater than
zero, otherwise
market.

ModifyOrder

aOrderId: num
ber that identifi
cates the Order.
aPrice: price lim
it of the order
aSize: size of the
order

ModifyOrderByClientId

aOrderClientId:
string that identi
ficates the Order.
aPrice: price lim
it of the order
aSize: size of the
order

ModifyTriggerOrder_StopLoss

aOrderId: num
ber that identifi
cates the Order.
aSize: size of the
order aTrigger
Price: trigger
price aOrder
Price: order
price

ModifyTriggerOrder_TakeProfit

aOrderId: num
ber that identifi
cates the Order.
aSize: size of the
order aTrigger
Price: trigger
price aOrder
Price: order
price

ModifyTriggerOrder_TrailingStop aOrderId: num
ber that identifi

COMPONENTS

451

cates the Order.
aSize: size of the
order aTrailVal
ue: trail value of
the order

GetOrderStatus
aOrderId: num
ber that identifi
cates the Order.

GetOrderStatusByClientId
aOrderClientId:
string that identi
ficates the Order.

CancelOrder
aOrderId: num
ber that identifi
cates the Order.

CancelOrderByClientId
aOrderClientId:
string that identi
ficates the Order.

CancelOpenTriggerOrder
aOrderId: num
ber that identifi
cates the Order.

CancelAllOrders

Other

Method Arguments Description

GetFills aMarket: name of the
market

COMPONENTS

452

FTX | Connect WebSocket API
In order to connect to FTX WebSocket API, just create a new FTX API client and attach to TsgcWebSocketClient.
See below an example:

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_FTX oFTX= new TsgcWSAPI_FTX();

oFTX->Client = oClient;

oClient->Active = true;

COMPONENTS

453

FTX | Subscribe WebSocket Channel
FTX offers a variety of channels where you can subscribe to get real-time updates of market data, orders...
Find below a sample of how subscribe to a Ticker:

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_FTX oFTX = new TsgcWSAPI_FTX();

oFTX->Client = oClient;

oFTX->SubscribeTicker("BTC-PERP");

void OnFTXMessage(TObject *Sender, string aType, string aRawMessage)

{

// here you will receive the ticker updates

}

COMPONENTS

454

FTX | Get market Data
FTX offers public Market Data through REST Endpoints, when you call one of these endpoints, you will get an
snapshot of the market data requested.
The Market Data Endpoints doesn't require authentication, so are freely available to all users.

Example: to get an snapshot of the market BTC-PERP, do the following call

TsgcWSAPI_FTX oFTX = new TsgcWSAPI_FTX(this);

ShowMessage(oFTX->REST_API->GetMarket("BTC-PERP"));

COMPONENTS

455

•
•

FTX | Private REST API
The FTX REST API offer public and private endpoints. The Private endpoints requires that messages signed to in
crease the security of transactions.
First you must login to your FTX account and create a new API, you will get the following values:

ApiKey
ApiSecret

These fields must be configured in the FTX property of the FTX API client component.
Once configured, you can start to do private requests to the FTX REST API

TsgcWSAPI_FTX oFTX = new TsgcWSAPI_FTX(this);

oFTX->FTX->ApiKey = "<your api key>";

oFTX->FTX->ApiSecret = "<your api secret>";

ShowMessage(oFTX->REST_API->GetAccount);

COMPONENTS

456

FTX | Place Orders
In order to place new orders in FTX, you require first your APIs to access your private data, check the following arti
cle How Use Private REST API.

Once you have configured your API keys, you can start to place orders

Market Order

Place a new Market Order, buy 0.002 contracts of BTC-PERP

TsgcWSAPI_FTX oFTX = new TsgcWSAPI_FTX(this);

oFTX->FTX->ApiKey = "your api key";

oFTX->FTX->ApiSecret = "your api secret";

ShowMessage(oFTX->REST_API>PlaceMarketOrder("BTC-PERP", ftosBuy, 0.002));

Limit Order

Place a new Limit Order, buy 0.002 contracts of BTC-PERP at price limit of 10000

TsgcWSAPI_FTX oFTX = new TsgcWSAPI_FTX(this);

oFTX->FTX->ApiKey = "your api key";

oFTX->FTX->ApiSecret = "your api secret";

ShowMessage(oFTX->REST_API>PlaceLimitOrder("BTC-PERP", ftosBuy, 0.002, 10000));

COMPONENTS

457

•
•

API Pusher
Pusher

Pusher it's an easy and reliable platform with nice features based on WebSocket protocol: flexible pub/sub messag
ing, live user lists (presence), authentication...

Pusher WebSocket API is 7.

Data is sent bi-directionally over a WebSocket as text data containing UTF8 encoded JSON (Binary WebSocket
frames are not supported).

You can call Ping method to test connection to the server. Essentially any messages received from the other party
are considered to mean that the connection is alive. In the absence of any messages, either party may check that
the other side is responding by sending a ping message, to which the other party should respond with a pong.

Before you connect, you must complete the following fields:

Pusher->Cluster = "eu"; // cluster where is located your pusher account

Pusher->Key = "9c3b7ef25qe97a00116c"; // your pusher api key

Pusher->Name = "js"; // optional, name of your application

Pusher->Version = "4.1"; // optional, version of your application

Pusher->TLS = true; // if encrypted, set to True

Pusher->Secret = "2dc792e1916ac49e6b3f"; // pusher secret string (needed for private and absence channels)

Important
Pusher requires that websocket client connects to a URL using previous fields (key, cluster...), these fields are used
to build the url and this is done when you assign the client in pusher component. So, to be sure that URL is built
correctly, set the client after you have fill the pusher configuration fields. Find below pseudo-code:

// configure pusher fields
pusher.cluster = ...
pusher.key = ...
// set client
pusher.client = websocket client
// start connection
websocket client.Active = true;

After a successful connection, OnPusherConnect event is raised and you get following fields:

Socket ID: A unique identifier for the connected client.
Timeout: The number of seconds of server inactivity after which the client should initiate a ping message
(this is handled automatically by component).

In case of error, OnPusherError will be raised, and information about error provided. An error may be sent from
Pusher in response to invalid authentication, an invalid command, etc.

4000-4099

Indicates an error resulting in the connection being closed by Pusher, and that attempting to reconnect using
the same parameters will not succeed.

4000: Application only accepts SSL connections, reconnect using wss://
4001: Application does not exist
4003: Application disabled
4004: Application is over connection quota
4005: Path not found
4006: Invalid version string format
4007: Unsupported protocol version

https://www.pusher.com/

COMPONENTS

458

•

•

•
•

•

4008: No protocol version supplied

4100-4199

Indicates an error resulting in the connection being closed by Pusher, and that the client may reconnect after
1s or more.

4100: Over capacity

4200-4299

Indicates an error resulting in the connection being closed by Pusher, and that the client may reconnect im
mediately.

4200: Generic reconnect immediately
4201: Pong reply not received: ping was sent to the client, but no reply was received - see ping and
pong messages
4202: Closed after inactivity: The client has been inactive for a long time (currently 24 hours) and
client does not support ping. Please upgrade to a newer WebSocket draft or implement version 5 or
above of this protocol.

4300-4399

Any other type of error.

4301: Client event rejected due to rate limit

Channels

Channels are a fundamental concept in Pusher. Each application has a number of channels, and each client can
choose which channels it subscribes to.

Channels provide:

A way of filtering data. For example, in a chat application, there may be a channel for people who want to
discuss ‘dogs’
A way of controlling access to different streams of information. For example, a project management applica
tion would want to authorise people to get updates about ‘projectX’

It's strongly recommended that channels are used to filter your data and that it is not achieved using events. This is
because all events published to a channel are sent to all subscribers, regardless of their event binding.

Channels don’t need to be explicitly created and are instantiated on client demand. This means that creating a
channel is easy. Just tell a client to subscribe to it.

There are 3 types of channels:

Public channels can be subscribed to by anyone who knows their name
Private channels introduce a mechanism which lets your server control access to the data you are broad
casting
Presence channels are an extension of private channels. They let you ‘register’ user information on sub
scription, and let other members of the channel know who’s online

Public Channels

Public channels should be used for publicly accessible data as they do not require any form authorisation in order
to be subscribed to.

You can subscribe and unsubscribe from channels at any time. There’s no need to wait for the Pusher to finish con
necting first.

Example: subscribe to channel "my-channel".

COMPONENTS

459

CBuilder

APIPusher->Subscribe("my-channel");

If you are subscribed successfully OnPusherSubscribe event will be raised, if there is an error you will get a mes
sage in OnPusherError event.

All messages from the subscribed channel will be received OnPusherEvent event.

When Publish method is called and the channel is Public, the component instead of use the WebSocket protocol,
uses the HTTP protocol and calls the method TriggerEvent (publishi is not allowed using websocket protocol).

Private Channels

Requires Indy 10.5.7 or later

Private channels should be used when access to the channel needs to be restricted in some way. In order for a
user to subscribe to a private channel permission must be authorised.

Example: subscribe to channel "my-private-channel".

CBuilder

APIPusher->Subscribe("my-private-channel", pscPrivateChannel);

If you are subscribed successfully OnPusherSubscribe event will be raised, if there is an error you will get a mes
sage in OnPusherError event.

All messages from the subscribed channel will be received OnPusherEvent event.

Presence Channels

Requires Indy 10.5.7 or later

Presence channels build on the security of Private channels and expose the additional feature of an awareness of
who is subscribed to that channel. This makes it extremely easy to build chat room and “who’s online” type func
tionality to your application. Think chat rooms, collaborators on a document, people viewing the same web page,
competitors in a game, that kind of thing.

Presence channels are subscribed to from the client API in the same way as private channels but the channel
name must be prefixed with presence-. As with private channels an HTTP Request is made to a configurable au
thentication URL to determine if the current user has permissions to access the channel.

Information on users subscribing to, and unsubscribing from a channel can then be accessed by binding to events
on the presence channel and the current state of users subscribed to the channel is available via the
channel.members property.

Example: subscribe to channel "my-presence-channel".

APIPusher->Subscribe("my-presence-channel", pscPresenceChannel,

 '{"\"user_id"\":"\"John_Smith"\","\"user_info"\":{"\"name"\":"\"John Smith"\"}}");

If you are subscribed successfully OnPusherSubscribe event will be raised, if there is an error you will get a mes
sage in OnPusherError event.

COMPONENTS

460

•
•
•

All messages from the subscribed channel will be received OnPusherEvent event.

Cache Channels

A cache channel remembers the last triggered event, and sends this as the first event to new subscribers.

When an event is triggered on a cache channel, Pusher Channels caches this event, and when a client subscribes
to a cache channel, if a cached value exists, this is sent to the client as the first event on that channel. This behav
ior helps developers to provide the initial state without adding additional logic to fetch it from else where.

The following Cache Channels are supported:

Public Cache Channel
Private Cache Channel
Presence Cache Channel

Example: subscribe to public cache channel "my-cache-channel".

APIPusher->Subscribe("my-cache-channel", pscCacheChannel);

If you are subscribed successfully OnPusherSubscribe event will be raised, if there is an error you will get a mes
sage in OnPusherError event.

All messages from the subscribed channel will be received OnPusherEvent event.

Publish Messages

Not only you can receive messages from subscribed channels, but you can also send messages to other sub
scribed users.
Call method Publish to send a message to all subscribed users of channel.

Example: send an event to all subscribed users of "my-channel'

APIPusher->Publish("my-event", "my-channel");

Publish no more than 10 messages per second per client (connection). Any events triggered above this rate limit
will be rejected by Pusher API. This is not a system issue, it is a client issue. 100 clients in a channel sending mes
sages at this rate would each also have to be processing 1,000 messages per second! Whilst some modern
browsers might be able to handle this it’s most probably not a good idea.

REST API

The API is hosted at http://api-CLUSTER.pusher.com , where CLUSTER is replaced with your own apps cluster (for
instance, eu).

HTTP status codes are used to indicate the success or otherwise of requests. The following status are common:

200 Successful request. Body will contain a JSON hash of response data
400 Error: details in response body
401 Authentication error: response body will contain an explanation
403 Forbidden: app disabled or over message quota

The following REST API functions have been implemented.

COMPONENTS

461

Function Description

TriggerEvent triggers a new event on the specified
channel.

GetChannels provide a list of all channels active.
GetChannel provide information of a channel.

GetUsers provide a list of all users connected to
a channel.

Custom Authentication

Pusher only allow subscribe to private or presence channels, if the connection provides an authentication token,
this allows to restrict the access.
You can build your own Authentication flow, using OnPusherAuthentication event, this event is called before the
subscription message is signed with the secret key provided by Pusher. This event has 2 parameters a request au
thentication with fields like SocketId, channel name... which can be used by your own authentication server to au
thenticate or not the request. Find below a screenshot which shows the pusher authentication flow

COMPONENTS

462

When a client connects to the pusher server, it sends the Key provided by pusher and the server returns an identifi
cation id (socket_id).

When a client subscribes to a private (or presence) channel, the sgcWebSockets client uses the Secret Key provid
ed by pusher to create a signature which is included in the subscription message. Using the OnPusherAutentication
event, you can capture the fields required to sign the message, implement your own authentication methods and if
successful, return the signature and this signature will be included in the subscription message and sent to the
server.

Example:

oClient = new TsgcWebSocketClient();

oPusher = new TsgcWSAPI_Pusher();

oPusher->Client = oClient;

oPusher->Cluster = "eu";

Pusher->Name = "js";

Pusher->Version = "4.1";

Pusher->TLS = True;

Pusher->Key = "9c3b7ef25qe97a00116c";

Pusher->Secret = ""; // the secret key is not known by the client, only by the authentication module

oPusher->OnPusherAuthentication = OnPusherAuthenticationEvent;

COMPONENTS

463

private void OnPusherAuthenticationEvent(TObject *Sender, TsgcWSPusherRequestAuthentication

 *AuthRequest, TsgcWSPusherResponseAuthentication *AuthResponse)

{

 // if the authentication request is succesful return the signature

 if (CustomAuthentication(AuthRequest->Channel, AuthRequest->SocketID))

 {

 AuthResponse.>Signature = GetCustomAuthenticationSignature();

 }

}

The format of the signature is:

Private channels: key:HMAC256(SocketID, ChannelName)
Presence channels: key: HMAC256(SocketID, ChannelName, Data)

COMPONENTS

464

1.

2.

•
•
•
•

•
•

•
•
•

•
•

•
•
•
•
•
•
•
•
•
•

API Bitmex
Bitmex

Is a cryptocurrency exchange and derivative trading platform.

The following APIs are supported:

WebSocket streams: allows to subscribe to some methods and get data in real-time. Events are pushed to
clients by server to subscribers. Uses WebSocket as protocol.
REST API: clients can request to server market and account data. Requires an API Key and Secret to au
thenticate and uses HTTPs as protocol.

Properties

Bitmex API has 2 types of methods: public and private. Public methods can be accessed without authentication, ex
ample: get ticker prices. Only are only private and related to user data, those methods requires the use of Bitmex
API keys.

ApiKey: you can request a new api key in your Bitmex account, just copy the value to this property.
ApiSecret: it's the secret of the API, keep safe.
TestNet: if enabled it will connect to Bitmex Demo Account (by default false).
HTTPLogOptions: stores in a text file a log of HTTP requests

Enabled: if enabled, will store all HTTP requests of WebSocket API.
FileName: full path of filename where logs will be stored

Most common uses

WebSockets API
How Connect WebSocket API
How Subscribe WebSocket Channel

REST API
How Place Bitmex Order

WebSocket API

 Subscribe / Unsubscribe

BitMEX allows subscribing to real-time data. This access is not rate-limited once connected and is the best
way to get the most up-to-date data to your programs. In some topics, you can pass a Symbol to filter events
by symbol, example: trades, quotes...

The following subscription topics are available without authentication:

btmAnnouncement: Site Announcements
btmChat: Trollbox chat
btmConnected: Statistics of connected users/bots
btmFunding: Updates of swap funding rates. Sent every funding interval (usually 8hrs)
btmInstrument: Instrument updates including turnover and bid/ask
btmInsurance: Daily Insurance Fund updates
btmLiquidation: Liquidation orders as they're entered into the book
btmOrderBookL2_25: Top 25 levels of level 2 order book
btmOrderBookL2: Full level 2 order book
btmOrderBook10: Top 10 levels using traditional full book push

https://www.bitmex.com

COMPONENTS

465

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

btmPublicNotifications: System-wide notifications (used for short-lived messages)
btmQuote: Top level of the book
btmQuoteBin1m: 1-minute quote bins
btmQuoteBin5m: 5-minute quote bins
btmQuoteBin1h: 1-hour quote bins
btmQuoteBin1d: 1-day quote bins
btmSettlement: Settlements
btmTrade: Live trades
btmTradeBin1m: 1-minute trade bins
btmTradeBin5m: 5-minute trade bins
btmTradeBin1h:1-hour trade bins
btmTradeBin1d: 1-day trade bins

The following subjects require authentication:

btmAffiliate: Affiliate status, such as total referred users & payout %
btmExecution: Individual executions; can be multiple per order
btmOrder: Live updates on your orders
btmMargin: Updates on your current account balance and margin requirements
btmPosition: Updates on your positions
btmPrivateNotifications: Individual notifications - currently not used
btmTransact: Deposit/Withdrawal updates
btmWallet: Bitcoin address balance data, including total deposits & withdrawals

Example of messages received:

{

 "table":"orderBookL2_25",

 "keys":["symbol","id","side"],

 "types":{"id":"long","price":"float","side":"symbol","size":"long","symbol":"symbol"}

 "foreignKeys":{"side":"side","symbol":"instrument"},

 "attributes":{"id":"sorted","symbol":"grouped"},

 "action":"partial",

 "data":[

 {"symbol":"XBTUSD","id":17999992000,"side":"Sell","size":100,"price":80},

 {"symbol":"XBTUSD","id":17999993000,"side":"Sell","size":20,"price":70},

 {"symbol":"XBTUSD","id":17999994000,"side":"Sell","size":10,"price":60},

 {"symbol":"XBTUSD","id":17999995000,"side":"Buy","size":10,"price":50},

 {"symbol":"XBTUSD","id":17999996000,"side":"Buy","size":20,"price":40},

 {"symbol":"XBTUSD","id":17999997000,"side":"Buy","size":100,"price":30}

]

}

{

 "table":"orderBookL2_25",

 "action":"update",

 "data":[

 {"symbol":"XBTUSD","id":17999995000,"side":"Buy","size":5}

]

 }

{

 "table":"orderBookL2_25",

 "action":"delete",

 "data":[

 {"symbol":"XBTUSD","id":17999995000,"side":"Buy"}

]

}

{

 "table":"orderBookL2_25",

 "action":"insert",

 "data":[

 {"symbol":"XBTUSD","id":17999995500,"side":"Buy","size":10,"price":45},

]

}

Authentication

If you wish to subscribe to user-locked streams, you must authenticate first. Note that invalid authentication
will close the connection.

BitMEX API usage requires an API Key.

COMPONENTS

466

Permanent API Keys can be locked to IP address ranges and revoked at will without compromising your
main credentials. They also do not require renewal.

To use API Key auth, you must generate an API Key in your account.

Cal method Authenticate before subscribe to any Authenticated Topic.

REST API

Method Description
GetExecutions This returns all raw transactions, which includes order opening and cancela

tion, and order status changes.
GetExecutionsTrade
History This returns more focused Transactions.

GetInstruments
This returns all instruments and indices, including those that have settled or are
unlisted. Use this endpoint if you want to query for individual instruments or use
a complex filter.

GetOrders To get open orders only
PlaceOrder Place a raw order using TsgcHTTPBitmexOrder object.
PlaceMarketOrder Place a new MARKET order.
PlaceLimitOrder Place a new LIMIT order.
PlaceStopOrder Place a new STOP order.
PlaceStopLimitOrder Place a new STOPLIMIT order.
AmendOrder Modify an existing order.
CancelOrder Cancels an active Order.
CancelAllOrders Cancel All Active Orders.
CancelAllOrdersAfter Cancel All Orders after some time.
ClosePosition Close an open position.
GetOrderBook Get Current OrderBook in vertifcal format
GetPosition Get your positions.
SetPositionIsolate Enable isolated margin or cross-margin per position.
SetPositionLeverage Choose leverage per position.
SetPositionRiskLimit Update your risk limit.
SetPositionTransfer
Margin Transfer equity in or out of a position.

GetQuotes Get Quotes
GetTrades Get Trades

COMPONENTS

467

Bitmex | Connect WebSocket API
In order to connect to Bitmex WebSocket API, just create a new Binance API client and attach to TsgcWebSocket
Client.
See below an example:

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_Bitmex oBitmex = new TsgcWSAPI_Bitmex();

oBitmex->Client = oClient;

oClient->Active = true;

COMPONENTS

468

Bitmex | Subscribe WebSocket Channel
Bitmex offers a variety of channels where you can subscribe to get real-time updates of market data, orders... Find
below a sample of how subscribe to a Trade Channel:

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

TsgcWSAPI_Bitmex oBitmex = new TsgcWSAPI_Bitmex();

oBitmex->Client = oClient;

oBitmex->Subscribe(btmTrade, "XBTUSD");

void OnBitmexMessage(Sender: TObject; const aTopic: TwsBitmexTopics; const aMessage: string)

{

// here you will receive the trade updates

}

COMPONENTS

469

•
•

•
•

•

◦
◦

◦
•

•

•
•

◦

◦
◦
◦

•

•

•

•

Bitmex | How Place Orders
The Bitmex REST API offer public and private endpoints. The Private endpoints requires that messages signed to
increase the security of transactions.
First you must login to your Bitmex account and create a new API, you will get the following values:

ApiKey
ApiSecret

These fields must be configured in the Bitmex property of the Bitmex API client component. Once configured, you
can start to do private requests to the Bitmex REST API.

Order Types

All orders require a symbol. All other fields are optional except when otherwise specified.
These are the valid ordTypes:

Limit: The default order type. Specify an orderQty and price.
Market: A traditional Market order. A Market order will execute until filled or your bankruptcy price is reached,
at which point it will cancel.
Stop: A Stop Market order. Specify an orderQty and stopPx. When the stopPx is reached, the order will be
entered into the book.

On sell orders, the order will trigger if the triggering price is lower than the stopPx. On buys, higher.
Note: Stop orders do not consume margin until triggered. Be sure that the required margin is available
in your account so that it may trigger fully.
Close Stops don't require an orderQty. See Execution Instructions below.

StopLimit: Like a Stop Market, but enters a Limit order instead of a Market order. Specify
an orderQty, stopPx, and price.
MarketIfTouched: Similar to a Stop, but triggers are done in the opposite direction. Useful for Take Profit or
ders.
LimitIfTouched: As above; use for Take Profit Limit orders.
Pegged: Pegged orders allow users to submit a limit price relative to the current market price. Specify
a pegPriceType, and pegOffsetValue.

Pegged orders must have an execInst of Fixed. This means the limit price is set at the time the order
is accepted and does not change as the reference price changes.
PrimaryPeg: Price is set relative to near touch price.
MarketPeg: Price is set relative to far touch price.
A pegPriceType submitted with no ordType is treated as a Pegged order.

Execution Instructions

The following execInsts are supported. If using multiple, separate with a comma (e.g. LastPrice,Close).

ParticipateDoNotInitiate: Also known as a PostOnly order. If this order would have executed on place
ment, it will cancel instead. This is intended to protect you from the far touch moving towards you while the
order is in transit. It is not intended for speculating on the far touch moving away after submission we con
sider such behaviour abusive and monitor for it.
MarkPrice, LastPrice, IndexPrice: Used by stop and if-touched orders to determine the triggering price.
Use only one. By default, MarkPrice is used. Also used for Pegged orders to define the value of LastPeg.
ReduceOnly: A ReduceOnly order can only reduce your position, not increase it. If you have
a ReduceOnly limit order that rests in the order book while the position is reduced by other orders, then its
order quantity will be amended down or canceled. If there are multiple ReduceOnly orders the least aggres
sive will be amended first.
Close: Close implies ReduceOnly. A Close order will cancel other active limit orders with the same side and
symbol if the open quantity exceeds the current position. This is useful for stops: by canceling these orders,
a Close Stop is ensured to have the margin required to execute, and can only execute up to the full size of
your position. If orderQty is not specified, a Close order has an orderQty equal to your current position's size.

COMPONENTS

470

◦

•
◦

▪
▪

◦
▪
▪

•

•
•

Note that a Close order without an orderQty requires a side, so that BitMEX knows if it should trigger
above or below the stopPx.

LastWithinMark: Used by stop orders with LastPrice to allow stop triggers only when:
For Sell Stop Market / Stop Limit Order

Last Price <= Stop Price
Last Price >= Mark Price × (1 - 5%)

For Buy Stop Market / Stop Limit Order:
Last Price >= Stop Price
Last Price <= Mark Price × (1 + 5%)

Fixed: Pegged orders must have an execInst of Fixed. This means the limit price is set at the time the order
is accepted and does not change as the reference price changes.

Pegged Orders

Pegged orders allow users to submit a limit price relative to the current market price. The limit price is set once
when the order is submitted and does not change with the reference price. This order type is not intended for spec
ulating on the far touch moving away after submission - we consider such behaviour abusive and monitor for it.

Pegged orders have an ordType of Pegged, and an execInst of Fixed.

A pegPriceType and pegOffsetValue must also be submitted:

PrimaryPeg price is set relative to the near touch price
MarketPeg price is set relative to the far touch price

Trailing Stop Pegged Orders

Use pegPriceType of TrailingStopPeg to create Trailing Stops.

The price is set at submission and updates once per second if the underlying price (last/mark/index) has moved by
more than 0.1%. stopPx then moves as the market moves away from the peg, and freezes as the market moves to
ward it.

Use pegOffsetValue to set the stopPx of your order. The peg is set to the triggering price specified in
the execInst (default MarkPrice). Use a negative offset for stop-sell and buy-if-touched orders.

Requires ordType: Stop, StopLimit, MarketIfTouched, LimitIfTouched.

Trailing Stops

You may use pegPriceType of 'TrailingStopPeg' to create Trailing Stops. The pegged stopPx will move as the mar
ket moves away from the peg, and freeze as the market moves toward it.

To use, combine with pegOffsetValue to set the stopPx of your order. The peg is set to the triggering price specified
in the execInst (default 'MarkPrice'). Use a negative offset for stop-sell and buy-if-touched orders.

Requires ordType: 'Stop', 'StopLimit', 'MarketIfTouched', 'LimitIfTouched'.

Tracking Your Orders

If you want to keep track of order IDs yourself, set a unique clOrdID per order. This clOrdID will come back as a
property on the order and any related executions (including on the WebSocket), and can be used to get or cancel
the order. Max length is 36 characters.

Examples:

// buy market order

BITMEX->REST_API->PlaceMarketOrder(bmosBuy, "XBTUSD", 100);

// sell limit order at 45000

BITMEX->REST_API->PlaceLimitOrder(bmosSell, "XBTUSD", 100, 45000.00);

// stop order at 48000

BITMEX->REST_API->PlaceStopOrder(bmosSell, "XBTUSD", 100, 48000.00);

COMPONENTS

471

•
•

API Bitfinex
Bitfinex

Bitfinex is one of the world's largest and most advanced cryptocurrency trading platform. Users can exchange Bit
coin, Ethereum, Ripple, EOS, Bitcoin Cash, Iota, NEO, Litecoin, Ethereum Classic...

Bitfinex WebSocket API version is 2.0

Each message sent and received via the Bitfinex's WebSocket channel is encoded in JSON format

A symbol can be a trading pair or a margin currency:

Trading pairs symbols are formed prepending a "t" before the pair (i.e tBTCUSD, tETHUSD).
Margin currencies symbols are formed prepending an "f" before the currency (i.e fUSD, fBTC, ...)

After a successful connection, OnBitfinexConnect event is raised and you get Bitfinex API Version number as a
parameter.

You can call Ping method to test connection to the server.

If the server sends any information, this can be handle using OnBitfinexInfoMessage event, where a Code and a
Message are parameters with information about the message sent by the server. Example codes:

20051 : Stop/Restart WebSocket Server (please reconnect)
20060 : Entering in Maintenance mode. Please pause any activity and resume after receiving the info mes
sage 20061 (it should take 120 seconds at most).
20061 : Maintenance ended. You can resume normal activity. It is advised to unsubscribe/subscribe again all
channels.

In case of error, OnBitfinexError will be raised, and information about error provided. Example error codes:

10000 : Unknown event
10001 : Unknown pair

In order to change the configuration, call Configuration method and pass as a parameter one of the following
flags:

CS_DEC_S = 8; // Enable all decimal as strings.
CS_TIME_S = 32; // Enable all times as date strings.
CS_SEQ_ALL = 65536; // Enable sequencing BETA FEATURE
CHECKSUM = 131072; // Enable checksum for every book iteration. Checks the top 25 entries for each side
of the book. The checksum is a signed int.

Subscribe Public Channels

There are channels which are public and there is no need to authenticate against the server. All messages are
raised OnBitfinexUpdate event.

SubscribeTicker

The ticker is a high level overview of the state of the market. It shows you the current best bid and ask, as well as
the last trade price. It also includes information such as daily volume and how much the price has moved over the
last day.

https://www.bitfinex.com/

COMPONENTS

472

// Trading pairs

[

 CHANNEL_ID,

 [

 BID,

 BID_SIZE,

 ASK,

 ASK_SIZE,

 DAILY_CHANGE,

 DAILY_CHANGE_PERC,

 LAST_PRICE,

 VOLUME,

 HIGH,

 LOW

]

]

// Funding pairs

[

 CHANNEL_ID,

 [

 FRR,

 BID,

 BID_PERIOD,

 BID_SIZE,

 ASK,

 ASK_PERIOD,

 ASK_SIZE,

 DAILY_CHANGE,

 DAILY_CHANGE_PERC,

 LAST_PRICE,

 VOLUME,

 HIGH,

 LOW

]

]

SubscribeTrades

This channel sends a trade message whenever a trade occurs at Bitfinex. It includes all the pertinent details of the
trade, such as price, size and time.

// on trading pairs (ex. tBTCUSD)

[

 CHANNEL_ID,

 [

 [

 ID,

 MTS,

 AMOUNT,

 PRICE

],

 ...

]

]

// on funding currencies (ex. fUSD)

[

 CHANNEL_ID,

 [

 [

 ID,

 MTS,

 AMOUNT,

 RATE,

 PERIOD

],

 ...

]

]

COMPONENTS

473

SubscribeOrderBook

The Order Books channel allows you to keep track of the state of the Bitfinex order book. It is provided on a price
aggregated basis, with customizable precision. After receiving the response, you will receive a snapshot of the
book, followed by updates upon any changes to the book.

// on trading pairs (ex. tBTCUSD)

[

 CHANNEL_ID,

 [

 [

 PRICE,

 COUNT,

 AMOUNT

],

 ...

]

]

// on funding currencies (ex. fUSD)

[

 CHANNEL_ID,

 [

 [

 RATE,

 PERIOD,

 COUNT,

 AMOUNT

],

 ...

]

]

SubscribeRawOrderBook

These are the most granular books.

// on trading pairs (ex. tBTCUSD)

[

 CHANNEL_ID,

 [

 [

 ORDER_ID,

 PRICE,

 AMOUNT

],

 ...

]

]

// on funding currencies (ex. fUSD)

[

 CHANNEL_ID,

 [

 [

 OFFER_ID,

 PERIOD,

 RATE,

 AMOUNT

],

 ...

]

]

SubscribeCandles

Provides a way to access charting candle info. Time Frames:

COMPONENTS

474

1m: one minute
5m : five minutes
15m : 15 minutes
30m : 30 minutes
1h : one hour
3h : 3 hours
6h : 6 hours
12h : 12 hours
1D : one day
7D : one week
14D : two weeks
1M : one month

[

 CHANNEL_ID,

 [

 [

 MTS,

 OPEN,

 CLOSE,

 HIGH,

 LOW,

 VOLUME

],

 ...

]

]

Subscribe Authenticated Channels

This channel allows you to keep up to date with the status of your account. You can receive updates on your posi
tions, your balances, your orders and your trades.

Use Authenticate method in order to Authenticate against the server and set required parameters.

Once authenticated, you will receive updates of: Orders, positions, trades, funding offers, funding credits, funding
loans, wallets, balance info, margin info, funding info, funding trades...

You can request UnAuthenticate method if you want to log off from the server.

COMPONENTS

475

1.

2.

•
•

•
•

•
•
•
•

•
•

•
•
•

•
•
•
•
•

API Kucoin
Kucoin

Kucoin is an international multi-language cryptocurrency exchange. It offers some APIs to access Kucoin data. The
following APIs are supported:

WebSocket streams: allows to subscribe to some methods and get data in real-time. Events are pushed to
clients by server to subscribers. Uses WebSocket as protocol.
REST API: clients can request to server market and account data. Requires an API Key, Secret and
Passphrase to authenticate and uses HTTPs as protocol.

Properties

Kucoin API has 2 types of methods: public and private. Public methods can be accessed without authentication, ex
ample: get ticker prices. Private and related to user data methods requires the use of Kucoin API keys.

ApiKey: you can request a new api key in your kucoin account, just copy the value to this property.
ApiSecret: API secret is only required for REST_API, websocket api only requires ApiKey for some meth
ods.
Passphrase: string required to connect to Kucoin Servers.
Sandbox: if enabled it will connect to Kucoin Demo Account (by default false).

HTTPLogOptions: stores in a text file a log of HTTP requests
Enabled: if enabled, will store all HTTP requests of WebSocket API.
FileName: full path of filename where logs will be stored
REST: stores in a text file a log of REST API requests

Enabled: if enabled, will store all HTTP Requests of REST API.
FileName: full path of filename where logs will be stored.

Most common uses

WebSockets API
How Connect WebSocket API
How Subscribe WebSocket Channel

REST API
How Get Market Data
How Use Private REST API
How Trade Spot
Private Requests Time

WebSocket Feed

To subscribe channel messages from a certain server, the client side should send subscription message to the
server.
If the subscription succeeds, the system will send ack messages to you, when the response is set as true.
{
 "id":"1545910660739",
 "type":"ack"
}
While there are topic messages generated, the system will send the corresponding messages to the client side.

The following Subscription / Unsubscription methods are supported.

https://www.kucoin.com/

COMPONENTS

476

Public Channels

Method Parame
ters Description

SubscribeSymbolTicker Symbol

Subscribe to this topic to get the push of BBO changes. If there is
no change within one second, it will not be pushed. It will be
pushed per 100ms with the newest BBO. If there was no change
compared with last data, it will not be pushed.

SubscribeAllSymbolsTicker Subscribe to this topic to get the push of all market symbols BBO
change.

SubscribeSymbolSnapshot Symbol
Subscribe to get snapshot data for a single symbol. The snapshot
data is pushed at 2 seconds intervals.

SubscribeMarketSnapshot Market
Subscribe this topic to get the snapshot data of for the entire mar
ket. The snapshot data is pushed at 2 seconds intervals.

SubscribeLevel2MarketData Symbol
Subscribe to this topic to get Level2 order book data. When the
websocket subscription is successful, the system would send the
increment change data pushed by the websocket to you.

SubscribeLevel2_5BestAskBid Symbol

The system will return the 5 best ask/bid orders data, which is the
snapshot data of every 100 milliseconds (in other words, the 5
best ask/bid orders data returned every 100 milliseconds in real-
time).

SubscribeLevel2_50BestAskBid Symbol

The system will return the 50 best ask/bid orders data, which is
the snapshot data of every 100 milliseconds (in other words, the
50 best ask/bid orders data returned every 100 milliseconds in re
al-time).

SubscribeKlines Symbol Subscribe to this topic to get K-Line data.

SubscribeMatchExecutionData Symbol
Subscribe to this topic to get the matching event data flow of Lev
el 3. For each order traded, the system would send you the
match messages in the following format.

SubscribeIndexPrice Symbol
Subscribe to this topic to get the index price for the margin trad
ing.

SubscribeMarkPrice Symbol Subscribe to this topic to get the mark price for margin trading.

SubscribeOrderBookChanged Symbol
Subscribe to this topic to get the order book changes on margin
trade.

If ACK parameter is sent to true, after a successful subcription / unsubscription, client receives a message about it.

Private Channels

Requires a valid ApiKey obtained from your Kucoin account. The ApiKey, ApiSecret and Passphrase must be set in
the Kucoin property of the client API component.

The following data is pushed to client every time there is a change. There is no need to subscribe to any method,
this is done automatically if you set a valid ApiKey.

Method Description
SubscribeTradeOrders This topic will push all change events of your orders.

SubscribeAccountBalance You will receive this message when an account balance changes. The message con
tains the details of the change.

SubscribePositionStatus The system will push the change event when the position status changes.
SubscribeMarginTrade
Orders

The system will push this message to the lenders when the order enters the order book.

COMPONENTS

477

SubscribeStopOrder
When a stop order is received by the system, you will receive a message with "open"
type. It means that this order entered the system and waited to be triggered.

REST API

All endpoints return either a JSON object or array.

Public API EndPoints

These endpoints can be accessed without any authorization.

General EndPoints

Method Parameters Description
GetServiceSta
tus

 Test connectivity to the Rest API and get the Service STatus

GetServerTime Test connectivity to the Rest API and get the current server
time.

Market Data EndPoints

Method Parameters Description

GetSymbolList Market
Request via this endpoint to get a list of available currency pairs
for trading. If you want to get the market information of the trad
ing symbol

GetTicker Symbol

Request via this endpoint to get Level 1 Market Data. The re
turned value includes the best bid price and size, the best ask
price and size as well as the last traded price and the last trad
ed size.

GetAllTickers Request market tickers for all the trading pairs in the market (in
cluding 24h volume).

Get24hrStats Symbol
Request via this endpoint to get the statistics of the specified
ticker in the last 24 hours.

GetMarketList Request via this endpoint to get the transaction currency for the
entire trading market.

GetPartOrder
Book20

Symbol

Request via this endpoint to get a list of open orders for a sym
bol. Level-2 order book includes all bids and asks (aggregated
by price), this level returns only one size for each active price
(as if there was only a single order for that price). The system
will return you 20 pieces of data (ask and bid data) on the order
book.

GetPartOrder
Book100

Symbol

Request via this endpoint to get a list of open orders for a sym
bol. Level-2 order book includes all bids and asks (aggregated
by price), this level returns only one size for each active price
(as if there was only a single order for that price). The system
will return you 100 pieces of data (ask and bid data) on the or
der book.

GetFullOrder
Book

Symbol
Request via this endpoint to get the order book of the specified
symbol. Level 2 order book includes all bids and asks (aggre
gated by price). This level returns only one aggregated size for

COMPONENTS

478

each price (as if there was only one single order for that price).
This API will return data with full depth.

GetKLines Symbol
Request via this endpoint to get the kline of the specified sym
bol. Data are returned in grouped buckets based on requested
type.

GetCurrencies Request via this endpoint to get the currency list.
GetCurrencyDe
tail

Currency
Request via this endpoint to get the currency details of a speci
fied currency

GetFiatPrice Request via this endpoint to get the currency details of a speci
fied currency

Private API EndPoints

Requires an APIKey and APISecret to get authorized by server.

User EndPoints

Method Parameters Description
GetAllSubAc
counts

 You can get the user info of all sub-users via this interface.

GetListAccounts Get a list of accounts.

GetAccount AccountId
Information for a single account. Use this endpoint when you
know the accountId.

GetAccountBal
anceSubAc
count

SubUserId
This endpoint returns the account info of a sub-user specified by
the subUserId.

InnerTransfer

This API endpoint can be used to transfer funds between ac
counts internally. Users can transfer funds between their main
account, trading account, cross margin account, and isolated
margin account free of charge. Transfer of funds from the main
account, cross margin account, and trading account to the fu
tures account is supported, but transfer of funds from futures ac
counts to other accounts is not supported.

Withdraw EndPoints

Method Parameters Description
GetWithdrawal
sList

 Get a list of the Withdrawals.

GetHistorical
WithdrawalsList

 List of KuCoin V1 historical withdrawals.

GetWithdrawal
sQuotas

Currency Get Withdrawals Quotas

ApplyWithdraw Currency, Address, Amount Create a Withdraw

CancelWithdraw WithdrawalId
Only withdrawals requests of PROCESSING status could be
canceled.

Trade Endpoints

Method Parameters Description

COMPONENTS

479

PlaceOrder

You can place two types of orders: limit and market. Orders can
only be placed if your account has sufficient funds. Once an or
der is placed, your account funds will be put on hold for the du
ration of the order. How much and which funds are put on hold
depends on the order type and parameters specified

PlaceMarke
tOrder

 Places a Market Order.

PlaceLimitOrder Places a Limit Order.
PlaceMargin
Order

 Places a Margin Order.

CancelOrder Cancels an Order by Order Id.
CancelOrderBy
ClientOid

 Cancels an Order by Client Order Id.

CancelAllOrders Cancel all open orders.

ListOrders Request via this endpoint to get your current order list. Items are
paginated and sorted to show the latest first

GetRecen
tOrders

 Request via this endpoint to get 1000 orders in the last 24
hours.

GetOrder Request via this endpoint to get a single order info by order ID.
GetOrderBy
ClientOid

 Request via this endpoint to get a single order info by Client or
der ID.

ListFills Request via this endpoint to get the recent fills.

GetRecentFills Request via this endpoint to get a list of 1000 fills in the last 24
hours.

PlaceStopOrder Places a Stop Order.
PlaceStopMar
ketOrder

 Places a Stop Market Order.

PlaceStopLimi
tOrder

 Places a Stop Limit Order.

CancelSto
pOrder

 Cancels a Open Stop Order by Order Id

CancelSto
pOrderByClien
tOid

 Cancels a Open Stop Order by Client Order Id

CancelAllSto
pOrders

 Cancel All Stop Orders

GetStopOrder Request via this interface to get a stop order information via the
order ID.

GetStopOrder
ByClientOid

 Request via this interface to get a stop order information via the
Client order ID.

ListStopOrders Request via this endpoint to get your current untriggered stop
order list. Items are paginated and sorted to show the latest first.

Events

Kucoin Messages are received in TsgcWebSocketClient component, you can use the following events:

OnConnect
After a successful connection to Kucoin server.

OnDisconnect
After a disconnection from Kucoin server

OnMessage

COMPONENTS

480

Messages sent by server to client are handled in this event.
OnError

If there is any error in protocol, this event will be called.
OnException

If there is an unhandled exception, this event will be called.

Additionally, there is a specific event in Kucoin API Component, called OnKucoinHTTPException, which is raised
every time there is an error calling an HTTP Request (REST API or WebSocket Feeds).

COMPONENTS

481

Kucoin | Connect WebSocket API
In order to connect to Kucoin WebSocket API, just create a new Kucoin API client and attach to TsgcWebSocket
Client.
See below an example:

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_Kucoin *oKucoin = new TsgcWSAPI_Kucoin();

oKucoin->Client = oClient;

oClient->Active = true;

COMPONENTS

482

Kucoin | Subscribe WebSocket Channel
Kucoin offers a variety of channels where you can subscribe to get real-time updates of market data, orders... Find
below a sample of how subscribe to a Ticker:

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_Kucoin *oKucoin = new TsgcWSAPI_Kucoin();

oKucoin->Client = oClient;

oKucoin->SubscribeSymbolTicker("BTC-USDT");

void OnMessage(TsgcWSConnection *Connection, const string aText)

{

// here you will receive the ticker updates

}

COMPONENTS

483

Kucoin | Get Market Data
Kucoin offers public Market Data through REST Endpoints, when you call one of these endpoints, you will get an
snapshot of the market data requested.
The Market Data Endpoints doesn't require authentication, so are freely available to all users.

Example: to get the snapshot of the ticker BTC-USDT, do the following call

TsgcWSAPI_Kucoin *oKucoin = new TsgcWSAPI_Kucoin(this);

ShowMessage(oKucoin->REST_API->GetTicker("

BTC-USDT

"));

COMPONENTS

484

•
•
•

Kucoin | Private REST API
The Kucoin REST API offer public and private endpoints. The Private endpoints requires that messages signed to
increase the security of transactions.
First you must login to your Kucoin account and create a new API, you will get the following values:

ApiKey
ApiSecret
Passphrase

These fields must be configured in the Kucoin property of the Kucoin API client component.
Once configured, you can start to do private requests to the Kucoin Pro REST API

*Private Requests, require that your local machine has the local time synchronized, if not, the requests will be re
jected by Kucoin server. Check the following article about this, Kucoin Private Requests Time.

TsgcWSAPI_Kucoin *oKucoin = new TsgcWSAPI_Kucoin(this);

oKucoin->Kucoin->ApiKey = "<your api key>";

oKucoin->Kucoin->ApiSecret = "<your api secret>";

oKucoin->Kucoin->Passphrase = "<your passphrase>";

ShowMessage(oKucoin->REST_API->GetListAccounts());

COMPONENTS

485

Kucoin | Trade Spot
Kucoin allows to trade with spot using his REST API.

Configuration

First you must create an API Key in your Kucoin account and add privileges to trading with Spot.
Once this is done, you can start spot trading.
First, set your ApiKey, ApiSecret and Passphrase in the Kucoin Client Component, this will be used to sign the
requests sent to Kucoin server.

Place an Order

To place a new order, just call to method REST_API.PlaceOrder of Kucoin Client Component.

Depending of the type of the order (market, limit...) the API requires more or less fields.

Parameters

Param type Description
clien
tOid String Unique order id created by users to identify their orders, e.g. UUID.

side String buy or sell
symbol String a valid trading symbol code. e.g. ETH-BTC
type String [Optional] limit or market (default is limit)
remark String [Optional] remark for the order, length cannot exceed 100 utf8 characters
stp String [Optional] self trade prevention , CN, CO, CB or DC

trade
Type String

[Optional] The type of trading : TRADE（Spot Trade）, MARGIN_TRADE (Margin Trade).
Default is TRADE. Note: To improve the system performance and to accelerate order plac
ing and processing, KuCoin has added a new interface for order placing of margin. For
traders still using the current interface, please move to the new one as soon as possible.
The current one will no longer accept margin orders by May 1st, 2021 (UTC). At the time,
KuCoin will notify users via the announcement, please pay attention to it.

LIMIT ORDER PARAMETERS

Param type Description
price String price per base currency
size String amount of base currency to buy or sell
timeInForce String [Optional] GTC, GTT, IOC, or FOK (default is GTC), read Time In Force.
cancelAfter long [Optional] cancel after n seconds, requires timeInForce to be GTT
postOnly boolean [Optional] Post only flag, invalid when timeInForce is IOC or FOK
hidden boolean [Optional] Order will not be displayed in the order book
iceberg boolean [Optional] Only aportion of the order is displayed in the order book
visibleSize String [Optional] The maximum visible size of an iceberg order

COMPONENTS

486

•

MARKET ORDER PARAMETERS

Param type Description
size String [Optional] Desired amount in base currency
funds String [Optional] The desired amount of quote currency to use

When you send an order, there are 2 possibilities:

1. Successful: the function PlaceOrder returns the message sent by Kucoin server.
2. Error: the exception is returned in the event OnKucoinHTTPException.

Place Market Order 1 BTC-USDT

TsgcWSAPI_Kucoin *oKucoin = new TsgcWSAPI_Kucoin(this);

oKucoin->Kucoin->ApiKey = "<api key>";

oKucoin->Kucoin->ApiSecret = "<api secret>";

oKucoin->Kucoin->Passphrase = "<passphrase>";

ShowMessage(oKucoin->REST_API->

PlaceMarketOrder

(

kosBuy, "BTC-USDT", 1

));

Place Limit Order 1 BTC-USDT at 40000

TsgcWSAPI_Kucoin *oKucoin = new TsgcWSAPI_Kucoin(this);

oKucoin->Kucoin->ApiKey = "<api key>";

oKucoin->Kucoin->ApiSecret = "<api secret>";

oKucoin->Kucoin->Passphrase = "<passphrase>";

ShowMessage(oKucoin->REST_API->

PlaceLimitOrder

(

kosBuy, "BTC-USDT", 1, 40000

);

COMPONENTS

487

Kucoin | Private Requests Time
When you do a private request to Kucoin, the message is signed so increase the security of requests. The mes
sage takes the local time and sends inside the signed message, if the local time has a difference greater than 5
seconds with Kucoin servers, the request will be rejected. So, it's important verify that your local time is synchro
nized, you can do this using the synchronization time method for your OS.

You can check the Kucoin server time, calling method GetServerTime, which will return the time of the Kucoin
server

COMPONENTS

488

1.

2.

•
•

•
•

•
•
•
•

•
•

•
•
•

•
•
•
•
•

API Kucoin Futures
Kucoin Futures

Kucoin is an international multi-language cryptocurrency exchange. It offers some APIs to access Kucoin data. The
following APIs are supported:

WebSocket streams: allows to subscribe to some methods and get data in real-time. Events are pushed to
clients by server to subscribers. Uses WebSocket as protocol.
REST API: clients can request to server market and account data. Requires an API Key, Secret and
Passphrase to authenticate and uses HTTPs as protocol.

Properties

Kucoin API has 2 types of methods: public and private. Public methods can be accessed without authentication, ex
ample: get ticker prices. Private and related to user data methods requires the use of Kucoin API keys.

ApiKey: you can request a new api key in your kucoin account, just copy the value to this property.
ApiSecret: API secret is only required for REST_API, websocket api only requires ApiKey for some meth
ods.
Passphrase: string required to connect to Kucoin Servers.
Sandbox: if enabled it will connect to Kucoin Demo Account (by default false).

HTTPLogOptions: stores in a text file a log of HTTP requests
Enabled: if enabled, will store all HTTP requests of WebSocket API.
FileName: full path of filename where logs will be stored
REST: stores in a text file a log of REST API requests

Enabled: if enabled, will store all HTTP Requests of REST API.
FileName: full path of filename where logs will be stored.

Most common uses

WebSockets API
How Connect WebSocket API
How Subscribe WebSocket Channel

REST API
How Get Market Data
How Use Private REST API
How Trade Futures
Private Requests Time

WebSocket Feed

To subscribe channel messages from a certain server, the client side should send subscription message to the
server.
If the subscription succeeds, the system will send ack messages to you, when the response is set as true.
{
 "id":"1545910660739",
 "type":"ack"
}
While there are topic messages generated, the system will send the corresponding messages to the client side.

The following Subscription / Unsubscription methods are supported.

https://futures.kucoin.com/

COMPONENTS

489

Public Channels

Method Parame
ters Description

SubscribeSymbolTickerV2 Symbol

Subscribe this topic to get the realtime push of BBO changes. Af
ter subscription, when there are changes in the order book, the
system will push the real-time ticker symbol information to you. It
is recommended to use the new topic for timely information.

SubscribeSymbolTicker Symbol

Subscribe this topic to get the realtime push of BBO changes.
The ticker channel provides real-time price updates whenever a
match happens. If multiple orders are matched at the same time,
only the last matching event will be pushed.

SubscribeLevel2MarketData Symbol Subscribe this topic to get Level 2 order book data.

SubscribeExecutionData Symbol
For each order executed, the system will send you the match
messages in the format as following.

SubscribeLevel2_5BestAskBid Symbol Returned for every 100 milliseconds at most.
SubscribeLevel2_50BestAskBid Symbol Returned for every 100 milliseconds at most.
SubscribeContractMarketData Symbol Subscribe this topic to get the market data of the contract.
SubscribeSystemAnnounce
ments

Symbol Subscribe this topic to get the system announcements.

SubscribeTransactionStatistics Symbol
The transaction statistics will be pushed to users every 5 sec
onds.

If ACK parameter is sent to true, after a successful subcription / unsubscription, client receives a message about it.

Private Channels

Requires a valid ApiKey obtained from your Kucoin account. The ApiKey, ApiSecret and Passphrase must be set in
the Kucoin property of the client API component.

The following data is pushed to client every time there is a change. There is no need to subscribe to any method,
this is done automatically if you set a valid ApiKey.

Method Description
SubscribeTradeOrders This topic will push all change events of your orders.

SubscribeAccountBalance You will receive this message when an account balance changes. The message con
tains the details of the change.

SubscribePositionChange The system will push the change event when the position status changes.

SubscribeStopOrder
When a stop order is received by the system, you will receive a message with "open"
type. It means that this order entered the system and waited to be triggered.

REST API

All endpoints return either a JSON object or array.

Public API EndPoints

These endpoints can be accessed without any authorization.

General EndPoints

COMPONENTS

490

Method Parameters Description
GetServiceSta
tus

 Test connectivity to the Rest API and get the Service STatus

GetServerTime Test connectivity to the Rest API and get the current server
time.

Market Data EndPoints

Method Parameters Description
GetOpenContractList Submit request to get the info of all open contracts.
GetOrderInfoContract Submit request to get info of the specified contract.

GetTicker Symbol

The real-time ticker includes the last traded price, the
last traded size, transaction ID, the side of liquidity tak
er, the best bid price and size, the best ask price and
size as well as the transaction time of the orders.
These messages can also be obtained through Web
socket. The Sequence Number is used to judge
whether the messages pushed by Websocket is contin
uous.

GetPartOrderBook20 Symbol
Get a snapshot of aggregated open orders for a sym
bol.

GetPartOrderBook100 Symbol
Get a snapshot of aggregated open orders for a sym
bol.

GetFullOrderBook Symbol
Get a snapshot of aggregated open orders for a sym
bol.

GetLevel2PullingMessages Symbol

If the messages pushed by Websocket is not continu
ous, you can submit the following request and re-pull
the data to ensure that the sequence is not missing. In
the request, the start parameter is the sequence num
ber of your last received message plus 1, and the end
parameter is the sequence number of your current re
ceived message minus 1. After re-pulling the messages
and applying them to your local exchange order book,
you can continue to update the order book via Web
socket incremental feed. If the difference between the
end and start parameter is more than 500, please stop
using this request and we suggest you to rebuild the
Level 2 orderbook.

GetTradeHistory Symbol List the last 100 trades for a symbol.
GetInterestRateList Symbol Check interest rate list.
GetIndexList Symbol Check index list
GetCurrentMarkPrice Symbol Check the current mark price.
GetPremiumIndex Symbol Submit request to get premium index.
GetCurrentFundingRate Symbol Submit request to check the current mark price.
GetKLine Symbol Get K Line Data of Contract

Private API EndPoints

Requires an APIKey and APISecret to get authorized by server.

COMPONENTS

491

User EndPoints

Method Parameters Description
GetAccoun
tOverview

 Get Account Overview

GetTransaction
History

If there are open positions, the status of the first page returned
will be Pending, indicating the realised profit and loss in the cur
rent 8hour settlement period. Please specify the minimum off
set number of the current page into the offset field to turn the
page.

Trade Endpoints

Method Parameters Description

PlaceOrder

You can place two types of orders: limit and market.
Orders can only be placed if your account has suffi
cient funds. Once an order is placed, your funds will
be put on hold for the duration of the order. The
amount of funds on hold depends on the order type
and parameters specified.

PlaceMarketOrder Places a Market Order.
PlaceLimitOrder Places a Limit Order.
CancelOrder Cancels an Order by Order Id.

LimitOrderMassCancellation Cancel all open orders (excluding stop orders). The re
sponse is a list of orderIDs of the canceled orders.

StopOrderMassCancellation

Cancel all untriggered stop orders. The response is a
list of orderIDs of the canceled stop orders. To cancel
triggered stop orders, please use 'Limit Order Mass
Cancelation'.

GetOrderList List your current orders.
GetUntriggeredStopOrderList Get the un-triggered stop orders list.

GetListOrdersCompleted24hr
Get a list of recent 1000 orders in the last 24 hours. If
you need to get your recent traded order history with
low latency, you may query this endpoint.

GetOrder Get a single order by order id (including a stop order).

GetOrderByClientOid Get a single order by client order id (including a stop
order).

GetFills Get a list of recent fills.

GetRecentFills
Get a list of recent 1000 fills in the last 24 hours. If you
need to get your recent traded order history with low
latency, you may query this endpoint.

ActiveOrderValueCalculation You can query this endpoint to get the the total num
ber and value of the all your active orders.

GetPositionDetails Get the position details of a specified position.
GetPositionList Get the position details of a specified position.
AutoDepositMargin Enable/Disable of Auto-Deposit Margin
AddMarginManually Add Margin Manually

ObtainFuturesRiskLimitLevel This interface can be used to obtain information about
risk limit level of a specific contract

AdjustRiskLimitLevel This interface is for the adjustment of the risk limit lev
el. To adjust the level will cancel the open order, the

COMPONENTS

492

response can only indicate whether the submit of the
adjustment request is successful or not.

GetFundingHistory Submit request to get the funding history.

Events

Kucoin Messages are received in TsgcWebSocketClient component, you can use the following events:

OnConnect
After a successful connection to Kucoin server.

OnDisconnect
After a disconnection from Kucoin server

OnMessage
Messages sent by server to client are handled in this event.

OnError
If there is any error in protocol, this event will be called.

OnException
If there is an unhandled exception, this event will be called.

Additionally, there is a specific event in Kucoin API Component, called OnKucoinHTTPException, which is raised
every time there is an error calling an HTTP Request (REST API or WebSocket Feeds).

COMPONENTS

493

Kucon | Futures Connect WebSocket API
In order to connect to Kucoin WebSocket API, just create a new Kucoin API client and attach to TsgcWebSocket
Client.
See below an example:

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_Kucoin_Futures

*oKucoin = new

TsgcWSAPI_Kucoin_Futures

();

oKucoin->Client = oClient;

oClient->Active = true;

COMPONENTS

494

Kucoin | Futures Subscribe WebSocket
Channel
Kucoin offers a variety of channels where you can subscribe to get real-time updates of market data, orders... Find
below a sample of how subscribe to a Ticker:

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_Kucoin_Futures

*oKucoin = new

TsgcWSAPI_Kucoin_Futures

();

oKucoin->Client = oClient;

oKucoin->SubscribeSymbolTickerV2("XBTUSDM");

void OnMessage(TsgcWSConnection *Connection, const string aText)

{

// here you will receive the ticker updates

}

COMPONENTS

495

Kucoin | Futures Get Market Data
Kucoin offers public Market Data through REST Endpoints, when you call one of these endpoints, you will get an
snapshot of the market data requested.
The Market Data Endpoints doesn't require authentication, so are freely available to all users.

Example: to get the snapshot of the ticker BTC-USDT, do the following call

TsgcWSAPI_Kucoin_Futures

*oKucoin = new

TsgcWSAPI_Kucoin_Futures

(this);

ShowMessage(oKucoin->REST_API->GetTicker("

XBTUSDM

"));

COMPONENTS

496

•
•
•

Kucoin | Futures Private REST API
The Kucoin REST API offer public and private endpoints. The Private endpoints requires that messages signed to
increase the security of transactions.
First you must login to your Kucoin account and create a new API, you will get the following values:

ApiKey
ApiSecret
Passphrase

These fields must be configured in the Kucoin property of the Kucoin API client component.
Once configured, you can start to do private requests to the Kucoin Pro REST API

*Private Requests, require that your local machine has the local time synchronized, if not, the requests will be re
jected by Kucoin server. Check the following article about this, Kucoin Private Requests Time.

TsgcWSAPI_Kucoin_Futures

*oKucoin = new

TsgcWSAPI_Kucoin_Futures

(this);

oKucoin->Kucoin->ApiKey = "<your api key>";

oKucoin->Kucoin->ApiSecret = "<your api secret>";

oKucoin->Kucoin->Passphrase = "<your passphrase>";

ShowMessage(oKucoin->REST_API->GetAccountOverview());

COMPONENTS

497

Kucoin | Futures Trade
Kucoin allows to trade with Futures using his REST API.

Configuration

First you must create an API Key in your Kucoin account and add privileges to trading with Futures.
Once this is done, you can start futures trading.
First, set your ApiKey, ApiSecret and Passphrase in the Kucoin Client Component, this will be used to sign the
requests sent to Kucoin server.

Place an Order

To place a new order, just call to method REST_API.PlaceOrder of Kucoin Client Component.

Depending of the type of the order (market, limit...) the API requires more or less fields.

Parameters

Param type Description

clientOid String Unique order id created by users to identify their orders, e.g. UUID, Only allows num
bers, characters, underline(_), and separator(-)

side String buy or sell
symbol String a valid contract code. e.g. XBTUSDM
type String [optional] Either limit or market
leverage String Leverage of the order
remark String [optional] remark for the order, length cannot exceed 100 utf8 characters
stop String [optional] Either down or up. Requires stopPrice and stopPriceType to be defined
stop
PriceType String [optional] Either TP, IP or MP, Need to be defined if stop is specified.

stopPrice String [optional] Need to be defined if stop is specified.
re
duceOnly boolean [optional] A mark to reduce the position size only. Set to false by default. Need to set

the position size when reduceOnly is true.
close
Order boolean [optional] A mark to close the position. Set to false by default. It will close all the posi

tions when closeOrder is true.

forceHold boolean
[optional] A mark to forcely hold the funds for an order, even though it's an order to re
duce the position size. This helps the order stay on the order book and not get can
celed when the position size changes. Set to false by default.

LIMIT ORDER PARAMETERS

Param type Description
price String Limit price

COMPONENTS

498

Param type Description
size Integer Order size. Must be a positive number
timeIn
Force String [optional] GTC, IOC(default is GTC), read Time In Force

postOnly boolean [optional] Post only flag, invalid when timeInForce is IOC. When postOnly
chose, not allowed choose hidden or iceberg.

hidden boolean [optional] Orders not displaying in order book. When hidden chose, not allowed
choose postOnly.

iceberg boolean [optional] Only visible portion of the order is displayed in the order book. When
iceberg chose, not allowed choose postOnly.

visible
Size Integer [optional] The maximum visible size of an iceberg order

MARKET ORDER PARAMETERS

Param type Description
size Integer [optional] amount of contract to buy or sell

When you send an order, there are 2 possibilities:

1. Successful: the function PlaceOrder returns the message sent by Kucoin server.
2. Error: the exception is returned in the event OnKucoinHTTPException.

Place Market Order 1 XBTUSDM

TsgcWSAPI_Kucoin_Futures

*oKucoin = new

TsgcWSAPI_Kucoin_Futures

(this);

oKucoin->Kucoin->ApiKey = "<api key>";

oKucoin->Kucoin->ApiSecret = "<api secret>";

oKucoin->Kucoin->Passphrase = "<passphrase>";

ShowMessage(oKucoin->REST_API->

PlaceMarketOrder

(

kosBuy, "XBTUSDM", 1

));

Place Limit Order 1 XBTUSDM at 40000

TsgcWSAPI_Kucoin_Futures

*oKucoin = new

TsgcWSAPI_Kucoin_Futures

(this);

oKucoin->Kucoin->ApiKey = "<api key>";

oKucoin->Kucoin->ApiSecret = "<api secret>";

oKucoin->Kucoin->Passphrase = "<passphrase>";

ShowMessage(oKucoin->REST_API->

PlaceLimitOrder

COMPONENTS

499

(

kosBuy, "XBTUSDM", 1, 40000

);

COMPONENTS

500

Kucoin | Futures Private Requests Time
When you do a private request to Kucoin, the message is signed so increase the security of requests. The mes
sage takes the local time and sends inside the signed message, if the local time has a difference greater than 5
seconds with Kucoin servers, the request will be rejected. So, it's important verify that your local time is synchro
nized, you can do this using the synchronization time method for your OS.

You can check the Kucoin server time, calling method GetServerTime, which will return the time of the Kucoin
server

COMPONENTS

501

•
•

•
•

API 3Commas
3Commas

APIs supported

WebSockets API: connect to a public websocket server and provides real-time market data updates.
REST API: The REST API has endpoints for account and order management as well as public market data.

WebSockets API

The websocket feed provides real-time market data updates for Trades and Deals

You can subscribe to the following Public channels:

Method Argu
ments Description

Sub
scribeSmart
Trades

Sub
scribeDeals

These channels requires Authenticate against 3Commas servers. So first request your API keys in your 3Commas
Account and then set the values in the property ThreeComas of the component:

ApiKey
ApiSecret

If the subscription is successful, the event OnThreeCommasConfirmSubscription will be called. If not, the event
OnThreeCommasRejectSubscription it's called, you can get the reason of the rejection using the aRawMessage
parameter.

REST API

Test Connectivity

Method Argu
ments Description

GetPing
Get
Server
Time

 Returns the server time

Account

Method Arguments Description

GetAccounts User connected
exchanges list

https://3commas.io/
https://docs.ftx.com/#websocket-api
https://docs.ftx.com/#rest-api

COMPONENTS

502

GetMarketList Supported Market
List

GetMarket
Pairs

aMarketCode:
code of the
market

All market pairs

GetCurren
cyRatesWith
LeverageData

aMarketCode:
code of the
market aPair:
pair name

Currency rates and
limits with leverage
data

GetCurren
cyRates

aMarketCode:
code of the
market aPair:
pair name

Currency rates and
limits

GetBalances aAccountId: if
of the account

Load balances for
specified exchange

GetAccount
TableData

aAccountId: if
of the accoun

Information about
all user balances
on specified ex
change

GetAc
countLever
age

aAccountId: if
of the accoun
aPair: pair
name

Information about
account leverage

GetAccountIn
fo

aAccountId: if
of the accoun Single Account Info

Smart Trades

Method Arguments Description
GetS
mart
Trade
History

 Get the Trade History

Place
Marke
tOrder

aAccountId: id
of the account
aOrderSide:
buy or sell
aPair: pair
name aQuanti
ty: amount

Places a Market Order

Place
Limi
tOrder

aAccountId: id
of the account
aOrderSide:
buy or sell
aPair: pair
name aQuanti
ty: amount
aPrice: limit
price

Places a Limit ORder

COMPONENTS

503

GetS
mart
Trade

aId: id of the
trade

Get a Smart Trade by
the Id of the Trade

CancelS
mart
Trade

aId: id of the
trade

Cancel a Smart Trade
by the Id of the Trade

CloseBy
MarketS
mart
Trade

aId: id of the
trade

Events

OnConnect

When a new WebSocket connection is open

OnDisconnect

When a WebSocket connection is closed

OnThreeCommasConnect

When the client receives a Welcome message from 3Commas server, means the connection is ready.

OnThreeCommasConfirmSubscription

Confirms a previously subscription sent by the client.

OnThreeCommasRejectSubscription

There is any error trying to subscribe to a 3Commas channel

OnThreeCommasMessage

Here the client receives the data sent by server related to the channels subscribed

OnThreeCommasPing

Ping sent by server to the client.

OnThreeCommasHTTPException

If there is any error while calling HTTP REST methods, this event will be called.

COMPONENTS

504

•

•

•

•
•
•
•
•

API OKX
OKX

APIs supported

WebSockets API: connect to a websocket server and provides real-time market data updates, account
changes and place trading orders.

Properties

WebSocket channels are divided into two categories: public and private channels.

Public channels: include tickers channel, KLine channel, limit price channel, order book channel, and mark
price channel, etc -- do not require log in.
Private channels: including account channel, order channel, and position channel, etc -- require log in.

You can configure the following properties in the OKS property.

ApiKey: you can request a new api key in your OKX account, just copy the value to this property.
ApiSecret: it's the secret value of the api.
Passphrase: it's the custom string defined when creating a new api key.
IsDemo: if enabled, will connect to the OKX Demo account (disabled by default).
IsPrivate: if enabled, you will be able to connect to private channels (disabled by default).

Connection

When the client successfully connects to OKX servers, the event OnOKXConnect is fired. If there is any error
while trying to connect, the event OnOKXError will be fired with the error details.
After the event OnOKXConnect is fired, then you can start to send and receive messages from OKX servers.

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_OKX *oOKX = new TsgcWSAPI_OKX.Create();

oOKX->Client = oClient;

oOKX->OKX->ApiKey = "alsdjk23kandfnasbdfdkjhsdf";

oOKX->OKX->ApiSecret = "aldskjfk3jkadknfajndsjfj23j";

oOKX->OKX->Passphrase = "secret_passphrase";

oClient->Active = true;

void OnOKXConnect(TObject *Sender, string aMessage, string aCode, string aRawMessage)

{

 DoLog("#OKX Connected");

}

void OnOKXError(TObject *Sender, string aCode, string aMessage, string aRawMessage)

{

 DoLog("#error: " + aMessage);

}

Public Channels

The websocket feed provides real-time market data updates for orders and trades. The websocket feed has some
public channels like ticker, trades...

You can subscribe to the following Public channels:

Method Description

https://www.okx.com/
https://docs.ftx.com/#websocket-api

COMPONENTS

505

•

•

•

•

•

SubscribeInstru
ments

The full instrument list will be pushed for the first time after subscription. Subse
quently, the instruments will be pushed if there is any change to the instrument’s
state (such as delivery of FUTURES, exercise of OPTION, listing of new contracts /
trading pairs, trading suspension, etc.).

SubscribeTicker Retrieve the last traded price, bid price, ask price and 24hour trading volume of in
struments. Data will be pushed every 100 ms.

SubscribeOpenIn
terest Retrieve the open interest. Data will by pushed every 3 seconds.

SubscribeCandle
stick

Retrieve the candlesticks data of an instrument. the push frequency is the fastest
interval 500ms push the data.

SubscribeTrades Retrieve the recent trades data. Data will be pushed whenever there is a trade.

SubscribeEstimat
edPrices

Retrieve the estimated delivery/exercise price of FUTURES contracts and OPTION.
Only the estimated delivery/exercise price will be pushed an hour before delivery/
exercise, and will be pushed if there is any price change.

SubscribeMarkPrice
Retrieve the mark price. Data will be pushed every 200 ms when the mark price
changes, and will be pushed every 10 seconds when the mark price does not
change.

Subscribe
MarkPriceCandle
stick

Retrieve the candlesticks data of the mark price. Data will be pushed every 500 ms.

SubscribePriceLimit
Retrieve the maximum buy price and minimum sell price of the instrument. Data will
be pushed every 5 seconds when there are changes in limits, and will not be
pushed when there is no changes on limit.

SubscribeOrder
Book

Retrieve order book data.
Use books for 400 depth levels, book5 for 5 depth levels, bbo-tbt tick-by-tick 1
depth level, books50-l2-tbt tick-by-tick 50 depth levels, and books-l2-tbt for tick-by-
tick 400 depth levels.

books: 400 depth levels will be pushed in the initial full snapshot. Incremen
tal data will be pushed every 100 ms when there is change in order book.
books5: 5 depth levels will be pushed every time. Data will be pushed every
100 ms when there is change in order book.
bbo-tbt: 1 depth level will be pushed every time. Data will be pushed every
10 ms when there is change in order book.
books-l2-tbt: 400 depth levels will be pushed in the initial full snapshot. In
cremental data will be pushed every 10 ms when there is change in order
book.
books50-l2-tbt: 50 depth levels will be pushed in the initial full snapshot. In
cremental data will be pushed every 10 ms when there is change in order
book. If asks or bids is an empty array, it means that there are changes in
400 depth, instead of 50 depth. If you maintain the order book data locally,
please ignore empty asks and bids.

SubscribeOption
Summary

Retrieve detailed pricing information of all OPTION contracts. Data will be pushed
at once.

SubscribeFundin
gRate Retrieve funding rate. Data will be pushed in 30s to 90s.

SubscribeIndexCan
dlestick Retrieve the candlesticks data of the index. Data will be pushed every 500 ms.

SubscribeIndexTick
er Retrieve index tickers data

SubscribeStatus
Get the status of system maintenance and push when the system maintenance sta
tus changes. First subscription: "Push the latest change data"; every time there is a
state change, push the changed content

SubscribePublic
StructureBlock
Trades

Data will be pushed whenever there is a block trade.

COMPONENTS

506

SubscribeBlock
Tickers

Retrieve the latest block trading volume in the last 24 hours. The data will be
pushed when triggered by transaction execution event. In addition, it will also be
pushed in 5 minutes interval according to subscription granularity.

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_OKX *oOKX = new TsgcWSAPI_OKX.Create();

oOKX->Client = oClient;

oOKX->OKX->ApiKey = "alsdjk23kandfnasbdfdkjhsdf";

oOKX->OKX->ApiSecret = "aldskjfk3jkadknfajndsjfj23j";

oOKX->OKX->Passphrase = "secret_passphrase";

oClient->Active = true;

void OnOKXConnect(TObject *Sender, string aMessage, string aCode, string aRawMessage)

{

 oOKX->SubscribeInstruments(okxitFutures);

}

Private Channels

Including account channel, order channel, and position channel, etc -- require log in.

You can subscribe to the following Private channels:

Method Description

SubscribeAccount
Retrieve account information. Data will be pushed when triggered by events such
as placing order, canceling order, transaction execution, etc. It will also be pushed
in regular interval according to subscription granularity.

SubscribePositions
Retrieve position information. Initial snapshot will be pushed according to sub
scription granularity. Data will be pushed when triggered by events such as plac
ing/canceling order, and will also be pushed in regular interval according to sub
scription granularity.

SubscribeBalance
AndPosition

Retrieve account balance and position information. Data will be pushed when trig
gered by events such as filled order, funding transfer.

SubscribeOrders Retrieve order information. Data will not be pushed when first subscribed. Data
will only be pushed when triggered by events such as placing/canceling order.

SubscribeOrdersAl
go

Retrieve algo orders (includes trigger order, oco order, conditional order). Data
will not be pushed when first subscribed. Data will only be pushed when triggered
by events such as placing/canceling order.

SubscribeAd
vanceAlgo

Retrieve advance algo orders (including Iceberg order, TWAP order, Trailing or
der). Data will be pushed when first subscribed. Data will be pushed when trig
gered by events such as placing/canceling order.

SubscribePosition
Risk

This push channel is only used as a risk warning, and is not recommended as a
risk judgment for strategic trading
In the case that the market is not moving violently, there may be the possibility
that the position has been liquidated at the same time that this message is
pushed.

SubscribeAccount
Greeks

Retrieve account greeks information. Data will be pushed when triggered by
events such as increase/decrease positions or cash balance in account, and will
also be pushed in regular interval according to subscription granularity.

SubscribeRfqs Retrieve the Rfqs.
SubscribeQuotes Retrieve the Quotes.
SubscribePrivat
eStructureBlock
Trades

Retrieve Structure Block Trades.

SubscribeSpotGri
dAlgoOrders

Retrieve spot grid algo orders. Data will be pushed when first subscribed. Data
will be pushed when triggered by events such as placing/canceling order.

SubscribeContact
GridAlgoOrders

Retrieve contract grid algo orders. Data will be pushed when first subscribed. Da
ta will be pushed when triggered by events such as placing/canceling order.

COMPONENTS

507

SubscribeGridPosi
tions

Retrieve grid positions. Data will be pushed when first subscribed. Data will be
pushed when triggered by events such as placing/canceling order.

SubscribeGridSub
Orders

Retrieve grid sub orders. Data will be pushed when first subscribed. Data will be
pushed when triggered by events such as placing order.

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_OKX *oOKX = new TsgcWSAPI_OKX.Create();

oOKX->Client = oClient;

oOKX->OKX->ApiKey = "alsdjk23kandfnasbdfdkjhsdf";

oOKX->OKX->ApiSecret = "aldskjfk3jkadknfajndsjfj23j";

oOKX->OKX->Passphrase = "secret_passphrase";

oClient->Active = true;

void OnOKXConnect(TObject *Sender, string aMessage, string aCode, string aRawMessage)

{

 oOKX->SubscribeOrders(okxitFutures, "BTC-USD", "BTC-USD-200329");

}

Trading

The WebSocket Trade requires Authentication.

You can place an order only if you have sufficient funds. Find below a table with the request parameters:

Parame

ter Type Re
quired Description

id String Yes

Unique identifier of the message
Provided by client. It will be returned in response message for
identifying the corresponding request.
A combination of case-sensitive alphanumerics, all numbers, or
all letters of up to 32 characters.

> instId String Yes Instrument ID,e.g. BTC-USD-190927-5000-C

> tdMode String Yes
Trade mode
Margin mode isolated cross
Non-Margin mode cash

> ccy String No
Margin currency
Only applicable to cross MARGIN orders in Single-currency mar-
gin.

> clOrdId String No
Client-supplied order ID
A combination of case-sensitive alphanumerics, all numbers, or
all letters of up to 32 characters.

> tag String No
Order tag
A combination of case-sensitive alphanumerics, all numbers, or
all letters of up to 16 characters.

> side String Yes Order side, buy sell

> pos
Side String Option

al

Position side
The default is net in the net mode
It is required in the long/short mode, and can only
be long or short.
Only applicable to FUTURES/SWAP.

> ord
Type String Yes

Order type
market: market order
limit: limit order
post_only: Post-only order
fok: Fill-or-kill order

COMPONENTS

508

Parame
ter Type Re

quired Description
ioc: Immediate-or-cancel order
optimal_limit_ioc :Market order with immediate-or-cancel order

> sz String Yes Quantity to buy or sell.

> px String Option
al

Price
Only applicable to limit,post_only,fok,ioc order.

> re
duceOnly Boolean No

Whether to reduce position only or not, true false, the default
is false.
Only applicable to MARGIN orders, and FUTURES/SWAP orders
in net mode
Only applicable to Single-currency margin and Multi-currency
margin

> tgtCcy String No

Quantity type
base_ccy: Base currency ,quote_ccy: Quote currency
Only applicable to SPOT traded with Market order
Default is quote_ccy for buy, base_ccy for sell

> banA
mend Boolean No

Whether to ban amending spot order or not, true or false, the de
fault is false.
It will fail to place orders if the balance is not enough when banA
mend is true. Only applicable to SPOT market order

Place Order Example

You can place an order only if you have sufficient funds.

// Place Martket Order

TsgcWSAPI_OKX1->PlaceMarketOrder(okxosBuy, "ETH-BTC", 1);

// Place Limit Order

TsgcWSAPI_OKX1->PlaceLimitOrder(okxosBuy, "ETH-BTC", 1, 0.25);

Cancel Order Example

Cancel an incomplete order

TsgcWSAPI_OKX1->CancelOrder("

ETH-BTC

", "457589362405027840");

Amend Order

Amend an incomplete order.

TsgcWSAPI_OKX1->AmendOrder("ETH-BTC", "457589362405027840", '', 2);

COMPONENTS

509

•

•
•
•

API XTB
XTB

APIs supported

WebSockets API: connect to a websocket server and provides real-time market data updates, account
changes and place trading orders.

Properties

The WebSocket protocol allows 2 types of requests: Streaming commands (receive live updates) and Retrieve
Trading Data (send a request to server retrieving some information).

You can configure the following properties in the XTB property.

User: the username that identifies the connection.
Password: it's the secret value of the user.
Demo: if enabled, will connect to the XTB Demo account (disabled by default).

Connection

When the client successfully connects to XTB servers, the event OnXTBConnect is fired. If there is any error while
trying to connect, the event OnXTBError will be fired with the error details.
After the event OnXTBConnect is fired, then you can start to send and receive messages from XTB servers.

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_XTB *oXTB = new TsgcWSAPI_XTB.Create();

oXTB->Client = oClient;

oXTB->XTB->User = "user_0001";

oXTB->XTB->Password = "secret_0001";

oClient->Active = true;

void OnXTBConnect(TObject *Sender, string aStreamSessionId)

{

 DoLog("#XTB Connected");

}

void OnXTBError(TObject *Sender, string aCode, string aDescription, string aRawMessage)

{

 DoLog("#error: " + aDescription);

}

Connection Commands

Method Description

Login
In order to perform any action client application have to perform login process. No
functionality is available before proper login process. The login method is called
automatically after the client connects to the websocket server and the User/
Password values are set.

Logout

https://www.xtb.com/
http://developers.xstore.pro/documentation/

COMPONENTS

510

Streaming Commands

You can subscribe to the following channels:

Method Description

SubscribeBalance Allows to get actual account indicators values in real-time, as soon as they are
available in the system.

SubscribeCandles Subscribes for and unsubscribes from API chart candles. The interval of every
candle is 1 minute. A new candle arrives every minute.

SubscribeKeepAlive Subscribes for and unsubscribes from 'keep alive' messages. A new 'keep alive'
message is sent by the API every 3 seconds.

SubscribeNews Subscribes for and unsubscribes from news.
SubscribeProfits Subscribes for and unsubscribes from profits.

SubscribeTickPrices

Establishes subscription for quotations and allows to obtain the relevant informa
tion in real-time, as soon as it is available in the system. The getTickPrices
 command can be invoked many times for the same symbol, but only one sub
scription for a given symbol will be created. Please beware that when multiple
records are available, the order in which they are received is not guaranteed.

SubscribeTrades
Establishes subscription for user trade status data and allows to obtain the rele
vant information in realtime, as soon as it is available in the system. Please be
ware that when multiple records are available, the order in which they are re
ceived is not guaranteed.

SubscribeTradeSta
tus

Allows to get status for sent trade requests in real-time, as soon as it is available
in the system. Please beware that when multiple records are available, the order
in which they are received is not guaranteed

SubscribePing

Regularly calling this function is enough to refresh the internal state of all the
components in the system. Streaming connection, when any command is not
sent by client in the session, generates only one way network traffic. It is recom
mended that any application that does not execute other commands, should call
this command at least once every 10 minutes.

Retrieving Trading Data

You can send the following Requests:

Method Description
GetAllSymbols Returns array of all symbols available for the user.
GetCalendar Returns calendar with market events.

GetChartLastRe
quest

Please note that this function can be usually replaced by its streaming equivalent
getCandles which is the preferred way of retrieving current candle data. Returns
chart info, from start date to the current time. If the chosen period of
CHART_LAST_INFO_RECORD is greater than 1 minute, the last candle re
turned by the API can change until the end of the period (the candle is being au
tomatically updated every minute).

GetChartRan
geRequest

Please note that this function can be usually replaced by its streaming equivalent
getCandles which is the preferred way of retrieving current candle data. Returns
chart info with data between given start and end dates.

GetCommissionDef Returns calculation of commission and rate of exchange. The value is calculated
as expected value, and therefore might not be perfectly accurate.

COMPONENTS

511

GetCurrentUserDa
ta Returns information about account currency, and account leverage.

GetIbsHistory Returns IBs data from the given time range.

GetMarginLevel
Please note that this function can be usually replaced by its streaming equivalent
getBalance which is the preferred way of retrieving account indicators. Returns
various account indicators

GetMarginTrade Returns expected margin for given instrument and volume. The value is calculat
ed as expected margin value, and therefore might not be perfectly accurate.

GetNews
Please note that this function can be usually replaced by its streaming equivalent
getNews which is the preferred way of retrieving news data. Returns news from
trading server which were sent within specified period of time.

GetProfitCalcula
tion

Calculates estimated profit for given deal data Should be used for calculator-like
apps only. Profit for opened transactions should be taken from server, due to
higher precision of server calculation

GetServerTime Returns current time on trading server
GetStepRules Returns a list of step rules for DMAs
GetSymbol Returns information about symbol available for the user

GetTickPrices

Please note that this function can be usually replaced by its streaming equivalent
getTickPrices which is the preferred way of retrieving ticks data. Returns array of
current quotations for given symbols, only quotations that changed from given
timestamp are returned. New timestamp obtained from output will be used as an
argument of the next call of this command.

GetTradeRecords Returns array of trades listed in orders argument

GetTrades
Please note that this function can be usually replaced by its streaming equivalent
getTrades which is the preferred way of retrieving trades data. Returns array of
user's trades.

GetTradesHistory
Please note that this function can be usually replaced by its streaming equivalent
getTrades which is the preferred way of retrieving trades data. Returns array of
user's trades which were closed within specified period of time.

GetTradingHours Returns quotes and trading times.
GetVersion Returns the current API version.

Ping

Regularly calling this function is enough to refresh the internal state of all the
components in the system. It is recommended that any application that does not
execute other commands, should call this command at least once every 10 min
utes. Please note that the streaming counterpart of this function is combination of
ping and getKeepAlive

TradeTransaction Starts trade transaction. tradeTransaction sends main transaction information to
the server.

TradeTransaction
Status

Please note that this function can be usually replaced by its streaming equivalent
getTradeStatus which is the preferred way of retrieving transaction status data.
Returns current transaction status. At any time of transaction processing client
might check the status of transaction on server side. In order to do that client
must provide unique order taken from tradeTransaction invocation.

COMPONENTS

512

•

•

•

•
•
•

•
•
•
•

API Bybit
Bybit

APIs supported

WebSocket API: connect to a websocket server and provides real-time market data updates, account
changes and more.
REST API: send HTTP requests to get market data, place orders, account data...

Currently, the API supported version is V5. The V5 API brings uniformity and efficiency to Bybit's product lines, uni
fying Spot, Derivatives, and Options in one set of specifications.

OpenAPI
Version Account Type

Linear Inverse
Spot Op

tionsUSDT Per
petual

USDC Per
petual

USDC Fu
tures

Perpet
ual

Fu
tures

V5

Unified trading
account ✓ ✓ ✓ see note ✓ ✓
Classic ac
count ✓ ✓ ✓ ✓

V3

Unified trading
account ✓ ✓ ✓
Classic ac
count ✓ ✓ ✓ ✓

*Note: the Unified account supports inverse trading. However, the margin used is from the inverse derivatives wal
let instead of the unified wallet.

Properties

You can configure the following properties in the Bybit property.

ApiKey: you can request a new api key in your Bybit account, just copy the value to this property. If the
APIKey is set, the client will connect to the websocket private server. If it's empty, will connect to the Web
Socket public server.
ApiSecret: it's the secret value of the api.
SignatureExpires: number of seconds after the signature expires (by default 10 seconds).
TestNet: if enabled, will connect to the Bybit TestNet Demo account (disabled by default).

Connection

When the client successfully connects to Bybit servers, the event OnConnect is fired. After the event OnConnect
is fired, then you can start to send and receive messages to/from Bybit servers. If you are connecting to the pri
vate websocket channel, you must wait till OnBybitAuthentication event is fired and check if the success parame
ter is true, before subscribe to any channel.

The client supports several APIs, so use the property BybitClient to set which API you want to use:

bybSpot
bybInverse
bybLinear
bybPerpetual

https://www.bybit.com/

COMPONENTS

513

•
•
•
•
•
•
•
•

Find below an example of connecting to WebSocket Spot Private API.

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_Bybit *oBybit = new TsgcWSAPI_Bybit.Create();

oBybit->Client = oClient;

oBybit->Bybit->ApiKey = "alsdjk23kandfnasbdfdkjhsdf";

oBybit->Bybit->ApiSecret = "aldskjfk3jkadknfajndsjfj23j";

oBybit->BybitClient = bybSpot;

oClient->Active = true;

void OnConnect(TsgcWSConnection *Connection)

{

 DoLog("#Bybit Connected");

}

After a successfull connection to the Spot WebSocket Server, you can start to subscribe to WebSocket channels,
just access the SPOT property and then call any of the subscribe/unsubscribe methods available.

Events

The bybit client implements the following events to control the connection flow and get data sent from the Web
Socket server:

OnConnect: fired when the websocket client connects to the WebSocket Server.
OnDisconnect: fired when the websocket client disconnects from the WebSocket Server.
OnBybitAuthentication: fired when the client authenticates against the Private WebSocket Server.
OnBybitSubscribe: when the client subscribes to a websocket channel.
OnBybitUnSubscribe: when the client unsubscribes form a websocket channel.
OnBybitData: when the client receives data from the server.
OnBybitError: when there is any error during the bybit websocket connection.
OnBybitHTTPException: when there is any error during the REST request.

WebSocket API

The websocket feed provides real-time market data updates for orders and trades. The websocket feed has some
public channels like ticker, trades...

You can subscribe to the following channels:

Method Public or
Private Description

SubscribeOrderBook Public Subscribe to the orderbook stream. Supports different depths.
SubscribeTrade Public Subscribe to the recent trades stream.
SubscribeTicker Public Subscribe to the ticker stream.
SubscribeKLine Public Subscribe to the klines stream.
SubscribeLiquidation Public Subscribe to the liquidation stream
SubscribeLT_KLine Public Subscribe to the leveraged token kline stream.
SubscribeLT_Ticker Public Subscribe to the leveraged token ticker stream.
SubscribeLT_Nav Public Subscribe to the leveraged token ticker stream.
SubscribePosition Private Subscribe to the leveraged token nav stream.
SubscribeExecution Private Subscribe
SubscribeOrder Private Subscribe
SubscribeWallet Private Subscribe
SubscribeGreek Private Subscribe
SubscribeDcp Private Subscribe

Find below an example of subscribing to private websocket channels after a successful authentication.

COMPONENTS

514

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_Bybit *oBybit = new TsgcWSAPI_Bybit.Create();

oBybit->Client = oClient;

oBybit->Bybit->ApiKey = "alsdjk23kandfnasbdfdkjhsdf";

oBybit->Bybit->ApiSecret = "aldskjfk3jkadknfajndsjfj23j";

oBybit->BybitClient = bybSpot;

oClient->Active = true;

void OnBybitAuthentication(TObject *Sender, bool aSuccess, const string aError, const string aRawMessage)

{

 if (aSuccess == true)

 {

 oClient->SubscribeOrderBook("BTCUSDT");

 oClient->SubscribeTrade("BTCUSDT");

 }

}

REST API

The REST API have a list of Public and Private methods to request data from: markets, private account and wallet.
Find below a list of available methods.

Method Public / Private
GetServerTime Public
GetKLine Public
GetMarkPriceKLine Public
GetIndexPriceKLine Public
GetPremiumIndexPriceKLine Public
GetInstrumentsInfo Public
GetOrderBook Public
GetTickers Public
GetFundingRateHistory Public
GetPublicRecentTradingHistory Public
GetOpenInterest Public
GetHistoricalVolatility Public
GetInsurance Public
GetRiskLimit Public
GetDeliveryPrice Public
GetLongShortRatio Public
PlaceOrder Private
PlaceMarketOrder Private
PlaceLimitOrder Private
AmendOrder Private
CancelOrder Private
GetOpenOrders Private
CancelAllOrders Private
GetOrderHistory Private
GetPositionInfo Private
SetLeverage Private
SwitchCrossIsolatedMargin Private
SetTPSLMode Private
SwitchPositionMode Private
SetRiskLimit Private
SetTradingStop Private
SetAutoAddMargin Private
AddOrReduceMargin Private
GetExecution Private
GetClosedPNL Private

COMPONENTS

515

ConfirmNewRiskLimit Private
GetWalletBalance Private
GetAccountInfo Private
GetTransactionLog Private

Find below an example of getting the open orders.

TsgcWebSocketClient *oClient = new TsgcWebSocketClient();

TsgcWSAPI_Bybit *oBybit = new TsgcWSAPI_Bybit.Create();

oBybit->Client = oClient;

oBybit->Bybit->ApiKey = "alsdjk23kandfnasbdfdkjhsdf";

oBybit->Bybit->ApiSecret = "aldskjfk3jkadknfajndsjfj23j";

oBybit->BybitClient = bybSpot;

oBybit->REST_API->GetAccountInfo();

COMPONENTS

516

•
•

•
•

•

•

API Blockchain
Blockchain

Blockchain WebSocket API allows developers to receive Real-Time notifications about new transactions and
blocks.

Once WebSocket is open you can subscribe to a channel:

SubscribeTransactions: Subscribe to notifications for all new bitcoin transactions.
UnsubscribeTransactions: UnSubscribe to notifications for all new bitcoin transactions.

SubscribeAddress: Receive new transactions for a specific bitcoin address.
UnSubscribeAddress: Stop receiving new transactions for a specific bitcoin address.

Transactions are received OnNewTransaction Event:

{

 "op": "utx",

 "x": {

 "lock_time": 0,

 "ver": 1,

 "size": 192,

 "inputs": [

 {

 "sequence": 4294967295,

 "prev_out": {

 "spent": true,

 "tx_index": 99005468,

 "type": 0,

 "addr": "1BwGf3z7n2fHk6NoVJNkV32qwyAYsMhkWf",

 "value": 65574000,

 "n": 0,

 "script": "76a91477f4c9ee75e449a74c21a4decfb50519cbc245b388ac"

 },

 "script": "483045022100e4ff962c292705f051c2c2fc519fa775a4d8955bce1a3e29884b2785277999ed02200b537ebd22a9f25fbbbcc9113c69c1389400703ef2017d80959ef0f1d685756c012102618e08e0c8fd4c5fe539184a30fe35a2f5fccf7ad62054cad29360d871f8187d"

 }

],

 "time": 1440086763,

 "tx_index": 99006637,

 "vin_sz": 1,

 "hash": "0857b9de1884eec314ecf67c040a2657b8e083e1f95e31d0b5ba3d328841fc7f",

 "vout_sz": 1,

 "relayed_by": "127.0.0.1",

 "out": [

 {

 "spent": false,

 "tx_index": 99006637,

 "type": 0,

 "addr": "1A828tTnkVFJfSvLCqF42ohZ51ksS3jJgX",

 "value": 65564000,

 "n": 0,

 "script": "76a914640cfdf7b79d94d1c980133e3587bd6053f091f388ac"

 }

]

 }

}

SubscribeBlocks: Receive notifications when a new block is found. Note: if the chain splits you will receive
more than one notification for a specific block height.
UnSubscribeBlocks: Stop receiving notifications when a new block is found. Note: if the chain splits you
will receive more than one notification for a specific block height.

Blocks are received OnNewBlock event:

{

 "op": "block",

 "x": {

https://blockchain.info

COMPONENTS

517

 "txIndexes": [

 3187871,

 3187868

],

 "nTx": 0,

 "totalBTCSent": 0,

 "estimatedBTCSent": 0,

 "reward": 0,

 "size": 0,

 "blockIndex": 190460,

 "prevBlockIndex": 190457,

 "height": 170359,

 "hash": "00000000000006436073c07dfa188a8fa54fefadf571fd774863cda1b884b90f",

 "mrklRoot": "94e51495e0e8a0c3b78dac1220b2f35ceda8799b0a20cfa68601ed28126cfcc2",

 "version": 1,

 "time": 1331301261,

 "bits": 436942092,

 "nonce": 758889471

 }

}

COMPONENTS

518

•
•
•
•

•
•
•
•
•

•
•
•
•

•

•

API Cex
Cex

WebSocket API allows getting real-time notifications without sending extra requests, making it a faster way to ob
tain data from the exchange
Cex component has a property called Cex where you can fill API Keys provided by Cex to get access to your ac
count data.

Message encoding

All messages are encoded in JSON format.
Prices are presented as strings to avoid rounding errors at JSON parsing on client side
Compression of WebSocket frames is not supported by the server.
Time is presented as integer UNIX timestamp in seconds.

Authentication

To get access to CEX.IO WebSocket data, you should be authorized.

Log in to CEX.IO account.
Go to https://cex.io/trade/profile#/api page.
Select the type of required permissions.
Click "Generate Key" button and save your secret key, as it will become inaccessible after activation.
Activate your key.

Connectivity

If a connected Socket is inactive for 15 seconds, CEX.IO server will send a PING message.
Only server can be an Initiator of PING request.
The server sends ping only to the authenticated user.
The user has to respond with a PONG message. Otherwise, the WebSocket will be DISCONNECTED. This
is handled automatically by the library.
For the authenticated user, in case there is no notification or ping from the server within 15 seconds, it would
be safer to send a request like 'ticker' or 'getbalance' and receive a response, in order to ensure connectivi
ty and authentication.

Public Channels

These channels don't require to Authenticate before. Responses from the server are received by OnCexMessage
event.

SubscribeTickers: Ticker feed with only price of transaction made on all pairs (deprecated)

{

 "e": "tick",

 "data": {

 "symbol1": "BTC",

 "symbol2": "USD",

 "price": "428.0123"

 }

}

https://cex.io/

COMPONENTS

519

•

•

•

SubscribeChart: OHLCV chart feeds with Open, High, Low, Close, Volume numbers (deprecated)

{

 'e': 'ohlcv24',

 'pair': 'BTC:USD',

 'data': [

 '418.2936',

 '420.277',

 '412.09',

 '416.9778',

 '201451078368'

]

}

Subscribe Pair: Market Depth feed (deprecated)

{

 'e': 'md_groupped',

 'data': {

 'pair': 'BTC:USD',

 'id': 11296131,

 'sell': {

 '427.5000': 1000000,

 '480.0000': 263544334,

 ...

 },

 'buy': {

 '385.0000': 3630000,

 '390.0000': 1452458642,

 ... 400+ pairs togather with 'sell' pairs

 }

 }

}

Subscribe Pair: Order Book feed (deprecated)

{

 'e': 'md',

 'data': {

 'pair': 'BTC:USD',

 'buy_total': 63221099,

 'sell_total': 112430315118,

 'id': 11296131,

 'sell': [

 [426.45, 10000000],

 [426.5, 66088429300],

 [427, 1000000],

 ... 50 pairs overaall

],

 'buy': [

 [423.3, 4130702],

 [423.2701, 10641168],

 [423.2671, 1000000],

 ... 50 pairs overaall

]

 }

}

Private Channels

To access these channels, first call Authenticate method. Responses from the server are received OnCexMessage
event.

GetTicker

COMPONENTS

520

{

 "e": "ticker",

 "data": {

 "timestamp": "1471427037",

 "low": "290",

 "high": "290",

 "last": "290",

 "volume": "0.02062068",

 "volume30d": "14.38062068",

 "bid": 240,

 "ask": 290,

 "pair": [

 "BTC",

 "USD"

]

 },

 "oid": "1471427036908_1_ticker",

 "ok": "ok"

}

GetBalance

{

 "e": "get-balance",

 "data": {

 "balance": {

 'LTC': '10.00000000',

 'USD': '1024.00',

 'RUB': '35087.98',

 'EUR': '217.53',

 'GHS': '10.00000000',

 'BTC': '9.00000000'

 },

 "obalance": {

 'BTC': '0.12000000',

 'USD': "512.00",

 },

 },

 "time": 1435927928597

 "oid": "1435927928274_2_get-balance",

 "ok": "ok"

}

SubscribeOrderBook

{

"e": "order-book-subscibe",

"data": {

 "timestamp": 1435927929,

 "bids": [

 [

 241.947,

 155.91626

],

 [

 241,

 981.1255

],

],

 "asks": [

 [

 241.95,

 15.4613

],

 [

 241.99,

 17.3303

],

],

 "pair": "BTC:USD",

 "id": 67809

},

"oid": "1435927928274_5_order-book-subscribe",

"ok": "ok"

}

COMPONENTS

521

UnSubscribeOrderBook

{

"e": "order-book-unsubscribe",

"data": {

 "pair": "BTC:USD"

},

"oid": "1435927928274_4_order-book-unsubscribe",

"ok": "ok"

}

GetOpenOrders

{

"e": "open-orders",

"data": [

 {

 "id": "2477098",

 "time": "1435927928618",

 "type": "buy",

 "price": "241.9477",

 "amount": "0.02000000",

 "pending": "0.02000000"

 },

 {

 "id": "2477101",

 "time": "1435927928634",

 "type": "sell",

 "price": "241.9493",

 "amount": "0.02000000",

 "pending": "0.02000000"

 }

],

"oid": "1435927928274_9_open-orders",

"ok": "ok"

}

PlaceOrder

{

"e": "place-order",

"data": {

 "complete": false,

 "id": "2477098",

 "time": 1435927928618,

 "pending": "0.02000000",

 "amount": "0.02000000",

 "type": "buy",

 "price": "241.9477"

},

"oid": "1435927928274_7_place-order",

"ok": "ok"

}

CancelReplaceOrder

{

"e": "cancel-replace-order",

"data": {

 "complete": false,

 "id": "2689009",

 "time": 1443464955904,

 "pending": "0.04000000",

 "amount": "0.04000000",

COMPONENTS

522

 "type": "buy",

 "price": "243.25"

},

"oid": "1443464955209_16_cancel-replace-order",

"ok": "ok"

}

GetOrderRequest

In CEX.IO system, orders can be present in the trade engine or in an archive database. There can be time periods
(~2 seconds or more), when the order is done/cancelled, but still not moved to the archive database. That means
you cannot see it using calls: archived-orders/open-orders. This call allows getting order information in any case.
Responses can have different format depending on orders location.

{

"e": "get-order",

"data": {

 "user": "XXX",

 "type": "buy",

 "symbol1": "BTC",

 "symbol2": "USD",

 "amount": "0.02000000",

 "remains": "0.02000000",

 "price": "50.75",

 "time": 1450214742160,

 "tradingFeeStrategy": "fixedFee",

 "tradingFeeBuy": "5",

 "tradingFeeSell": "5",

 "tradingFeeUserVolumeAmount": "nil",

 "a:USD:c": "1.08",

 "a:USD:s": "1.08",

 "a:USD:d": "0.00",

 "status": "a",

 "orderId": "5582060"

},

"oid": "1450214742135_10_get-order",

"ok": "ok"

}

CancelOrderRequest

{

"e": "cancel-order",

"data": {

 "order_id": "2477098"

 "time": 1443468122895

},

"oid": "1435927928274_12_cancel-order",

"ok": "ok"

}

GetArchivedOrders

{

"e": "archived-orders",

"data": [

 {

 "type": "buy",

 "symbol1": "BTC",

 "symbol2": "USD",

 "amount": 0,

 "amount2": 5000,

 "remains": 0,

 "time": "2015-04-17T10:46:27.971Z",

 "tradingFeeBuy": "2",

 "tradingFeeSell": "2",

 "ta:USD": "49.00",

 "fa:USD": "0.98",

 "orderId": "2340298",

 "status": "d",

COMPONENTS

523

 "a:BTC:cds": "0.18151851",

 "a:USD:cds": "50.00",

 "f:USD:cds": "0.98"

 },

 {

 "type": "buy",

 "symbol1": "BTC",

 "symbol2": "USD",

 "amount": 0,

 "amount2": 10000,

 "remains": 0,

 "time": "2015-04-08T15:46:04.651Z",

 "tradingFeeBuy": "2.99",

 "tradingFeeSell": "2.99",

 "ta:USD": "97.08",

 "fa:USD": "2.91",

 "orderId": "2265315",

 "status": "d",

 "a:BTC:cds": "0.39869578",

 "a:USD:cds": "100.00",

 "f:USD:cds": "2.91"

 }

],

"oid": "1435927928274 15_archived-orders",

"ok": "ok"

}

OpenPosition

{

 "e": "open-position",

 "oid": "1435927928274_7_open-position",

 "data": {

 'amount': '1',

 'symbol': 'BTC',

 "pair": [

 "BTC",

 "USD"

],

 'leverage': '2',

 'ptype': 'long',

 'anySlippage': 'true',

 'eoprice': '650.3232',

 'stopLossPrice': '600.3232'

 }

}

GetPosition

{

 "e": "get_position",

 "ok": "ok",

 "data": {

 "user": "ud100036721",

 "pair": "BTC:USD",

 "amount": "1.00000000",

 "symbol": "BTC",

 "msymbol": "USD",

 "omamount": "1528.77",

 "lsymbol": "USD",

 "lamount": "3057.53",

 "slamount": "3380.11",

 "leverage": "3",

 "stopLossPrice": "3380.1031",

 "dfl": "3380.10310000",

 "flPrice": "3057.53333333",

 "otime": 1513002370342,

 "psymbol": "BTC",

 "ptype": "long",

 "ofee": "10",

 "pfee": "10",

 "cfee": "10",

 "tfeeAmount": "152.88",

 "rinterval": "14400000",

 "okind": "Manual",

 "a:BTC:c": "1.00000000",

 "a:BTC:s": "1.00000000",

COMPONENTS

524

 "oorder": "89101551",

 "pamount": "1.00000000",

 "lremains": "3057.53",

 "slremains": "3380.11",

 "oprice": "4586.3000",

 "status": "a",

 "id": "125531",

 "a:USD:cds": "4739.18"

 }

}

GetOpenPositions

{

 'e': 'open_positions',

 "oid": "1435927928256_7_open-positions",

 'ok': 'ok',

 'data': [

 {

 'user': 'ud100036721',

 'id': '104102',

 'otime': 1475602208467,

 'symbol': 'BTC',

 'amount': '1.00000000',

 'leverage': '2',

 'ptype': 'long',

 'psymbol': 'BTC',

 'msymbol': 'USD',

 'lsymbol': 'USD',

 'pair': 'BTC:USD',

 'oprice': '607.5000'

 'stopLossPrice': '520.3232',

 'ofee': '1',

 'pfee': '3',

 'cfee': '4',

 'tfeeAmount': '3.04',

 'pamount': '1.00000000',

 'omamount': '303.75',

 'lamount': '303.75',

 'oorder': '34106774',

 'rinterval': '14400000',

 'dfl': '520.32320000',

 'slamount': '520.33',

 'slremains': '520.33',

 'lremains': '303.75',

 'flPrice': '303.75000000',

 'a:BTC:c': '1.00000000',

 'a:BTC:s': '1.00000000',

 'a:USD:cds': '610.54',

 },

 ...

]

}

ClosePosition

{

 'e': 'close_position',

 "oid": "1435927928364_7_close-position",

 'ok': 'ok',

 'data': {

 'id': 104034,

 'ctime': 1475484981063,

 'ptype': 'long',

 'msymbol': 'USD'

 'pair': {

 'symbol1': 'BTC',

 'symbol2': 'USD'

 }

 'price': '607.1700',

 'profit': '-12.48',

 }

}

COMPONENTS

525

•

API Cex Plus
Cex Plus

APIs supported

WebSockets API: connect to a public websocket server and provides real-time market data updates.

WebSockets API

WebSocket is a TCP-based full-duplex communication protocol. Full-duplex means that both parties can send each
other messages asynchronously using the same communication channel. This section describes which messages
should Exchange Plus and Client send each other. All messages should be valid JSON objects.

WebSocket API is mostly used to obtain information or do actions which are not available or not easy to do using
REST API. However, some requests or actions are possible to do in both REST API and WebSocket API. Ex
change Plus sends messages to Client as a response to request previously sent by Client, or as a notification
about some event (without prior Client’s request).

Public API Calls

Public API rate limit is implied in order to protect the system from DDoS attacks and ensuring all Clients can have
same level of stable access to Exchange Plus API endpoints. Public requests are limited by IP address from which
public API requests are made. Request limits are determined from cost associated with each public API call. By de
fault, each public request has a cost of 1 point, but for some specific requests this cost can be higher. See up-to-
date request rate limit cost information in specification of each method.

Exchange Plus limits Public API calls to maximum of 100 points per minute, considering that each Public API call
has its' cost (see below). If request rate limit is reached then Exchange Plus replies with error, sends disconnected
event to Client and closes WS connection afterwards. Exchange Plus will continue to serve Client starting from the
next calendar minute. In the following example, request counter will be reset at 11:02:00.000.

Method Description

GetTicker This method is designed to obtain current information about Ticker, including data about current
prices, 24h price & volume changes, last trade event etc. of certain assets.

GetOrderBook This method allows Client to receive current order book snapshot for specific trading pair.

GetCandles
By using Candles method Client can receive historical OHLCV candles of different resolutions
and data types. Client can indicate additional timeframe and limit filters to make response more
precise to Client’s requirements.

GetTradeHistory
This method allows Client to obtain historical data as to occurred trades upon requested trading
pair. Client can supplement Trade History request with additional filter parameters, such as time
frame period, tradeIds range, side etc. to receive trades which match request parameters.

GetServerTime This method is used to get the current time on Exchange Plus server. It can be useful for applica
tions that have to be synchronized with the server's time.

GetPairsInfo Pair Info method allows Client to receive the parameters for all supported trading pairs.

GetCurren
ciesInfo

Currencies Info method allows Client to receive the parameters for all currencies configured in
Exchange Plus as well as the deposit and withdrawal availability between Exchange Plus and
CEX.IO Wallet.

GetProcessing
Info

This request allows Client to receive detailed information about available options to make de
posits from external wallets and withdrawals to external wallets as to each supported cryptocur
rency, including cryptocurrency name and available blockchains for deposit\withdrawals. Also, as

https://plus.cex.io/
https://docs.pro.coinbase.com/#websocket-feed

COMPONENTS

526

to each supported blockchain there are indicated type of cryptocurrency on indicated blockchain,
current deposit\withdrawal availability, minimum amounts for deposits\withdrawals, external with
drawal fees. Processing Information makes Client more flexible in choosing desired blockchain
for receiving Deposit address and initiating external withdrawals via certain blockchain, so that
Client uses more convenient way of transferring his crypto assets to or from CEX.IO Ecosystem.

SubscribeOrder
Book

Client by subscribing via WebSocket can subscribe to order book feed upon requested trading
pair. In response to Order Book Subscribe request Client will receive current (initial) order book
snapshot for requested pair with indicated seqId number. To track following updates to Order
Book Client needs to subscribe via WebSocket to “order_book_increment“ messages, which
would contain trading pair name, seqId number, Bids and Asks price levels deltas.

UnSub
scribeOrder
Book

UnSubscribe from the order book channel.

SubscribeTrade

By using the Trade Subscribe method Client can subscribe via WebSocket to live feed of trade
events which occur on requested trading pair. In response to Trade Subscribe request Client will
receive a unique identifier of trade subscription which should further be used for unsubscription
when trade subscription is not longer needed for Client. Client should subscribe via WebSocket to
“tradeHistorySnapshot” and “tradeUpdate” messages to receive initial and periodical Trade Histo
ry snapshots, and live trade events for requested trading pair.

UnSubscribe
Trade UnSubscribe from the trade channel.

Example: get the latest ticker of BTC-USD pair

TsgcWebSocketClient* oClient;

TsgcWSAPI_CexPlus* oCexPlus;

void __fastcall OnCexPlusConnectEvent(System::TObject* Sender)

{

 oCexPlus->GetTicker("BTC-USD");

}

void __fastcall OnCexPlusMessageEvent(System::TObject* Sender, UnicodeString Event, UnicodeString Msg)

{

 ShowMessage("Ticker data: " + Msg);

}

void SetupCexPlus()

{

 oClient = new TsgcWebSocketClient(NULL);

 oCexPlus = new TsgcWSAPI_CexPlus(NULL);

 oClient->Active = true;

 oCexPlus->Client = oClient;

 oCexPlus->OnConnect = OnCexPlusConnectEvent;

 oCexPlus->OnMessage = OnCexPlusMessageEvent;

}

Private API Calls

Exchange Plus uses API keys to allow access to Private APIs.

Client can generate, configure and manage api keys, set permission levels, whitelisted IPs for API key etc. via Ex
change Plus Web Terminal in the API Keys Management Profile section.

API Keys limit: By default Client can have up to 5 API Keys.

To restrict access to certain functionality while using of API Keys there should be defined specific set of permis
sions for each API Key. The defined set of permissions can be edited further if necessary.

The following permission levels are available for API Keys:

COMPONENTS

527

•
•
•

•

Read: permission level for viewing of account related data, receiving reports, subscribing to market data etc.
Trade: permission level, which allows placing and cancelling orders on behalf of account.
Funds Internal: permission level, which allows transferring funds between accounts (between sub-accounts
or main account and sub-accounts) of CEX.IO Exchange Plus Portfolio.
Funds Wallet: permission level, which allows transferring funds from CEX.IO Exchange Plus Portfolio ac
counts (main account and sub-accounts) to CEX.IO Wallet and vice versa.

Method Description

GetCurrentFee This method indicates current fees at specific moment of time with consideration of Client' up-to-
date 30d volume and day of week (fees can be different for e.g. on weekends).

GetFeeStrategy

Fee Strategy returns all fee options, which could be applied for Client, considering Client’s trading
volume, day of week, pairs, group of pairs etc. This method provides information about general
fee strategy, which includes all possible trading fee values that can be applied for Client. To re
ceive current trading fees, based on Client's current 30d trading volume, Client should use [Cur
rent Fee] method. To receive current 30d trading volume, Client should use [Volume] method.

GetVolume This request allows Client to receive his trading volume for the last 30 days in USD equivalent.

CreateAccount This request allows Client to create new subaccount. By default Client can have up to 5 subac
counts, including main account.

GetAccountSta
tus

By using Account Status V3 method, Client can find out current balance and it’s indicative equiva
lent in converted currency (by default “USD”), amounts locked in open (active) orders as to each
subaccount and currency. If trading fee balance is available for Client, then response will also
contain general trading fee balance data such as promo name, currency name, total balance and
expiration date of this promo on Trading Fee Balance. It’s Client’s responsibility to track his sub
accounts available trading balance as current sub-account balance reduced by the balance
amount locked in open (active) orders on sub-account.

GetOrders This request allows Client to find out info about his orders.

NewOrder

Client can place new orders via WebSocket API by using Do My New Order Request. Along with
a response to this request, Exchange Plus sends Account Event and Execution Report messages
to Client if the request is successful. Response message indicates the last uptodate status of or
der which is available in the system at the moment of sending the response. If the Client did not
receive a Response message to Do My New Order Request - the Client can query current status
of the order by using Get My Orders Request with clientOrderId parameter. When sending a re
quest for new order, it is highly recommended to use clientOrderId parameter which corresponds
to the specific new order request on the client’s side. Exchange Plus avoids multiple placing the
orders with the same clientOrderId. If more than one new orders with identical clientOrderId and
other order parameters are identified - Exchange Plus places only the first order and returns the
status of such order to the Client in response to the second and subsequent new order requests
with the same parameters. If more than one new orders with identical clientOrderId but with differ
ent other order parameters are identified Exchange Plus processes only the first order and re
jects the second and subsequent new order requests with the same clientOrderID but with differ
ent other order parameters.

NewMarketOrder Places a new market order.
NewLimitOrder Places a new limit order.

CancelOrder
Client can cancel orders. Along with a response to this request, Exchange Plus sends Account
Event and Execution Report messages to Client if this request is successful. Also, if request to
cancel an order is declined, Exchange Plus sends Order Cancellation Rejection message.

CancelAllOrders
Client can cancel all open orders via WebSocket API. Along with a response to this request Ex
change Plus will start cancellation process for all open orders and send corresponding Account
Event and Execution Report messages to the Client.

GetTransaction
History

This request allows Client to find out his financial transactions (deposits, withdrawals, internal
transfers, commissions or trades).

GetFundingHis
tory This request allows Client to find his deposit and withdrawal transactions.

COMPONENTS

528

InternalTransfer
Client can request to transfer money between his sub-accounts or between his main account and
subaccount. Exchange Plus does not charge Client any commission for transferring funds be
tween his accounts. Along with a response to this request, Exchange Plus sends Account Event
messages to Client if this request is successful.

GetDepositAd
dress

This method can be used by Client for receiving a crypto address to deposit cryptocurrency. De
posit address can be generated for main and subaccounts. The list of available blockchains for
generating deposit address can be received by Client via Get Processing Info request.

FundsDeposit
FromWallet

Client can deposit funds from CEX.IO Wallet to Exchange Plus account. The system avoids pro
cessing of multiple deposit requests with the same clientTxId. If multiple deposit requests with
identical clientTxId are received - the system processes only the first deposit request and rejects
the second and subsequent deposit requests with the same clientTxId.

FundsWith
drawalToWallet

Client can withdraw funds from Exchange Plus account to CEX.IO Wallet. The system avoids
multiple withdrawal requests with the same clientTxId. If multiple withdrawal requests with identi
cal clientTxId are received - the system processes only the first withdrawal request and rejects
the second and subsequent withdrawal requests with the same clientTxId.

Example: get the orders.

TsgcWebSocketClient* oClient;

TsgcWSAPI_CexPlus* oCexPlus;

void __fastcall OnCexPlusAuthenticatedEvent(System::TObject* Sender)

{

 oCexPlus->GetOrders();

}

void __fastcall OnCexPlusMessageEvent(System::TObject* Sender, UnicodeString Event, UnicodeString Msg)

{

 ShowMessage("Orders: " + Msg);

}

void SetupCexPlus()

{

 oClient = new TsgcWebSocketClient(NULL);

 oCexPlus = new TsgcWSAPI_CexPlus(NULL);

 oClient->Active = true;

 oCexPlus->Client = oClient;

 oCexPlus->CexPlus->ApiKey = "your-api-key";

 oCexPlus->CexPlus->ApiSecret = "your-api-secret";

 oCexPlus->OnCexPlusAuthenticated = OnCexPlusAuthenticatedEvent;

 oCexPlus->OnMessage = OnCexPlusMessageEvent;

}

COMPONENTS

529

API Discord
Discord

Gateways are Discord's form of real-time communication over secure WebSockets. Clients will receive events and
data over the gateway they are connected to and send data over the REST API.

Authorization

First you must generate a new Bot, and copy Bot Token which will be used to authenticate through API. Then set
this token in API Component.

TsgcWSAPI_Discord1->DiscordOptions->BotOptions->Token = "...bot token here...";

Intents

Maintaining a stateful application can be difficult when it comes to the amount of data you're expected to process,
especially at scale. Gateway Intents are a system to help you lower that computational burden.
When identifying to the gateway, you can specify an intents parameter which allows you to conditionally subscribe
to pre-defined "intents", groups of events defined by Discord. If you do not specify a certain intent, you will not re
ceive any of the gateway events that are batched into that group. The valid intents are (zero value means all events
are received):

GUILDS (1 << 0) = Integer (1)
 GUILD_CREATE
 GUILD_DELETE
 GUILD_ROLE_CREATE
 GUILD_ROLE_UPDATE
 GUILD_ROLE_DELETE
 CHANNEL_CREATE
 CHANNEL_UPDATE
 CHANNEL_DELETE
 CHANNEL_PINS_UPDATE
GUILD_MEMBERS (1 << 1) = Integer (2)
 GUILD_MEMBER_ADD
 GUILD_MEMBER_UPDATE
 GUILD_MEMBER_REMOVE
GUILD_BANS (1 << 2) = Integer (4)
 GUILD_BAN_ADD
 GUILD_BAN_REMOVE
GUILD_EMOJIS (1 << 3) = Integer (8)
 GUILD_EMOJIS_UPDATE
GUILD_INTEGRATIONS (1 << 4) = Integer (16)
 GUILD_INTEGRATIONS_UPDATE
GUILD_WEBHOOKS (1 << 5) = Integer (32)
 WEBHOOKS_UPDATE
GUILD_INVITES (1 << 6) = Integer (64)
 INVITE_CREATE
 INVITE_DELETE
GUILD_VOICE_STATES (1 << 7) = Integer (128)
 VOICE_STATE_UPDATE
GUILD_PRESENCES (1 << 8) = Integer (256)
 PRESENCE_UPDATE
GUILD_MESSAGES (1 << 9) = Integer (512)
 MESSAGE_CREATE

https://discordapp.com/developers/docs/intro

COMPONENTS

530

 MESSAGE_UPDATE
 MESSAGE_DELETE
GUILD_MESSAGE_REACTIONS (1 << 10) = Integer (1024)
 MESSAGE_REACTION_ADD
 MESSAGE_REACTION_REMOVE
 MESSAGE_REACTION_REMOVE_ALL
 MESSAGE_REACTION_REMOVE_EMOJI
GUILD_MESSAGE_TYPING (1 << 11) = Integer (2048)
 TYPING_START
DIRECT_MESSAGES (1 << 12) = Integer (4096)
 CHANNEL_CREATE
 MESSAGE_CREATE
 MESSAGE_UPDATE
 MESSAGE_DELETE
 CHANNEL_PINS_UPDATE
DIRECT_MESSAGE_REACTIONS (1 << 13) = Integer (8192)
 MESSAGE_REACTION_ADD
 MESSAGE_REACTION_REMOVE
 MESSAGE_REACTION_REMOVE_ALL
 MESSAGE_REACTION_REMOVE_EMOJI
DIRECT_MESSAGE_TYPING (1 << 14) = Integer (16384)
 TYPING_START

HeartBeat

HeartBeats are automatically handle by component so you don't need to worry about it. When client connects to
server, server sends a HELLO response with heartbeat interval, component reads response and adjust automati
cally heartbeat so send a ping every x seconds. Sometimes server can send a ping to client, this is handled auto
matically by client too.

Connection Ready

When connection is ready, after a successful login and authorization by server, OnDiscordReady event is raised
and then you can start to receive updates from server.

Connection Resume

If connection closes unexpectedly, when client tries to reconnect, it calls OnDiscordBeforeReconnect event, com
ponent automatically saves all data needed to make a successful resume, but parameters can be changed if need
ed. If you don't want to reconnect and start a new clean session, just set Reconnect to False.

If session is resumed, OnDiscordResumed event is fired. If it's a new session, OnDiscordReady fill be fired.

Dispatch Events

Events are dispatched OnDiscordDispatch, so here you can read events sent by server to client.

void OnDiscordDispatch(TObject *Sender, const string aEvent, const string RawData)

{

 DoLog("#discord dispatch: " + aEvent + " " + RawData);

}

aEvent parameter contains parameter name.

COMPONENTS

531

RawData contains full JSON message.

HTTP Requests

In order to request info about guild, users, udpate data... instead of use gateway websocket messages, Discord
requires to use HTTP requests, so find bellow all methods available to do an HTTP request:

function GET_Request(const aPath: String): string;
function POST_Request(const aPath, aMessage: String): string;
function PUT_Request(const aPath, aMessage: String): string;
function PATCH_Request(const aPath, aMessage: String): string;
function DELETE_Request(const aPath: String): string;

Example: get current user info

result = GET_Request("/users/@me");

sample response from server:

{

"id": "637423922035480852",

"username": "test",

"avatar": null,

"discriminator": "5125",

"bot": true,

"email": null,

"verified": true,

"locale": "en-US",

"mfa_enabled": false,

"flags": 0

}

COMPONENTS

532

•
•
•
•
•
•
•

•
•
•
•
•
•

•
◦
◦
◦
◦
◦
◦

•
•

WhatsApp Cloud API
Whatsapp

Send and receive messages using a cloud-hosted version of the WhatsApp Business Platform. The Cloud API
allows you to implement WhatsApp Business APIs without the cost of hosting of your own servers and also allows
you to more easily scale your business messaging. The Cloud API supports up to 80 messages per second of com
bined sending and receiving (inclusive of text and media messages).

The WhatsApp Business API allows medium and large businesses to communicate with their customers at scale.
Using the API, businesses can build systems that connect thousands of customers with agents or bots, enabling
both programmatic and manual communication. Additionally, you can integrate the API with numerous backend
systems, such as CRM and marketing platforms.

Features

Businesses will get all the new features faster on Cloud API. Right now, WhatsApp Business Cloud API comes with
all the features that are available with WhatsApp Business API.

Useful features of WhatsApp Cloud API:

Integrate WhatsApp messaging with tools like CRM, analytics, and third-party apps
Green Tick, verified WhatsApp Business profile
WhatsApp Broadcast & Bulk Messaging
No app or interface, use via BSPs or CRM
WhatsApp Chatbot & chat automation using third-party apps
Schedule WhatsApp messages at a large scale
Interactive messaging features include List messages, reply buttons, CTA messages

Most common uses

Configuration
WhatsApp Create App
WhatsApp Phone Number Id
WhatsApp Token
WhatsApp Webhook
WhatsApp Security

Messages

WhatsApp Send Messages
WhatsApp Send Interactive Messages
WhatsApp Send Template Messages
WhatsApp Receive Messages and Status Notifications
WhatsApp Send Files
WhatsApp Download Media

Get Started

To send and receive a first message using a test number, complete the following steps:

1. Set up Developer Assets and Platform Access

Register as a Meta Developer
Enable two-factor authentication for your account

https://www.whatsapp.com/

COMPONENTS

533

•

•
•

•
•

•

◦

▪

▪

Create a Meta App: Go to developers.facebook.com > My Apps > Create App. Select the "Business" type
and follow the prompts on your screen.

From the App Dashboard, click on the app you would like to connect to WhatsApp. Scroll down to find the "What
sApp" product and click Set up.

Next, you will see the option to select an existing Business Manager (if you have one) or, if you would like, the on
boarding process can create one automatically for you (you can customize your business later, if needed). Make a
selection and click Continue.

When you click Continue, the onboarding process performs the following actions:

Your App is associated with the Business Manager that you chose, or that was created automatically.
A WhatsApp test phone number is added to your business. You can use this test phone number to explore
the WhatsApp Business Platform without registering or migrating a real phone number. Test phone numbers
can send unlimited messages to up to 5 recipients (which can be anywhere in the world).

2. Send a Test Message

Now, you can open your IDE and create a new project. Drop a TsgcWhatsapp_Client component and fill the follow
ing properties:

WhatsappOptions.PhoneNumberId: is the ID of the Phone Number used to send messages.
WhatsappOptions.Token: is the Temporary Access Token valid for 24 hours.

Once those 2 properties have been property configured, call the method SendTest to send your First message to
a phone number using the Whatsapp Business Platform.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendTest("34605889421");

3. Configure a Webhook

To get alerted when you receive a message or when a message’s status has changed, you need to set up a Web
hooks endpoint for your app. Setting up Webhooks doesn’t affect the status of your phone number and does inter
fere with you sending or receiving messages.

To get started, first you need to create the endpoint, so first configure the ServerOptions property of WhatsApp
Client component and configure the following properties:

ServerOptions: here you can configure the IP Address to bind, the Listening Port, if it's using SSL (the Web
Hook must run in a secure server, you can configure your server to use SSL or Proxy the WebHook requests
to a none HTTPs server). The server is based on TsgcWebSocketHTTPServer.

WebhookOptions: this property allows to set the Webhook properties that later will be configured in
your developer facebook account.

Endpoint: it's the name of the endpoint, by default is /webhook. Example: if your server is lis
tening on https://www.esegece.com, the endpoint will be "https://www.esegece.com/webhook"
Token: it's a security string that can contain any value defined by you. It's used to verify the
Webhook registration is correct.

After configuring the server, you can use the method StartServer to start the server and accept the incoming re
quests.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->ServerOpptions->WebhookOptions->PhoneNumberId = "/webhook";

oClient->ServerOptions->WebhookOptions->Token = "MySecretToken";

oClient->StartServer();

Once your endpoint is ready, go to your App Dashboard.

COMPONENTS

534

•
•

In your App Dashboard, find the WhatsApp product and click Configuration. Then, find the webhooks section and
click Configure a webhook. After the click, a dialog appears on your screen and asks you for two items:

Callback URL: This is the URL Meta will be sending the events to.
Verify Token: This string is set up by you, when you create your webhook endpoint.

After adding the information, click Verify and Save.

Back in the App Dashboard, click WhatsApp > Configuration in the left-side panel. Under Webhooks, click Man
age. A dialog box will open with all the objects you can get notified about. To receive messages from your users,
click Subscribe for messages.

4. Receive a test message

Every time a new message is received, the client event OnMessageReceived will be called.

void OnMessageReceived(TObject *Sender, TsgcWhatsapp_Receive_Message *aMessage, ref bool aMarkAsRead)

{

 DoLog("Received: " + aMessage->Messages->_Message[0]->Id);

}

Now that your Webhook is set up, send a message to the test number you have used. You should immediately get
a Webhooks notification with the content of your message!

WhatsApp API not allow to send free text messages to phones that never contact you before (in the latest 24
hours). The only way to send a text message to a phone that never text to your developer account number, is send
ing a Template (previously approved by Meta). To override this limitation, if you want to test free text messages, just
sent first a whatsapp message from the destination number to your developer account number and then you will be
able to send free text messages during 24 hours.

Events

OnBeforeSendMessage

The event is called before the message is sent to the WhatsApp servers, you can access to the internal message
accessing to the RawMessage paramenter.

OnBeforeSubscribe

The event is called before the server subscribes to a topic, use the parameter Accept to subscribe or not, by de
fault, the server will subscribe to all events requested.

OnRawMessage

This event is called when the server receives a new message and still is not parsed, so you get access to the raw
message.

OnMessageReceived

This event is called after the server receives a new message and is parsed. If you set the parameter MarkAsRead
to True, the sender will receive a double check.

OnMessageSent

This event is called every time the server receives a new status message about the message previously sent. Read
the Status property to know if the message has been sent, delivered or read.

COMPONENTS

535

COMPONENTS

536

WhatsApp Create App
Go to developers.facebook.com and Create App.

Select Business Type as the app type and proceed.

Provide a name for your app (avoid using trademarked names such as “WhatsApp” or “Facebook”).

Once the app has been created, click the WhatsApp button on the next screen to add WhatsApp sending capabili
ties to your app.

On the next screen, you will be required to link your WhatsApp app to your Facebook business account. You will al
so have the option to create a new business account if you don’t have one yet.

COMPONENTS

537

COMPONENTS

538

WhatsApp Phone Number Id
When you register with WhatsApp Cloud API, Facebook provides a Test WhatsApp phone number that will be the
default sending address of your Application. For recipients, you will have the option to add a maximum of 5 phone
numbers during the development phase without having to make any payment.

Later you can register your own Phone Number to avoid the limitation of 5 phone numbers.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

COMPONENTS

539

WhatsApp Token
WhatApp Cloud API requires a valid token to send any message using the Cloud API.

Facebook provides a Test WhatsApp phone number that allows to send messages up to 5 phone numbers. You
can override later this limitation registering your own phone number.

The WhatsApp provide a Temporary Access Token that will be valid for 23 hours. This token must be configured
in TsgcWhatsApp_Client component to allow to send messages.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

If you need a long valid token, you can create (or update) a System User and generate a new Token with
the whatsapp_business_messaging permission. This will allow to send and receive WhatsApp messages with
out updating the Token every 23 hours.

COMPONENTS

540

WhatsApp Webhook
Subscribe to Webhooks to get notifications about messages your business receives and customer profile updates.

Create Endpoint

Before you can start receiving notifications you will need to create an endpoint on your server to receive notifica
tions.

Your endpoint must be able to process two types of HTTPS requests: Verification Requests and Event Notifications.
Since both requests use HTTPs, your server must have a valid TLS or SSL certificate correctly configured and in
stalled. Self-signed certificates are not supported.

When you configure the Webhook in the WhatsApp Settings, you must define the endpoint where is listening your
server and a Token that can be any value, this token is used when registering the webhook endpoint and verify the
subscriber is valid.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->ServerOpptions->WebhookOptions->PhoneNumberId = "/webhook";

oClient->ServerOptions->WebhookOptions->Token = "MySecretToken";

oClient->StartServer();

Once the Webhook is configured, subscribe to Messages Webhook Fields to be notified every time a new mes
sage is received.

You can read more about configuring SSL Server.

COMPONENTS

541

WhatsApp Security
Every time a new message is received or there is a new status of a message, the server receives a notification in
the endpoint confrigured in the Webhook. To be sure the request comes from WhatsApp Cloud API Servers, the re
quest contains a header with a signature, you can configure the WhatsApp client to verify the signatures before
process the message.

To do this, first you need to set the Application Secret in the property ServerOptions.Application.Secret and en
able VerifySignature property.

Once configured, every time a new message is received, first the signature is verified, and if it's wrong, returns an
error 500 and the message is not processed.

COMPONENTS

542

•
•

•
•
•

•
•
•
•

WhatsApp Send Messages
All API calls must be authenticated with an Acccess Token. Developers can authenticate their API calls with the
access token generated in App Dashboard > WhatsApp > Getting Started

The API calls return the Message Id as a string.

Text Messages

Call the method SendMessageText and pass the following parameters:

aTo: phone number
aText: text of the message.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageText("34605889421", "Hello from sgcWebSockets!!!");

Image Messages

Call the method SendMessageImage and pass the following parameters:

aTo: phone number
aLink: url where is the image to send
aCaption: title of the image (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageImage("34605889421", "https://www.media.com/image.png", "logo");

Document Messages

Call the method SendMessageDocument and pass the following parameters:

aTo: phone number
aLink: url where is the document to send
aCaption: title of the document (optional).
aFileName: name of the file (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageDocument("34605889421", "https://www.documents.com/file.txt", "Document", "file.txt");

Audio Messages

Call the method SendMessageAudio and pass the following parameters:

COMPONENTS

543

•
•

•
•

•
•

•
•
•
•
•

aTo: phone number
aLink: url where is the audio to send

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageAudio("34605889421", "https://www.audio.com/audio.mp3");

Video Messages

Call the method SendMessageVideo and pass the following parameters:

aTo: phone number
aLink: url where is the video to send

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageVideo("34605889421", "https://www.video.com/audio.mp4");

Sticker Messages

Call the method SendMessageSticker and pass the following parameters:

aTo: phone number
aLink: url where is the sticker to send

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageSticker("34605889421", "https://www.stickers.com/sticker");

Location Messages

Call the method SendMessageLocation and pass the following parameters:

aTo: phone number
aLongitude: Longitude of the location.
aLatitude: Latitude of the location.
aName: Name of the location.
aAddress: Address of the location. Only displayed if aName is set.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageLocation("34605889421", "50.159305", "9.762686", "My Location", "My Address");

COMPONENTS

544

•
•
•
•

Contact Messages

Call the method SendMessageContact and pass the following parameters:

aTo: phone number
aName: Full name, as it normally appears (required).
aPhone: the phone number (optional).
aEmail: the email (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageLocation("34605889421", "John Smith", "15550386570", "john@mail.com");

COMPONENTS

545

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

WhatsApp Send Interactive Messages
Interactive messages give your users a simpler way to find and select what they want from your business on What
sApp. During testing, chatbots using interactive messaging features achieved significantly higher response rates
and conversions compared to those that are text-based.

The following messages are considered interactive:

List Messages: Messages including a menu of up to 10 options. This type of message offers a simpler and
more consistent way for users to make a selection when interacting with a business.

Reply Buttons: Messages including up to 3 options —each option is a button. This type of message offers a
quicker way for users to make a selection from a menu when interacting with a business. Reply buttons have
the same user experience as interactive templates with buttons.

Interactive Message Specifications

Interactive messages can be combined together in the same flow.

Users cannot select more than one option at the same time from a list or button message, but they can go
back and re-open a previous message.

List or reply button messages cannot be used as notifications. Currently, they can only be sent within 24
hours of the last message sent by the user. If you try to send a message outside the 24-hour window, you
get an error message.

When You Should Use It

List Messages are best for presenting several options, such as:

A customer care or FAQ menu

A take-out menu

Selection of nearby stores or locations

Available reservation times

Choosing a recent order to repeat

Reply Buttons are best for offering quick responses from a limited set of options, such as:

Airtime recharge

Changing personal details

Reordering a previous order

Requesting a return

Adding optional extras to a food order

Choosing a payment method

Reply buttons are particularly valuable for ‘personalized’ use cases where a generic response is not adequate.

COMPONENTS

546

Interactive List

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageInteractiveList("

34605889421

", "What Would you like to do today?", "To begin, Tap Main Menu and choose from of the following options", "", "Main Men

Reply Buttons

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageInteractiveButtons("34605889421", "Select an option", "Which number would you like to add airtime to?"

COMPONENTS

547

COMPONENTS

548

COMPONENTS

549

•
•
•

WhatsApp Send Template Messages
Call the method SendMessageTemplate and pass the following parameters:

aTo: phone number
aTemplate: template identifier.
aLanguageCode: template language.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendMessageTemplate("34605889421", "hello_world", "en_US");

Template Message Parameters

Templates can include parameters, see below an example of default template with parameters

void SendSamplePurchaseFeedbackTemplate(string aName)

{

 TsgcWhatsApp_Send_Message_Template *oTemplate = new TsgcWhatsApp_Send_Message_Template();

 Try

 oTemplate->Language->Code = "en_US";

 oTemplate->TemplateName = "sample_purchase_feedback";

 // ... header

 TsgcWhatsApp_Send_Message_Template_Component *oComponent = new TsgcWhatsApp_Send_Message_Template_Component();

 oComponent->_Type = wapctHeader;

 oTemplate->Components->Add(oComponent);

 TsgcWhatsApp_Send_Message_Template_Parameter *oParameter = new TsgcWhatsApp_Send_Message_Template_Parameter();

 oParameter->Image->Link = "https://www.esegece.com/images/esegece.png";

 oParameter->_Type = wapptImage;

 oComponent->Parameters->Add(oParameter);

 // ... body

 TsgcWhatsApp_Send_Message_Template_Component *oComponent = new TsgcWhatsApp_Send_Message_Template_Component();

 oComponent->_Type = wapctBody;

 oTemplate->Components->Add(oComponent);

 TsgcWhatsApp_Send_Message_Template_Parameter *oParameter = new TsgcWhatsApp_Send_Message_Template_Parameter();

 oParameter->Text = aName;

 oParameter->_Type = wapptText;

 oComponent->Parameters->Add(oParameter);

 whatsapp->SendMessageTemplate("107809351952205", oTemplate);

 __Finally

 oTemplate->Free();

 End;

}

Template Message Uploaded Image

Find below an example of a template where instead of using a link to an image, first uploads the image to the serv
er and then sets the Id of the document.

oClient->OnMessage(TsgcWSConnection *Connection, const string Text)

void SendSamplePurchaseFeedbackTemplate(string aName)

{

 TsgcWhatsApp_Send_Message_Template *oTemplate = new TsgcWhatsApp_Send_Message_Template();

 Try

 // ... first upload the file

 string vId = whatsapp->UploadMedia("c:\images\file.png", "image/png");

 // ... send message

 oTemplate->Language->Code = "en_US";

 oTemplate->TemplateName = "sample_purchase_feedback";

 // ... header

 TsgcWhatsApp_Send_Message_Template_Component *oComponent = new TsgcWhatsApp_Send_Message_Template_Component();

COMPONENTS

550

 oComponent->_Type = wapctHeader;

 oTemplate->Components->Add(oComponent);

 TsgcWhatsApp_Send_Message_Template_Parameter *oParameter = new TsgcWhatsApp_Send_Message_Template_Parameter();

 oParameter->Image->id = vId;

 oParameter->_Type = wapptImage;

 oComponent->Parameters->Add(oParameter);

 // ... body

 TsgcWhatsApp_Send_Message_Template_Component *oComponent = new TsgcWhatsApp_Send_Message_Template_Component();

 oComponent->_Type = wapctBody;

 oTemplate->Components->Add(oComponent);

 TsgcWhatsApp_Send_Message_Template_Parameter *oParameter = new TsgcWhatsApp_Send_Message_Template_Parameter();

 oParameter->Text = aName;

 oParameter->_Type = wapptText;

 oComponent->Parameters->Add(oParameter);

 whatsapp->SendMessageTemplate("107809351952205", oTemplate);

 __Finally

 oTemplate->Free();

 End;

}

COMPONENTS

551

•

•

•

•

•

WhatsApp Receive Messages and Status
Notifications
Subscribe to Webhooks to get notifications about messages your business receives and customer profile updates.

Whenever a trigger event occurs, the WhatsApp Business Platform sees the event and sends a notification to a
Webhook URL you have previously specified. You can get two types of notifications:

Received messages: This alert lets you know when you have received a message.

Message status and pricing notifications: This alert lets you know when the status of a message has
changed —for example, the message has been read or delivered.

Received Messages

Every time a new message is received the event OnMessageReceived is called, where you can access to the
content of the Message and mark the message as read.

Find below an example, when a new text message is received, it's echoed to user who sent it.

void OnWhatsAppMessageReceived(TObject *Sender, const TsgcWhatsApp_Receive_Message *aMessage, ref bool aMarkAsRead)

{

 if (aMessage->Contacts->Count > 0)

 {

 string vTo = aMessage->Contacts->Contact[0]->WaID;

 if (aMessage->Messages->Count > 0)

 {

 if (aMessage->Messages->_Message[0]->_Type = wapmrtText)

 {

 vText = "ECHO ==> " + aMessage->Messages->_Message[0]->Text->Body;

 WhatsApp->SendMessageText(vTo, vText);

 aMarkAsRead = true;

 }

 }

 }

}

Sent Messages

The WhatsApp Business Platform sends notifications to inform you of the status of the messages between you and
users. When a message is sent successfully, you receive a notification when the message is sent, delivered, and
read. The order of these notifications in your app may not reflect the actual timing of the message status. View the
timestamp to determine the timing, if necessary.

sent: The following notification is received when a business sends a message as part of a userinitiated con
versation (if that conversation did not originate in a free entry point):
delivered: The following notification is received when a business’ message is delivered and that message is
part of a user-initiated conversation (if that conversation did not originate in a free entry point):
read: The following notification is received when the user reads the message.

Every time a new status is received, the event OnMessageSent is called.

void OnWhatsAppMessageSent(TObject *Sender, const TsgcWhatsApp_Receive_Message *aMessage, TsgcWhatsAppSendMessageStatusType aStatus)

{

COMPONENTS

552

 string vPhone := aMessage.MetaData.DisplayPhoneNumber

 if (aStatus = wapsmstSent) {

 DoLog("Message to " + vPhone + " sent.");

 } else if (aStatus = wapsmstDelivered) {

 DoLog("Message to " + vPhone + " delivered.");

 } else if (aStatus = wapsmstRead) {

 DoLog("Message to " + vPhone + " read.");

 } else {

 DoLog("Message to " + vPhone + " unknown status.");

 }

}

COMPONENTS

553

•
•
•

◦
◦

•

•
•
•

◦
◦
◦
◦
◦
◦
◦
◦

•

•

WhatsApp Send Files
All API calls must be authenticated with an Acccess Token. Developers can authenticate their API calls with the
access token generated in App Dashboard > WhatsApp > Getting Started

The API calls return the Message Id as a string.

When you send a File using the WhatsApp API, first the message is uploaded to WhatsApp servers and then a new
message is sent with the object id returned after upload the file.

Image Messages

Call the method SendMessageImage and pass the following parameters:

aTo: phone number
aFileName: full filename (with path) of the image file to send.
aFileType:

image/jpeg
image/png

aCaption: title of the image (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendFileImage("34605889421", "c:\images\image.png", "image/png");

Document Messages

Call the method SendMessageDocument and pass the following parameters:

aTo: phone number
aFileName: full filename (with path) of the document file to send.
aFileType:

text/plain
application/pdf
application/vnd.ms-powerpoint
application/msword
application/vnd.ms-excel
application/vnd.openxmlformats-officedocument.wordprocessingml.document
application/vnd.openxmlformats-officedocument.presentationml.presentation
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

aCaption: title of the document (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendFileDocument("34605889421", "c:\MyDocuments\invoice.pdf", "application/pdf");

Audio Messages

Call the method SendMessageAudio and pass the following parameters:

aTo: phone number

COMPONENTS

554

•
•

◦
◦
◦
◦
◦

•
•
•

◦
◦

•
•
•

◦

aFileName: full filename (with path) of the audio file to send.
aFileType:

audio/aac
audio/mp4
audio/mpeg
audio/amr
audio/ogg

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendFileAudio("34605889421", "c:\Music\audio.mp3", "audio/mp4");

Video Messages

Call the method SendMessageVideo and pass the following parameters:

aTo: phone number
aFileName: full filename (with path) of the video file to send.
aFileType:

video/mp4
video/3gp

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendFileVideo("34605889421", "c:\Videos\video.mp4", "video/mp4");

Sticker Messages

Call the method SendMessageSticker and pass the following parameters:

aTo: phone number
aFileName: full filename (with path) of the sticker file to send.
aFileType:

image/webp

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->SendFileSticker("34605889421", "c:\Stickers\MySicker.webp", "image/webp");

COMPONENTS

555

WhatsApp Download Media
If you receive a message with a media file link, you can download the media file using the method DownloadMedia.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient->WhatsappOptions->PhoneNumberId = "107809351952205";

oClient->WhatsappOptions->Token = "EAAO4OpgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient->DownloadMedia("38923878928822", "c:\whatsapp\media\image.png");

To delete a previously uploaded media file, just call DeleteMedia and pass the object id as argument.

COMPONENTS

556

•
•
•
•
•
•
•

API Telegram
Telegram

Telegram offers two kinds of APIs, one is Bot API which allows to create programs that use Bots and HTTPs as
protocol. Telegram API and TDLib allows to build customized Telegram clients and is much more powerful than
Bot API.

sgcWebSockets supports TDLib through tdjson library, which means that you can build your own telegram client.
TDLib takes care of all network implementation details, encryption and local data storage. TDLib supports all
Telegram features.

TDLib (Telegram Database Library) Advantages

Cross-platform: can be used on Windows, Android, iOS, MacOS, Linux...
Easy to use: uses json messages to communicate between application and telegram.
High-performance: In the Telegram Bot API, each TDLib instance handles more than 24000 bots.
Consistent: TDLib guarantees that all updates will be delivered in the right order.
Reliable: TDLib remains stable on slow and unreliable internet connections.
Secure: All local data is encrypted using a user-provided encryption key.
Fully Asynchronous: Requests to TDLib don't block each other. Responses will be sent when they are
available.

Configuration

Windows

TDLib requires other third-parties libraries: OpenSSL and ZLib. These libraries must be deployed with tdjson library.

* Windows versions requires VCRuntime which can be download from microsoft: https://www.microsoft.com/en-us/
download/details.aspx?id=52685, If after installing, the problem persist, try to copy the following dll in the same
folder where your application is: VCRUNTIME140.dll and VCRUNTIME140_1.dll.

Copy the following libraries in the same directory where is your application:

Windows 32 Windows 64
tdjson.dll tdjson.dll

libcrypto-1_1.dll libcrypto-1_1-
x64.dll

libssl-1_1.dll libssl-1_1-x64.dll
zlib1.dll zlib1.dll

OSX64

Deploy the library libtdjson.dylib to your device and you can set where is the library using SetTDJsonPath, exam
ple:

if you deploy to "Contents\MacOS\", you must set the path in TPath.GetDirectoryName(ParamStr(0)) folder.

OSXARM64

Deploy the library libtdjson.dylib to your device and you can set where is the library using SetTDJsonPath, exam
ple:

if you deploy to "Contents\MacOS\", you must set the path in TPath.GetDirectoryName(ParamStr(0)) folder.

Linux64

https://www.telegram.org/
https://www.microsoft.com/en-us/download/details.aspx?id=52685

COMPONENTS

557

•
•

•
•
•
•
•

•

•
•

•
•
•
•

Deploy the library libtdjson.so to your device and set the library path calling the method SetTDJsonPath.

Android

Deploy the library libtdjsonandroid.so to your device. Example: if you deploy an Android64 library, set RemotePath
in Project/Deployment to "library\lib\arm64-v8a\". If is Android32, set RemotePath to "library\lib\armeabi-v7a\"

iOS64

Copy the library libtdjson.a to these directories:

C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\debug
C:\Program Files (x86)\Embarcadero\Studio\<IDE Version>\lib\iosDevice64\release

Creating your Telegram Application

In order to obtain an API id and develop your own application using the Telegram API you need to do the following:

Sign up for Telegram using any application.
Log in to your Telegram core: https://my.telegram.org.
Go to API development tools and fill out the form.
You will get basic addresses as well as the api_id and api_hash parameters required for user authorization.
For the moment each number can only have one api_id connected to it.

These values must be set in Telegram.API property of Telegram component. In order to authenticate, you can au
thenticate as an user or as a bot, there are 2 properties which you can set to login to Telegram:

PhoneNumber: if you login as an user, you must set your phone number (with international code), exam
ple: +34699123456
BotToken: if you login as a bot, set your token in this property (as provided by telegram).
DatabaseDirectory: allows to specify where is the tdlib database. Leave empty and will take the default
configuration.

The following parameters can be configured:

ApplicationVersion: application version, example: 1.0
DeviceModel: device model, example: desktop
LanguageCode: user language code, example: en.
SystemVersion: verison of operating system, example: windows.

Optionally, you can configure the path where is located tdjson library using SetTDJsonPath method. Just pass the
path before start a new telegram session.

Once you have configured Telegram Component, you can set Active property to true and program will try to con
nect to Telegram.

Sample Code

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();

oTelegram->Telegram->API->ApiHash = "your api hash";

oTelegram->Telegram->API->ApiId = "your api id";

oTelegram->PhoneNumber = "your phone number";

oTelegram->ApplicationVersion = "1.0";

oTelegram->DeviceModel = "Desktop";

oTelegram->LanguageCode = "en";

oTelegram->SystemVersion = "Windows";

oTelegram->Active = true;

https://my.telegram.org

COMPONENTS

558

•
•
•
•
•
•
•

•
•
•

•
•

Authorization

There are two events which can be called by library in order to get an Authentication Code (delivered in Telegram
Application, not SMS) or to provide a password.

OnAuthenticationCode

This event is called when Telegram sends an Authorization Code to Telegram Application and user must copy this
code and set in Code argument of this event.

void OnAuthenticationCode(TObject *Sender, ref string Code)

{

 Code = InputBox("Telegram Code", "Introduce code", "");

}

OnAuthenticationPassword

This event is called when Telegram requires that user set a password.

Authorization Status

Once authorization has started, you can check the status of authorization OnAuthorizationStatus event, this event
is called every time there is a change in status of authorization. Some values of Status are:

authorizationStateWaitTdlibParameters
authorizationStateWaitEncryptionKey
authorizationStateWaitPhoneNumber
authorizationStateWaitCode
authorizationStateLoggingOut
authorizationStateClosed
authorizationStateReady

Connection Status

Once connection has started, you can check the status of connection OnConnectionStatus event, this event is
called every time there is a change in status of connection. Some values of Status are:

connectionStateConnecting
connectionStateUpdating
connectionStateReady

Methods

TsgcTDLib_Telegram API Component support the most following methods.

Method Parameters Description
Send
TextMes
sage

aChatId: Id of Chat which message
will be sent aText: Text of Message.
InlineKeyboard: Optional Buttons
(only bots).

Sends a Text Message to a Chat

SendRich
TextMes
sage

aChatId: Id of Chat which message
will be sent aText: Text of Message.
InlineKeyboard: Optional Buttons
(only bots).

Sends a Rich Text Message to a
Chat. Markdown syntax:

Bold: **bold**
Italic: __italic__

COMPONENTS

559

•
•
•

Strike: --strike--
Underline: ~~underline~~
Code: ##code##

SendDocu
mentMes
sage

aChatId: Id of Chat which message
will be sent aFilePath: full file path of
document aInlineKeyboard: Optional
Buttons (only bots).

Sends a Document to a Chat.

SendPho
toMessage

aChatId: Id of Chat which message
will be sent aFilePath: full file path of
photo
Width: witdh of photo.
Height: width of photo.
InlineKeyboard: Optional Buttons
(only bots).

Sends a Photo to a Chat.

Send
VideoMes
sage

aChatId: Id of Chat which message
will be sent aFilePath: full file path of
video aWidth: witdh of video.
Height: width of video.
aDuration: duration of video in sec
onds.
aInlineKeyboard: Optional Buttons
(only bots).

Sends a Video to a Chat.

SendIn
voiceMes
sage

aChatId: Id of Chat which message
will be sent aInvoice: Text of Mes
sage.
aInlineKeyboard: Optional Buttons
(only bots).

Sends an Invoice (only available
when is a Bot and in Private Chan
nels).

Edit
TextMes
sage

aChatId: Id of Chat which message
will be sent
aMessageId: Id of Message to modify
Text: Text of Message.
InlineKeyboard: Optional Buttons
(only bots).
ShowKeyboard: Optional Buttons
(only bots).

Edits the text of a message (or a
text of a game message)

AddChat
Member

aChatId: Id of Chat which message
will be sent aUserId: Identifier of the
user. aForwardLimit: The number of
earlier messages from the chat to be
forwarded to the new member; up to
100. Ignored for supergroups and
channels.

Adds a new member to a chat.
Members can't be added to private
or secret chats. Members will not be
added until the chat state has been
synchronized with the server.

AddChat
Members

aChatId: Id of Chat which message
will be sent aUserIds: Identifiers of the
users to be added to the chat.

Adds multiple new members to a
chat. Currently this option is only
available for supergroups and chan
nels. This option can't be used to
join a chat. Members can't be added
to a channel if it has more than 200
members. Members will not be
added until the chat state has been
synchronized with the server.

GetChat
Member

aChatId: Chat Identifier. aUserId:
User Identifier.

Returns information about a single
member of a chat.

GetBasic
Group
FullInfo

aGroupId: Basic Group Identifier
Returns full information about a ba
sic group by its identifier.

GetSuper
groupMem
bers

aSuperGroupId: Identifier of the su
pergroup or channel.

Returns information about members
or banned users in a supergroup or
channel.

COMPONENTS

560

aSupergroupMembersFilter: The
type of users to return. By default null
aOffset: Number of users to skip.
aLimit: The maximum number of
users be returned; up to 200.

JoinChat
ByIn
viteLink

aLink: Invite link to import;

Uses an invite link to add the cur
rent user to the chat if possible. The
new member will not be added until
the chat state has been synchro
nized with the server.

Create
NewSe
cretChat

aUserId: Identifier of the user. Creates a new secret chat.

CreateNew
Basic
GroupChat

aUserIds: Identifiers of the users to be
added to the chat. aTitle: Title of the
new basic group

Creates a new basic group

CreateNew
Super
groupChat

aTitle: Title of the new SuperGroup
aIsChannel: True, if a channel chat
should be created. aDescription:
Chat Description.

Creates a new supergroup or chan
nel.

CreatePri
vateChat

aUserId: Identifier of the user.
aForce: If true, the chat will be creat
ed without network request. In this
case all information about the chat ex
cept its type, title and photo can be in
correct

Returns an existing chat corre
sponding to a given user

GetChats

aOffsetOrder: Chat order to return
chats from aOffsetChatId: Chat iden
tifier to return chats from aLimit: The
maximum number of chats to be re
turned.

Returns an ordered list of chats.
Chats are sorted by the pair (order,
chat_id) in decreasing order (cannot
be used is logged as Bot)

GetChat aChatId: Chat identifier
Returns information about a chat by
its identifier

GetChatHis
tory

aChatId: Chat identifier
aFromMessageId: Identifier of the
message starting from which history
must be fetched; use 0 to get results
from the last message.
aOffset: Specify 0 to get results from
exactly the from_message_id or a
negative offset up to 99 to get addi
tionally some newer messages.
aLimit:The maximum number of mes
sages to be returned

Returns messages in a chat. The
messages are returned in a reverse
chronological order

GetUser aUserId: User Identifier
Returns information about a user by
their identifier.

AddProxy
HTTP

aServer: Server name of proxy.
aPort: Number of proxy port.
aUserName: Username for logging in;
may be empty.
aPassword: Password for logging in;
may be empty.
aHTTPOnly: Pass true, if the proxy
supports only HTTP requests and
doesn't support transparent TCP con
nections via HTTP CONNECT
method.

Adds a HTTP proxy server for net
work requests. Can be called before
authorization.

AddProx
yMTProto aServer: Server name of proxy.

Adds a MTProto proxy server for
network requests. Can be called be
fore authorization.

COMPONENTS

561

aPort: Number of proxy port. aSecret:
The proxy's secret in hexadecimal en
coding.

AddProx
ySocks5

aServer: Server name of proxy.
aPort: Number of proxy port.
aUserName: Username for logging in;
may be empty.
aPassword: Password for logging in;
may be empty.

Adds a Socks5 proxy server for net
work requests. Can be called before
authorization.

En
ableProxy aId: ID of proxy

Enables a proxy. Only one proxy
can be enabled at a time. Can be
called before authorization.

Dis
ableProxy

Disables the currently enabled
proxy. Can be called before autho
rization.

Remove
Proxy aId: ID of proxy

Removes a proxy server. Can be
called before authorization.

GetProxies
Returns list of proxies that are cur
rently set up. Can be called before
authorization.

getChat
Spon
soredMes
sage

aChatId: ID of the chat

Returns sponsored message to be
shown in a chat; for channel chats
only. Returns a 404 error if there is
no sponsored message in the chat.

ViewMes
sage

aSponsorChatId: ID of the sponsor
Chat
aMessageId: ID of the message

Informs TDLib that messages are
being viewed by the user. Many
useful activities depend on whether
the messages are currently being
viewed or not

Logout Logouts from Telegram.

TDLibSend aRequest: JSON Request.
Send any Request in JSON proto
col.

Example How to send a Text Message

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();

oTelegram->Telegram->API->ApiHash = "your api hash";

oTelegram->Telegram->API->ApiId = "your api id";

oTelegram->PhoneNumber = "your phone number";

oTelegram->Active = true;

...

oTelegram->SendTextMessage("1234", "My First Message from sgcWebSockets");

Example How to send a method not implemented

You can Send Any JSON message using TDLibSend method, example: join a telegram chat.

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();

oTelegram->Telegram->API->ApiHash = "your api hash";

oTelegram->Telegram->API->ApiId = "your api id";

oTelegram->PhoneNumber = "your phone number";

oTelegram->Active = true;

...

oTelegram->TDLibSend("{\"@type\": \"joinChat\", \"chat_id\": \"1234\"}");

Check the following url to know all JSON methods: Telegram JSON API.

https://www.esegece.com/api/Telegram.json

COMPONENTS

562

•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•

Events

OnBeforeReadEvent
This event is called when JSON message is received by Telegram API component and is still not processed. Set
Handled property to True if you process this event manually or don't want that event is processed by component.
You can use this event to log all messages too.

OnMessageText
This event is called when a New Message Text has been received, read MessageText parameter to access to mes
sage text properties.

ChatId: Chat Identifier.
MessageId: Message Identifier.
SenderUserId: Sender Identifier.
Text: Text of message.

OnMessageDocument
This event is called when a New Document Message is received. Access to MessageDocument to get access to
Document properties.

ChatId: Chat Identifier.
MessageId: Message Identifier.
SenderUserId: Sender Identifier (read SenderChat and SenderUser from tdlib 1.7.+).
FileName: Name of Document.
DocumentId: Document Identifier.
LocalPath: full path to local file if exists.
MimeType: Mime-type of document.
Size: Size of Document.
RemoteDocumentId: Remote Document Identifier.

OnMessagePhoto
This event is called when a New Photo Message is received. Access to MessagePhoto to get access to Photo
properties.

ChatId: Chat Identifier.
MessageId: Message Identifier.
SenderUserId: Sender Identifier (read SenderChat and SenderUser from tdlib 1.7.+).
PhotoId: Photo Identifier.
LocalPath: full path to local file if exists.
Size: Size of Photo.
RemotePhotoId: Remote Photo Identifier.

OnVideoPhoto
This event is called when a New Video Message is received. Access to MessageVideo to get access to Video prop
erties.

ChatId: Chat Identifier.
MessageId: Message Identifier.
SenderUserId: Sender Identifier (read SenderChat and SenderUser from tdlib 1.7.+).
VideoId: Photo Identifier.
LocalPath: full path to local file if exists.
Width: width of video.
Height: height of video.
Duration: duration in seconds of video.
Size: Size of Video.
RemoteVideoId: Remote Photo Identifier.

OnMessageSponsored
This event is called when a New Sponsored Message has been received (after calling the method getChatSpon
soredMessage)

SponsorChatId: Sponsor Chat Identifier.
MessageId: Message Identifier.
Text: Text of message.

COMPONENTS

563

•
•
•
•
•

•
•
•
•
•
•

•

•
•

OnNewChat
This event is called when a new chat is received.

ChatId: Chat Identifier.
ChatType: Chat Type (chatTypeSupergroup, chatTypePrivate...)
Title: Chat name.
SuperGroupId: Group Id if is a SuperGroup.
IsChannel: returns if is channel or not.

OnNewCallbackQuery
This event is called when a new incoming callback query is received; for bots only.

Id: Unique query identifier.
SenderUserId: Identifier of the user who sent the query.
ChatId: Identifier of the chat, in which que query was sent.
MessageId: Identifier of the message, from which the query originated.
ChatInstance: Identifier that uniquely corresponds to the chat to which the message was sent.
PayloadData: the payload from a general callback button.

Data: Data that was attached to the callback button.

OnEvent
This event is called when a new Event is received by API Component. Can be used to process some events not
implemented by API Component.

Event: Event name (events like: updateOption, updateUser...)
Text: full JSON message

OnException
This event is called if there is any exception when processing Telegram API Data.

Properties

MyId: returns the User Identifier of current user.

Full Code Sample

Check the following code sample which shows how connect to Telegram API, ask user to introduce a Code (if re
quired by Telegram API), send a message when connection is ready and Log Text Messages received.

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();

oTelegram->Telegram->API->ApiHash = "your api hash";

oTelegram->Telegram->API->ApiId = "your api id";

oTelegram->PhoneNumber = "your phone number";

oTelegram->ApplicationVersion = "1.0";

oTelegram->DeviceModel = "Desktop";

oTelegram->LanguageCode = "en";

oTelegram->SystemVersion = "Windows";

oTelegram->Active = true;

void OnAuthenticationCode(TObject *Sender, ref string Code)

{

 Code = InputBox("Telegram Code", "Introduce code", "");

}

void OnMessageText(TObject *Sender, TsgcTelegramMessageText *MessageText)

{

 Log("Message Received: " + MessageText->Text);

}

void OnConnectionStatus(TObject *Sender, const string Status)

{

 if (Status == "connectionStateReady")

 {

 oTelegram->SendTextMessage("1234", "Hello Telegram!");

 }

}

COMPONENTS

564

Telegram | Send Telegram Message With In
line Buttons
Telegram API allows to send messages with inline buttons to select options as an answer (this option is only avail
able for bots).

Before you send a message create an instance of the class TsgcTelegramReplyMarkupInlineKeyboard and call
the method AddButtonTypeCallback or AddButtonTypeUrl for every button you want to create.

Example

Create a new message asking the user if likes or not the message and a link to answer a poll. Process the re
sponse using OnNewCallbackQuery event.

TsgcTelegramReplyMarkupInlineKeyboard *oReplyMarkup = new TsgcTelegramReplyMarkupInlineKeyboard();

try

{

 oReplyMarkup->AddButtonTypeCallback("Yes", "I like it");

 oReplyMarkup->AddButtonTypeCallback("No", "I hate it");

 oReplyMarkup->AddButtonTypeUrl("Poll", "https://www.yoursite.com/telegram/poll");

 sgcTelegram->SendTextMessage("123456", "Do you like the message?", oReplyMarkup);

}

__finally

{

 oReplyMarkup->Free();

}

void OnNewCallbackQuery(TObject *Sender, TsgcTelegramCallbackQuery *CallbackQuery)

{

 if (CallbackQuery->PayloadData->Data == "I like it") then

 {

 ShowMessage("yes")

 }

 else

 {

 ShowMessage("no");

 }

}

COMPONENTS

565

Telegram | Send Bot Message With Buttons
Telegram API allows to send messages with buttons to request data from the user (this option is only available for
bots).

Before you send a message create an instance of the class TsgcTelegramReplyMarkupShowKeyboard and call
the method AddButtonTypeRequestLocation, AddButtonTypeRequestPhoneNumber or AddButtonTypeText
for every button you want to create.

Example

Create a new message asking the user to provide the PhoneNumber

oReplyMarkup = new TsgcTelegramReplyMarkupShowKeyboard();

oReplyMarkup->AddButtonTypeRequestPhoneNumber("Give me your phone");

sgcTelegram->SendTextMessage("123456", "Please provide the information below", null, oReplyMarkup);

oReplyMarkup->Free();

COMPONENTS

566

•

•

•

•

•

Telegram | Send Telegram Message Bold
You can highlight text messages using bold, italic and more styles. Use the method SendRichTextMessage, to
send a Text message with style capabilities, this method parses the text message and adds the entities required
automatically to the API Telegram.

Markdown Syntax

Bold [*]

This is Bold

Italic [_]

__This is Italic__

Strike [-]

--This is Strike--

Underline [~]

~~This is Underline~~

Code [#]

##This is Monospace##

COMPONENTS

567

Telegram | Chat not found as Bot
When you log as bot, the GetChats method cannot be used, so you don't get All available chats. If it's the first
time you login as Bot and you try to send a message to a known Chat, you will get this error:

{"@type":"error","code":5,"message":"Chat not found"}

The solution is before send a telegram message, call GetChat method and pass the ChatId as a parameter. Once
you get the Chat data, you can send telegram messages as usual.

As a note, you only must call GetChat the FIRST TIME before send a message if you never receive any bot mes
sage from this chat. If you close the application and start again, there is no need to call first GetChat because the
Chat is already saved on telegram database.

COMPONENTS

568

•

•
•

Telegram | Sponsored Messages
Each time the user opens a channel, channels.getSponsoredMessages must be called to receive sponsored mes
sages available for this channel. The result must be cached for 5 minutes.

Displaying sponsored messages

Sponsored messages must be displayed below all other posts in the channel, after the user scrolls futher down,
past the last message. The promoted channel or bot specified in the from_id field must be displayed as the author
of the message. The message should also contain one of the following buttons at the bottom:

View Bot: if a bot is being promoted. Tapping the button must open the chat with the bot. If start_param is
specified, the app must use the deep linking mechanism to open the bot.
View Channel: if a channel is being promoted. Tapping the button must open the channel.
View Post: if a channel is being promoted and channel_post is specified. Tapping the button must open the
particular channel post.

Once the entire text is shown on the screen (excluding the button), ViewMessage method must be called with the
random_id of this sponsored message.

Get Sponsored Messages

Send a request to the channel asking if there are sponsored messages available, just call the method GetChat
SponsoredMessage.

TsgcTDLib_Telegram *oTelegram = new TsgcTDLib_Telegram();

oTelegram->Telegram->API->ApiHash = "ABCDEFGHIJKLMN";

oTelegram->Telegram->API->ApiId = "1234";

oTelegram->PhoneNumber = "008745744155";

oTelegram->Active = true;

oTelegram->getChatSponsoredMessage("100");

If the chat has sponsored messages, the event OnMessageSponsored is called with the content of the Sponsored
message. If there are no messages, a 404 error is returned.

private void(TObject *Sender, TsgcTelegramMessageSponsored *MessageSponsored)

{

 DoLog(MessageSponsored->Text);

}

Call the method ViewMethod after the Sponsored Messages has been shown to the user.

oTelegram->ViewMessage("100", "54653256245");

COMPONENTS

569

Telegram | Send Telegram Invoice Message
If your bot supports inline mode, users can also send invoices to other chats via the bot, including to one-on-one
chats with other users.

Invoice messages feature a photo and description of the product along with a prominent Pay button. Tapping this
button opens a special payment interface in the Telegram app

The bots can send invoices as a message using the method SendInvoiceMessage.

private void SendInvoice()

{

 TsgcTelegramSendInvoice *oInvoice = new TsgcTelegramSendInvoice();

 Try

 {

 oInvoice->Title = "Invoice Title Test";

 oInvoice->Description = "Description Invoice Test";

 oInvoice->Invoice->Currency = 'EUR';

 oInvoice->Invoice->Total = 800;

 oInvoice->Invoice->IsTest = True;

 oInvoice->Invoice->Payload := "payload";

 oInvoice->Invoice->ProviderToken := "provider_token";

 oInvoice->Invoice->ProviderData := "provider_data";

 sgcTelegram->SendInvoiceMessage("3284239872", oInvoice);

 __finally

 {

 oInvoice->Free();

 }

}

COMPONENTS

570

Telegram | Get SuperGroup Members
Telegram API allows to get information about members of a SuperGroup. Use the method GetSuperGroupMem
bers to get information about members or banned users in a supergroup or channel. Can be used only if
SupergroupFullInfo.can_get_members is true; additionally, administrator privileges may be required for some filters.

By default the method returns All members of the group, but you can filter the members returned using the Filter
parameter. There are the following parameters:

 tsgmFilterNone

Default value, means members are not filtered.

 tsgmFilterAdministrators
Returns the creator and administrators.

 tsgmFilterBanned
Returns users banned from the supergroup or channel; can be used only by administrators.
You can use the argument aSuperGroupMembersQuery to search using a query.

 tsgmFilterBots
Returns bot members of the supergroup or channel.

 tsgmFilterContacts
Returns contacts of the user, which are members of the supergroup or channel.
You can use the argument aSuperGroupMembersQuery to search using a query.

 tsgmFilterMention

Returns users which can be mentioned in the supergroup.

 tsgmFilterRecent

Returns recently active users in reverse chronological order.

 tsgmFilterRestricted
Returns restricted supergroup members; can be used only by administrators.
You can use the argument aSuperGroupMembersQuery to search using a query.

 tsgmFilterSearch

Used to search for supergroup or channel members via a (string) query.
You can use the argument aSuperGroupMembersQuery to search using a query.

You can read the result of the result using OnEvent callback and filtering by event = "chatMembers".

Telegram->GetSupergroupMembers(1452979380);

private void OnTelegramEvent(TObject *Sender, const string Event, const string Text)

{

 if (Event == "chatMembers")

 {

 ReadJSON(Text);

 }

}

COMPONENTS

571

Telegram | Add Telegram Proxy
Telegram Client can be configured to make of use of a proxy. Currently, Telegram supports 3 types of proxies:

1. HTTP
2. MTProto
3. Socks5

Add Proxy

In order to configure a HTTP Proxy, first you must add the proxy to telegram configuration, to do this, just call Ad
dProxyHTTP and if successful, a message will be returned with the new proxy added. Once the proxy has been
added to the list, just call EnableProxy and pass the ID of the proxy received on the confirmation message.

Telegram->AddProxyHTTP("8.8.8.8", 8080, "", "", true);

// ... read the confirmation message and save the ID of the proxy.

Telegram->EnableProxy(2);

Remove Proxy

Call RemoveProxy method and pass the ID of the proxy you want remove.

COMPONENTS

572

•
•
•

Telegram | Register Telegram User
The process to register a new user in Telegram is very simple, you need your API Id and API Hash, and the phone
number of the new account.

Configure the telegram client:

API Id
API Hash
Telephone Number of the new telegram account.

Start the client and a new code will be sent to the phone, the client will ask for the telegram code and if it's correct,
the event OnRegisterUser will be called. In this event set the First Name and Last Name of the user and the regis
tration will be completed.

TsgcTDLib_Telegram *oTelegram = new TsgcTDLib_Telegram();

oTelegram->Telegram->API->ApiHash = "ABCDEFGHIJKLMN";

oTelegram->Telegram->API->ApiId = "1234";

oTelegram->PhoneNumber = "008745744155";

oTelegram->Active = true;

void OnTelegramAuthenticationCode(TObject *Sender, ref string Code)

{

 Code = "code sent to phone";

}

void OnTelegramRegisterUser(TObject *Sender, ref string FirstName, ref string LastName)

{

 FirstName = "first name";

 LastName = "last name";

}

COMPONENTS

573

•
•
•

RCON
RCON

The Source RCON Protocol is a TCP/IP-based communication protocol used by Source Dedicated Server, which
allows console commands to be issued to the server via a "remote console", or RCON. The most common use of
RCON is to allow server owners to control their game servers without direct access to the machine the server is
running on.

Configuration

The RCON_Options allows to configure the following properties:

Host: server remote address.
Port: server listening port.
Password: is the secret string used to authenticate against the server

Connect

Use the property Active to Connect / Disconnect from server.
When Active is set to True, the client tries to connect to the server, if can connect, it will try to authenticate using the
provided password.
The server will send a response to a Authentication request, the event OnAuthenticate will be called and you can
read if authentication is successful or not using the Authenticate parameter.

Send Commands

Use the method ExecCommand to send commands to the server. The responses will be available OnResponse
Event.

TsgcLib_RCON oRCON = new TsgcLib_RCON();

oRCON->RCON_Options->Host = "127.0.0.1";

oRCON->RCON_Options->Port = 25575;

oRCON->RCON_Options->Password = "test";

oRCON->Active = true;

void OnAuthenticate(TObject *Sender, bool Authenticated, const TsgcRCON_Packet *aPacket)

{

 if (Authenticated == true)

 {

 DoLog("#authenticated");

 }

 else

 {

 DoLog("#not authenticated");

 }

}

void OnResponse(Object *Sender, const string aResponse, const TsgcRCON_Packet *aPacket)

{

 DoLog(aResponse);

}

https://developer.valvesoftware.com/wiki/Source_RCON_Protocol

COMPONENTS

574

CryptoHopper
CryptoHopper

CryptoHopper it's an automated crypto trading bot that allows to automate trading and portfolio management for
Bitcoin, Ethereum, Litecoin and more.

Configuration

Requires a Developer Account and once you have been approved you can start to create a new App. The API us
es OAuth2 to authenticate, so you can retrieve the client_id and client_secret from your App.

TsgcHTTP_Cryptohopper oCryptoHopper = new TsgcHTTP_Cryptohopper();

oCryptoHopper->CryptoHopperOptions->OAuth2->ClientId = "client_id";

oCryptoHopper->CryptoHopperOptions->OAuth2->ClientSecret = "client_secret";

oCryptoHopper->CryptoHopperOptions->OAuth2->LocalIP = "127.0.0.1";

oCryptoHopper->CryptoHopperOptions->OAuth2->LocalPort = 8080;

oCryptoHopper->CryptoHopperOptions->OAuth2->Scope->Text = "read,notifications,manage,trade";

Methods

CryptoHopper uses HTTPs as the protocol to send Requests to the API. Some methods requires authentication
(place orders, retrieve user data...) and some others are public (get exchange data for example).

The functions returns the CryptoHopper response and if there is any error an exception will be raised.

Hoppers

Manage Basic Hopper Operations.

Method Argu
ments Description

GetHop
pers Get Hoppers of users.

Create
Hopper

aBody:
configura
tion json
text.

Create a new Hopper.

GetHop
per

aId: hopper
id

Retrieve Hopper

Delete
Hopper

aId: hopper
id

Delete Hopper

Update
Hopper

aId: hopper
id aBody:
configura
tion json
text.

Update Hopper

Orders

Manage the Orders of your Hopper.

https://www.cryptohopper.com/

COMPONENTS

575

Method Argu
ments Description

GetOpenOrders aId: hopper
id

Retrieve all of the open or
ders of the hopper.

Create
NewOrder

aId: hopper
id aOrder:
instance of
Ts
gcHTTPC
THOrder

Create new buy or sell or
der. For sell, rather use the
sell endpoint.

PlaceMarke
tOrder

aId: hopper
id aOrder
Side:
cthosBuy or
cthosSell.
aCoin: coin
name, ex
ample: EOS
aAmount:
order size.

Place a Market Order.

PlaceLimi
tOrder

aId: hopper
id aOrder
Side:
cthosBuy or
cthosSell.
aCoin: coin
name, ex
ample: EOS
aAmount:
order size.
aPrice: limit
price.

Place a Limit Order

DeleteOrder
aId: hopper
id
aOrderId:
order id

Deletes order for selected
hopper.

DeleteAl
lOrders

aId: hopper
id

Deletes all open order for
selected hopper.

GetOpenOrder
aId: hopper
id
aOrderId:
order id

Get open order in hopper by
id.

CancelOrder
aId: hopper
id
aOrderId:
order id

Cancel an open order.

Position

Manage the Positions of your Hopper.

Method Argu
ments Description

COMPONENTS

576

GetPo
sition

aId: hopper
id

Get open positions of hopper.

Trade

Trade History from your Hopper.

Method Argu
ments Description

Get
Trade
History

 Get the trade history of the hopper.

Get
Trade
History
ById

aId: hopper
id
aTradeId:
trade id

Get a trade by id of the hopper.

Exchange

Get Information from available exchanges on CryptoHopper

Method Argu
ments Description

GetEx
change Get all available exchanges on

Cryptohopper.

GetAllTick
ers

aEx
change:
exchange
name

Get ticker for all pairs

GetMar
ketTicker

aEx
change:
exchange
name
aPair: pair
name

Get ticker from market pair.

GetOrder
Book

aEx
change:
exchange
name
aPair: pair
name
aDepth: or
der book
depth

Gets the orderbook for the select
ed exchange, market and order
book depth.

Webhooks

Trade History from your Hopper.

Method Argu
ments Description

Cre
ateWeb
hook

aURL: web
hook url
aMes

Update or create a Webhook

COMPONENTS

577

sageTypes:
message
types sepa
ted by com
ma.

DeleteWeb
hook

aURL: web
hook url

Delete an existing Webhook.

Signals

Send Signals to CryptoHopper API.

Method Argu
ments Description

SendSignal

aSignal: is
the class
with all the
fields re
quired to
send a sig
nal.

Sends a Signal

SendTestSig
nal

aSignal: is
the class
with all the
fields re
quired to
send a sig
nal.

Sends a Test Signal

GetSignalStats

aSignalId:
id of the
signal. aEx
change:
optional,
name of the
exchange.

Retrieve some of the signal sta
tistics.

How Update Cryptohopper Config

Use the UpdateHopper method to update the Hopper Configuration. The method is overloaded so you can pass the
JSON string or use the object TsgcHTTPCTHopper and use the properties to enable or disable the Hopper Proper
ties.

public string EnableHopper()

{

 TsgcHTTPCTHopper *oHopper = new TsgcHTTPCTHopper();

 try

 {

 oHopper->Enabled = 1;

 result = Cryptohopper->UpdateHopper("1234", oHopper);

 }

 __finally

 {

 oHopper->Free();

 }

}

COMPONENTS

578

How Configure Webhook

Webhook allows to receive notifications when something happens in a hopper. Webhooks require a public HTTPs
Server which will listen in a URL address all messages sent by cryptohopper. The public server needs to be pro
tected with a SSL certificate (self-signed certificates are not allowed).

First you must create a webhook, so configure the Webhook property of Cryptohopper client setting the Host and
Port when the server will be listening. Then configure the certificate in SSLOptions property.

Example: The public IP address will be 1.1.1.1 and the listening port will be 443. The certificate is stored as PEM
file with sgc.pem filename and without password.

/* OAuth2 */

cryptohopper->CryptohopperOptions->OAuth2->ClientId = "client_id";

cryptohopper->CryptohopperOptions->OAuth2->ClientSecret = "client_secret";

cryptohopper->CryptohopperOptions->OAuth2->LocalIP = "127->0->0->1";

cryptohopper->CryptohopperOptions->OAuth2->LocalPort = 8080;

/* Webhook */

cryptohopper->CryptohopperOptions->Webhook->Enabled = True;

cryptohopper->CryptohopperOptions->Webhook->Host = "1.1.1.1";

cryptohopper->CryptohopperOptions->Webhook->Port = 443;

cryptohopper->CryptohopperOptions->Webhook->ValidationCode = "1234";

cryptohopper->CryptohopperOptions->Webhook->SSLOptions->CertFile = "sgc->pem";

cryptohopper->CryptohopperOptions->Webhook->SSLOptions->KeyFile = "sgc->pem";

cryptohopper->CryptohopperOptions->Webhook->SSLOptions->RootCertFile = "sgc->pem";

cryptohopper->CryptohopperOptions->Webhook->SSLOptions->Password = "";

cryptohopper->StartWebhook();

COMPONENTS

579

RTCMultiConnection
RTCMultiConnection

RTCMultiConnection is a WebRTC JavaScript library for peer-to-peer applications (screen sharing, audio/video
conferencing, file sharing, media streaming etc.)

Configuration

The RTCMultiConnection requires a WebSocket server for Signaling, so link the server property of RTCMultiCon
nection to a WebSocket Server (like TsgcWebSocketHTTTPServer). Find below the properties you must configure.

Server

Host: is the public IP address or DNS name of WebSocket server.
Port: is the listening port of WebSocket Server.

IceServers

Is the configuration of the ICE servers (STUN/TURN) to allow communicate between peers. Example:

[
 {
 "urls": "stun:www.yourstun.com"},
 {
 "urls": "turn:www.yourturn.com",
 "username": "user",
 "credential": "secret"
 }
]

VideoResolution

Here you can configure the Video Resolution of Video Conferences, as higher is the resolution, more bandwidth is
required by the connection.

HTMLDocuments

Configure for every Application which is the name of the HTML page that servers this content.

Example: if the server is running on website www.webrtc.com on port 8443 and the
HTMLDocuments.VideoConferencing = /RTCMultiConnection-VideoConferencing.html, the url to access the Video
Conferencing will be

https://www.webrtc.com:8443/RTCMultiConnection-VideoConferencing.html

WebRTC requires a secure connection (HTTPs) so requires the use of certificates, read more Server SSL.

Applications

Name Description
Video
Confer
encing

Multi-user (many-to-many) video chat using
mesh networking model.

Screen
Sharing

Multi-user (one-to-many) screen sharing using
star topology.

https://www.rtcmulticonnection.org/

COMPONENTS

580

Video
Broad
casting

Multi-user (one-to-many) video broadcasting
using star topology.

COMPONENTS

581

•

•

WebPush
RFC 8030
RFC 8291

The WebPush protocol is defined by the RFC 8030 (Delivery using HTTP Push) and RFC 8291 (Message Encryp
tion).

Web Push is a standardized protocol for delivering push notifications to web browsers. It uses the Push API,
which is a standard web API that enables websites to register and receive push messages. The Push API allows a
website to send push messages to a user's browser, even when the user is not actively browsing the website.

To use Web Push, a website first needs to obtain a push subscription from the user's browser. The subscrip
tion consists of a unique endpoint URL and an encryption key. The endpoint URL is a URL that the website can use
to send push messages to the user's browser, and the encryption key is used to encrypt and decrypt the push mes
sages.

Once the website has obtained a push subscription, it can send push messages to the user's browser by mak
ing an HTTP request to the endpoint URL. The push message is sent in a special format called the Web Push Pro
tocol Message, which consists of a set of headers and a payload. The headers contain information such as the en
cryption key and the TTL (time-to-live) of the message, while the payload contains the actual content of the mes
sage.

When the user's browser receives a push message, it first decrypts the message using the encryption key. It
then displays the notification to the user, along with any additional actions that the user can take, such as dis
missing the notification or opening the website.

To ensure the security and privacy of push messages, Web Push uses end-to-end encryption and requires that
push subscriptions be obtained over a secure connection (e.g., HTTPS). Additionally, the protocol provides mecha
nisms for authenticating the sender of a push message and preventing abuse (e.g., by limiting the number of push
messages that a website can send to a user).

Components

There are 2 components which support WebPush:

TsgcWSAPIServer_WebPush: implements WebPush Protocol on Server Side, allowing to ask permission
to the users, register the subscriptions, send notifications and more. This component already encapsulates a
webpush client to send notifications.

TsgcWebPush_Client: implements WebPush Protocol on Client Side, allowing to send notifications to users
via desktop and mobile web. This is useful if you already have the keys and endpoint, and you only want to
publish webpush messages to the subscribed clients.

https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc8291

COMPONENTS

582

1.
2.

3.
4.

5.

•

◦
◦
◦

•
◦
◦
◦

•

◦
◦
◦
◦
◦
◦

TsgcWSAPIServer_WebPush
TsgcWSServer_API_WebPush is a component that provides functionality for handling WebPush subscriptions.
WebPush is a protocol for delivering real-time notifications to web applications that run in the browser. This compo
nent can be used to manage subscriptions and send notifications to subscribed clients. Find below the properties,
events, and methods provided by TsgcWSServer_API_WebPush class, along with code examples that demon
strate how to use them.

Configuration

Attach a TsgcWSServer_API_WebPush to a WebSocket server using the Server property.
Configure the public and private keys in the WebPush.VAPID property. (Registered users can download
an executable that generates the VAPID keys for windows).
Requires to deploy the openSSL 3.0.0 version
In the WebPush.Endpoints property you can define your own endpoints to handle the webpush subscrip
tions, by default, accessing to the "/sgcWebPush.html" endpoint will show a simple webpage that enables to
Subscribe to the WebPush notifications.
Start the server and access to the endpoint configured to test it.

Properties

VAPID: This property is used to set the VAPID (Voluntary Application Server Identification) details for send
ing WebPush notifications. VAPID is a method for identifying who is sending the push notifications. It is
mandatory for all push notifications to have VAPID credentials. The
TsgcHTTP_API_WebPush_VAPID_Options object has two properties, PublicKey and PrivateKey, which are
used to identify the application server that sends the notification.

DER: the public and private keys in DER format
PEM: the private key in PEM PKCS8 format.
Details: currently only the mailto used for signing the HTTP request.

ClientOptions: This property is used to set the clientside options for sending WebPush notifications.
Log: enable if you want to save the client HTTP requests to a text log.
LogOptions: here you can set the filename.
TLSOptions: currently only openSSL 3.0.0 supports sending webpush notifications.

EndPoints: This property is used to set the endpoints for various WebPush operations, such as subscrip
tion, unsubscription, and notification. The TsgcWSWebPushEndpoints_Options object has several proper
ties, including Subscription, Unsubscription, ServiceWorker, Home, WebPush, and VAPIDPublicKey. Each of
these properties is an instance of the TsgcWSWebPushEndpoint class, which contains the endpoint URL
and other details.

Home: the default HTML page.
WebPush: the default webpush javascript code.
ServiceWorker: the javascript code that handles the push notifications.
VAPIDublicKey: the endpoint that returns the public key in DER format.
Subscription: the endpoint that notifies the webpush subscriptions.
Unsubscription: the endpoint that notifies the webpush unsubscriptions.

Methods

Find below the most important methods.

SendNotification

Use this method to send a notification given a subscription object. The subscription object is just a class with the
following properties

COMPONENTS

583

•
•
•

Endpoint: the url where the client must POST a message.
PublicKey: the public key used to encrypt the message.
AuthSecret: the secret used to encrypt the message.

The message can be a string or an object of TsgcWebPushMessage

void SendNotification(TsgcWebPushSubscription* aSubscription)

{

 TsgcWebPushMessage* oMessage = new TsgcWebPushMessage();

 try

 {

 oMessage->Title = "eSeGeCe Notification";

 oMessage->Body = "Subscription Successfully Registered!!!";

 oMessage->Icon = "https://www.esegece.com/images/esegece_logo_small.png";

 oMessage->Url = "https://www.esegece.com";

 sgcWSAPIServer_WebPush1->SendNotification(aSubscription, oMessage);

 }

 __finally

 {

 oMessage->Free();

 }

}

BroadcastNotification

Use this method to send a Notification to all the clients registered using the Subscriptions property (every time a
new client is subscribed, it's added to an internal list. And when the client unsubscribed it's deleted). You can Add
or Remove subscription manually using the method Subscriptions.AddSubscription and
Subscription.RemoveSubscription.

void BroadcastNotification()

{

 TsgcWebPushMessage* oMessage = new TsgcWebPushMessage();

 try

 {

 oMessage->Title = "eSeGeCe Notification";

 oMessage->Body = "New version released!!!";

 oMessage->Icon = "https://www.esegece.com/images/esegece_logo_small.png";

 oMessage->Url = "https://www.esegece.com";

 sgcWSAPIServer_WebPush1->BroadcastNotification(oMessage);

 }

 __finally

 {

 oMessage->Free();

 }

}

Events

OnWebPushSubscription

This event is fired when a client subscribes to WebPush notifications. The event handler can be used to store the
subscription details on the server-side.

OnWebPushUnsubscription

This event is fired when a client unsubscribes from WebPush notifications. The event handler can be used to re
move the subscription details from the server-side.

OnWebPushSendNotificationException

This event is fired when an exception occurs while sending a WebPush notification using the BroadcastNotification
method. The event handler can be used to handle the exception and remove the subscription details if required.

COMPONENTS

584

TsgcWebPush_Client
The TsgcWebPush_Client is a class that allows to send a notification once you get the subscription details.

Find below an example of using the WebPush client to send a notification given an endpoint, public key and au
thentication secret from a webpush subscription.

void SendWebPushNotification()

{

 TsgcHTTP_API_WebPush_PushSubscription* oSubscription = new TsgcHTTP_API_WebPush_PushSubscription();

 try

 {

 oSubscription->Endpoint = "endpoint";

 oSubscription->PublicKey = "public key";

 oSubscription->AuthSecret = "authentication secret";

 TsgcHTTP_API_WebPush_Client* oWebPush = new TsgcHTTP_API_WebPush_Client(NULL);

 try

 {

 oWebPush->VAPID->PEM->PrivateKey->Text = "private_key_pem";

 oWebPush->VAPID->DER->PrivateKey = "private_key";

 oWebPush->VAPID->DER->PublicKey = "public_key";

 oWebPush->SendNotification(oSubscription, "{\"title\": \"eSeGeCe Notification\", \"body\": \"Hello from eSeGeCe!!!\"}"

 }

 __finally

 {

 oWebPush->Free();

 }

 }

 __finally

 {

 oSubscription->Free();

 }

}

COMPONENTS

585

Extensions
WebSocket protocol is designed to be extended. WebSocket Clients may request extensions and WebSocket
Servers may accept some or all extensions requested by clients.

Extensions supported:

1. Deflate-Frame: compress WebSocket frames.

2. PerMessage-Deflate: compress WebSocket messages.

COMPONENTS

586

•
•
•

Extensions | PerMessage-Deflate
PerMessage is a WebSocket protocol extension, if the extension is supported by Server and Client, both can com
press transmitted messages:

Uses Deflate as the compression method.
Compression only applies to Application data (control frames and headers are not affected).
Server and client can select which messages will be compressed.

Max Window Bits

This extension allows customizing Server and Client size of the sliding window used by LZ77 algorithm (between 8
- 15). As greater is this value, more probably will find and eliminate duplicates but consumes more memory and
CPU cycles. 15 is the default value.

No Context Take Over

By default, previous messages are used to compression and decompression, if messages are similar, this improves
the compression ratio. If Enabled, then each message is compressed using only its message data. By default is
disabled.

MemLevel

This value is not negotiated between Server and Client. when set to 1, it uses the least memory, but slows down
the compression algorithm and reduces the compression ratio; when set to 9, it uses the most memory and delivers
the best performance. By default is set to 1.

* Indy version provided with Rad Studio XE2 raises an exception because of zlib version mismatch with initialization
functions, to fix this, just update your Indy version to latest.

COMPONENTS

587

Extensions | Deflate-Frame
Is a WebSocket protocol extension which allows the compression of frames sent using WebSocket protocol, sup
ported by WebKit browsers like chrome or safari. This extension is supported on Server and Client Components.

This extension has been deprecated.

* Indy version provided with Rad Studio XE2 raises an exception because or zlib version mismatch with initializa
tion functions, to fix this, just update your Indy version to latest.

COMPONENTS

588

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

OpenAI
OpenAI is a private research laboratory that aims to develop and direct artificial intelligence (AI) in ways that benefit
humanity as a whole. OpenAI has developed the following projects:

GPT-3: This powerful language model serves as the basis for other OpenAI products. It analyzes human
generated text to learn to generate similar text on its own.
DALL-E and DALL-E 2: These generative AI platforms can analyze text-based descriptions of images that
users want them to produce and then generating those images exactly as described.
CLIP: CLIP is a neural network that synthesizes visuals and text pertaining to them to predict the best possi
ble captions that most accurately describe those visuals. Because of its ability to learn from more than one
type of data (both images and text), it can be categorized as multimodal AI.
ChatGPT: ChatGPT is currently the most advanced AI chatbot designed for generating humanlike text and
producing answers to users' questions. Having been trained on large data sets, it can generate answers and
responses the way a human would.
Codex: Codex was trained on billions of lines of code in various programming languages to help software
developers simplify coding processes. It's founded on GPT-3 technology, but instead of generating text, it
generates code.
Whisper: Whisper is labeled as an automatic speech recognition (ASR) tool. It has been trained on a multi
tude of audio data in order to recognize, transcribe and translate speech in about 100 different languages,
including technical language and different accents.

OpenAI API

The OpenAI API can be applied to virtually any task that involves understanding or generating natural language,
code, or images. OpenAI offer a spectrum of models with different levels of power suitable for different tasks, as
well as the ability to fine-tune your own custom models. These models can be used for everything from content
generation to semantic search and classification.

Most common uses

Completion
OpenAI Completion Examples

Chat

OpenAI Chat Examples

Edit
OpenAI Edit Examples

Audio

OpenAI Transcribe & Translate Examples

Moderation
OpenAI Moderation Examples

Configuration

OpenAI

The OpenAI API uses API keys for authentication. Visit your API Keys page to retrieve the API key you'll use in
your requests.

https://platform.openai.com/account/api-keys

COMPONENTS

589

1.
2.

1.
2.

3.
1.

1.
2.

•

•

◦

•
◦

◦

•
•
•

Remember that your API key is a secret! Do not share it with others or expose it in any client-side code (browsers,
apps). Production requests must be routed through your own backend server where your API key can be securely
loaded from an environment variable or key management service.

This API Key must be configured in the OpenAIOptions.ApiKey property of the component. Optionally, for users
who belong to multiple organizations, you can set your Organization in the property OpenAIOptions.Organization
if your account belongs to an organization.

Once the API Key is configured, find below a list of available functions to interactuate with the OpenAI API.

Azure

The client supports Microsoft Azure OpenAI Services, so you can use your Azure account to interactuate with the
Azure OpenAI API too. In order to configure the client to work with Azure, follow the next steps:

Configure the property OpenAIOptions.Provider = oapvAzure
Set the values of ResourceName and DeploymentId (these values can be located in your Azure Account)

OpenAIOptions.AzureOptions.ResourceName = <your resource name>.
OpenAIOptions.AzureOptions.DeploymentId = <your deployment id>.

Set the API Key of your Azure Account
OpenAIOptions.ApiKey = <azure api key>.

Keep in mind that not all the OpenAI methods are supported by Azure, currently only the following methods are
supported:

Completion
Chat Completion

Models

List and describe the various models available in the API.

GetModels: Lists the currently available models, and provides basic information about each one such as the
owner and availability.
GetModel: Retrieves a model instance, providing basic information about the model such as the owner and
permissioning.

Model: The ID of the model to use for this request

Completions

Given a prompt, the model will return one or more predicted completions, and can also return the probabilities of al
ternative tokens at each position.

CreateCompletion: Creates a completion for the provided prompt and parameters
Model: ID of the model to use. You can use the List models API to see all of your available models, or
see our Model overview for descriptions of them.
Prompt: The prompt to generate completions.

Chat

Given a chat conversation, the model will return a chat completion response.

Model: ID of the model to use. Call GetModels to get a list of all models supported by the Chat API.
Message: The message to generate chat completions for.
Role: by default user, other options are: system, assistant.

COMPONENTS

590

•
◦

◦
◦

•
◦

•
◦

◦
•

◦

•
◦
◦

•
◦
◦

•
◦
◦

•
◦
◦

•
◦
◦

Edits

Given a prompt and an instruction, the model will return an edited version of the prompt.

CreateEdit: Creates a new edit for the provided input, instruction, and parameters.
Model: ID of the model to use. You can use the textdavinciedit001 or codedavinciedit001 model
with this endpoint.
Instruction: The instruction that tells the model how to edit the prompt.
Input: (optional) The input text to use as a starting point for the edit.

Images

Given a prompt and/or an input image, the model will generate a new image.

CreateImage: Creates an image given a prompt.
Prompt: A text description of the desired image(s). The maximum length is 1000 characters.

CreateImageEdit: Creates an edited or extended image given an original image and a prompt.
Image: The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask is not provid
ed, image must have transparency, which will be used as the mask.
Prompt: A text description of the desired image(s). The maximum length is 1000 characters.

CreateImageVariations: Creates a variation of a given image.
Image: The image to use as the basis for the variation(s). Must be a valid PNG file, less than 4MB,
and square.

Embeddings

Get a vector representation of a given input that can be easily consumed by machine learning models and algo
rithms.

CreateEmbeddings: Creates an embedding vector representing the input text.
Model: ID of the model to use.
Input: Input text to get embeddings for.

Audio

Turn Audio into Text.

CreateTranscriptionFromFile: Transcribes audio into the input language from a filename
Model: ID of the model to use. Only whisper1 is currently available.
Filename: The audio file to transcribe, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or
webm.

CreateTranscription: Records audio for X seconds and transcribes it.
Model: ID of the model to use. Only whisper1 is currently available.
Time: time in milliseconds, by default 10 seconds.

CreateTranslationFromFile: Translates audio into into English.
Model: ID of the model to use. Only whisper1 is currently available.
Filename: The audio file to translate, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or
webm.

CreateTranslation: Records audio for X seocnds and translates it.
Model: ID of the model to use. Only whisper1 is currently available.
Time: time in milliseconds, by default 10 seconds.

Files

Files are used to upload documents that can be used with features like Fine-tuning.

COMPONENTS

591

•
•

◦

◦
•

◦
•

◦
•

◦

•

◦
•
•

◦
•

◦
•

◦
•

◦

•
◦

ListFiles: Returns a list of files that belong to the user's organization.
UploadFile: Upload a file that contains document(s) to be used across various endpoints/features. Currently,
the size of all the files uploaded by one organization can be up to 1 GB.

Filename: Name of the JSON Lines file to be uploaded. If the purpose is set to "finetune", each line
is a JSON record with "prompt" and "completion" fields representing your training examples.
Purpose: The intended purpose of the uploaded documents. Use "fine-tune" for Fine-tuning.

DeleteFile: Delete a file.
FileId: The ID of the file to use for this request

RetrieveFile: Returns information about a specific file.
FileId: The ID of the file to use for this request

RetrieveFileContent: Returns the contents of the specified file
FileId: The ID of the file to use for this request.

Fine-Tunes

Manage fine-tuning jobs to tailor a model to your specific training data.

CreateFineTune: Creates a job that fine-tunes a specified model from a given dataset. Response includes
details of the enqueued job including job status and the name of the fine-tuned models once complete.

TrainingFile: The ID of an uploaded file that contains training data.
ListFineTunes: List your organization's finetuning jobs
RetrieveFineTune: Gets info about the finetune job.

FineTuneId: The ID of the fine-tune job
CancelFineTune: Immediately cancel a finetune job.

FineTuneId: The ID of the fine-tune job
ListFineTuneEvents: Get finegrained status updates for a finetune job.

FineTuneId: The ID of the fine-tune job
DeleteFineTuneModel: Delete a finetuned model. You must have the Owner role in your organization.

Model: The model to delete.

Moderations

Given a input text, outputs if the model classifies it as violating OpenAI's content policy.

CreateModeration: Classifies if text violates OpenAI's Content Policy
Input: The input text to classify

COMPONENTS

592

OpenAI | Moderation
Given a input text, outputs if the model classifies it as violating OpenAI's content policy.

Simple Example

Moderate the following text

OpenAI = new TsgcHTTP_API_OpenAI();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

WriteLn(OpenAI->_CreateModeration("I want to kill them."));

Advanced Example

Moderate the following text choosing the model.

TsgcHTTP_OpenAI_JSON OpenAI = new TsgcHTTP_OpenAI_JSON();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

TsgcOpenAIClass_Request_Moderation oRequest = new TsgcOpenAIClass_Request_Moderation();

try

{

 oRequest->Model = "text-moderation-latest";

 oRequest->Input = "I want to kill them.";

 TsgcOpenAIClass_Response_Moderation oResponse = OpenAI->CreateModeration(oRequest);

 if (Length(oResponse->results) > 0)

 {

 WriteLn(oResponse->results[0]->flagged);

 }

}

__finally

{

 oRequest->Free();

 oResponse->Free();

}

COMPONENTS

593

OpenAI | Chat
Given a chat conversation, the model will return a chat completion response.

Simple Example

Interactuate with ChatGPT sending a Hello message.

OpenAI = new TsgcHTTP_API_OpenAI();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

WriteLn(OpenAI->_CreateChatCompletion("gpt-3.5-turbo", "Hello!"));

Advanced Example

Use the gpt-3-5 model to chat with more random output and generate 2 completions for each prompt.

TsgcHTTP_OpenAI_JSON OpenAI = new TsgcHTTP_OpenAI_JSON();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

TsgcOpenAIClass_Request_ChatCompletion oRequest = new TsgcOpenAIClass_Request_ChatCompletion();

try

{

 oRequest->Model = "gpt-3.5-turbo";

 TsgcOpenAIClass_Request_Completion_Message oMessage = new TsgcOpenAIClass_Request_Completion_Message();

 oMessage->Role = "user";

 oMessage->Content = "Hello!";

 oMessages = oRequest->Messages;

 SetLength(oMessages, 1);

 oMessages[0] = oMessage;

 oRequest->Messages = oMessages;

 oRequest->Temperature = 1;

 oRequest->N = 2;

 TsgcOpenAIClass_Response_ChatCompletion oResponse = OpenAI->CreateChatCompletion(oRequest);

 if (Length(oResponse->Choices) > 0)

 {

 WriteLn(oResponse->Choices[0]->_Message->Content);

 }

}

__finally

{

 oRequest->Free();

 oResponse->Free();

}

COMPONENTS

594

OpenAI | Edit
Given a prompt and an instruction, the model will return an edited version of the prompt.

Simple Example

Tell OpenAI to fix the spelling mistakes of a prompt.

OpenAI = new TsgcHTTP_API_OpenAI();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

WriteLn(OpenAI->_CreateEdit("text-davinci-edit-001", "Fix the spelling mistakes", "What day of the wek is it?"));

Advanced Example

Tell OpenAI to fix the spelling mistakes of a prompt. with more random output and generate 2 completions for each
prompt.

TsgcHTTP_OpenAI_JSON OpenAI = new TsgcHTTP_OpenAI_JSON();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

TsgcOpenAIClass_Request_Edit oRequest = new TsgcOpenAIClass_Request_Edit();

try

{

 oRequest->Model = "text-davinci-edit-001";

 oRequest->Input = "What day of the wek is it?";

 oRequest->Instruction = "Fix the spelling mistakes";

 oRequest->Temperature = 1;

 oRequest->N = 2;

 TsgcOpenAIClass_Response_Edit oResponse = OpenAI->CreateEdit(oRequest);

 if (Length(oResponse->Choices) > 0)

 {

 WriteLn(oResponse->Choices[0]->Text);

 }

}

__finally

{

 oRequest->Free();

 oResponse->Free();

}

COMPONENTS

595

OpenAI | Audio
Create Transcription

Transcribes audio into the input language.

OpenAI = new TsgcHTTP_API_OpenAI();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

WriteLn(OpenAI->_CreateTranscriptionFromFile("whisper-1", "c:\media\audio.mp3"));

Create Translation

Translates an audio to English.

OpenAI = new TsgcHTTP_API_OpenAI();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

WriteLn(OpenAI->_CreateTranslationFromFile("whisper-1", "c:\media\audio.mp3"));

COMPONENTS

596

OpenAI | Moderation
Given a input text, outputs if the model classifies it as violating OpenAI's content policy.

Simple Example

Moderate the following text

OpenAI = new TsgcHTTP_API_OpenAI();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

WriteLn(OpenAI->_CreateModeration("I want to kill them."));

Advanced Example

Moderate the following text choosing the model.

TsgcHTTP_OpenAI_JSON OpenAI = new TsgcHTTP_OpenAI_JSON();

OpenAI->OpenAIOptions->ApiKey = "API_KEY";

TsgcOpenAIClass_Request_Moderation oRequest = new TsgcOpenAIClass_Request_Moderation();

try

{

 oRequest->Model = "text-moderation-latest";

 oRequest->Input = "I want to kill them.";

 TsgcOpenAIClass_Response_Moderation oResponse = OpenAI->CreateModeration(oRequest);

 if (Length(oResponse->results) > 0)

 {

 WriteLn(oResponse->results[0]->flagged);

 }

}

__finally

{

 oRequest->Free();

 oResponse->Free();

}

COMPONENTS

597

•

•

•
•

•

•

•

•

•

•

•

•

•

◦

•

•
•

•
•

OpenAI Applications
Overview

Using the OpenAI API you can build a wide range of applications, here are some examples:

Chatbots and Virtual Assistants: Applications that can converse with humans in a natural, human-like
manner. These can be used for customer support, handling queries, and providing information on a website
or mobile app.
Content Generation: Applications that can generate human-like text such as articles, blog posts, or reports.
For instance, GPT-3 can be used to automate content creation for social media, generate code, or create
SEO-friendly content.
Translation Services: Applications that can translate text from one language to another.
Tutoring and Education: AI can be used to create personalized learning experiences, help with homework,
or explain complex concepts in simple language.
Games: OpenAI can be used to create immersive and interactive games, especially those that involve con
versational characters or complex narratives.
Sentiment Analysis: Analyzing and categorizing the sentiments expressed in text data can be useful for
market research, brand monitoring, and understanding customer feedback.
Personalized Recommendations: Based on users' past behaviors and preferences, AI can generate per
sonalized recommendations for products, services, or content.
Text Completion: Completing user's sentences or helping with writing assistance in email clients or word
processing software.
Speech Recognition: Transcribe spoken language into written text, useful in transcription services, voice
assistants, and more.
Medical and Legal Advisory: Although not capable of replacing professional advice, AI models can provide
preliminary guidance or suggestions based on given inputs.

Components

Find below a list of the available components and a short description about them.

TsgcAIOpenAIChatBot: a ChatBot that listens the speech and converts to text using OpenAI Whisper API,
this text is send to the ChatCompletion API which provides a response from OpenAI and this response is
converted from Text to Speech.
TsgcAIOpenAITranslator: is a Translator application that allows to translate any language speech to eng
lish and listen the traduction using any of the SpeechToText components available.
TsgcAIOpenAIEmbeddings: this component is used to build AI applications with customized data, exam
ple: a chatbot with our product data. The following Databases are supported:

TsgcAIDatabaseVectorPinecone: supports the Pinecone Database Vector.

The following components are used for capturing the audio from microphone, play the audio file and convert Text to
Speech.

TsgcAudioRecorderMCI: (for windows only) this component allows to access to the microphone and con
vert the speech to a wave file.
TsgcAudioPlayerMCI: (for windows only) this component allows to play a mp3 file.
TsgcTextToSpeechSystem: (for windows only) converts text to speech without the need of using an exter
nal mp3 file.
TsgcTextToSpeechGoogle: converts text to speech using any of the Google Cloud voices available.
TsgcTextToSpeechAmazon: converts text to speech using any of the Amazon AWS voices available.

COMPONENTS

598

1.

1.
2.

2.
3.

1.

2.

3.

•

•
•

•
•

OpenAI Audio
To use OpenAI APIs with voice commands, the following steps are required:

The Microphone Audio must be captured, so a speech to text system is needed to get the text that will be
sent to OpenAI.

Capturing the Microphone Audio is done using the component TsgcAudioRecorderMCI.
Once we've captured the audio, this is sent to the OpenAI whisper api to convert the audio file to text.

Once we get the speech to text, now we send the text to OpenAI using the ChatCompletion API.
The response from OpenAI must be converted now to Speech using one of the following components:

TsgcTextToSpeechSystem: (currently only for Windows) uses the Windows Speech To Text from Op
erating System.
TsgcTextToSpeechGoogle: sends the response from OpenAI to the Google Cloud Servers and an
mp3 file is returned which is played by the TsgcAudioPlayerMCI.
TsgcTextToSpeechAmazon: ends the response from OpenAI to the Amazon AWS Servers and an
mp3 file is returned which is played by the TsgcAudioPlayerMCI.

Components

The following components are used for capturing the audio from microphone, play the audio file and convert Text to
Speech.

TsgcAudioRecorderMCI: (for windows only) this component allows to access to the microphone and con
vert the speech to a wave file.
TsgcAudioPlayerMCI: (for windows only) this component allows to play a mp3 file.
TsgcTextToSpeechSystem: (for windows only) converts text to speech without the need of using an exter
nal mp3 file.
TsgcTextToSpeechGoogle: converts text to speech using any of the Google Cloud voices available.
TsgcTextToSpeechAmazon: converts text to speech using any of the Amazon AWS voices available.

COMPONENTS

599

•
◦
◦

▪

▪

•
◦
◦

TsgcAudioRecorderMCI
This component is used to capture the microphone audio and store in a wave file. Currently only windows is sup
ported.

Properties

RecorderOptions
FileName: the full filename where the wave file will be stored.
Mode: how is the audio captured:

camoManual: requires the user to Start/Stop the audio recorder to set the start and end of the
wave file.
CamoAuto: the component automatically stops capturing audio when detects there is no one
speaking.

MCIOptions
LevelMin: this is the minimum level where the component will start/stop to record the audio.
StopAfter: number of seconds after the audio capturing will be stopped if no audio is detected.

COMPONENTS

600

TsgcAudioPlayerMCI
This component is used to play the mp3 files received by the Text-To-Speech providers. Currently only windows is
supported.

COMPONENTS

601

TsgcTextToSpeechSystem
This is the default Text-To-Speech provided by the Operating System, currently only Windows is supported.

COMPONENTS

602

•
◦

◦
◦
◦
◦
◦

•

TsgcTextToSpeechGoogle
Text-To-Speech is an API provided by Google Cloud which allows to convert text to mp3 files, requires the use of a
Google Cloud Account and setup the Text-To-Speech account.

Once the Text-To-Speech Account is configured, a JSON settings file must be downloaded and set to the property
GoogleOptions.Settings.

Properties

GoogleOptions
Settings: here must be copied the content of the JSON settings downloaded from the service ac
count configured for Text-To-Speech API.
AudioEncoding: (by default MP3) here configure the Audio Encoding format.
FileName: the filename where will be stored the file received from Text-To-Speech API.
Gender: the gender of the voice (FEMALE, MALE).
VoiceId: the name of the voice (example: en-US-Standard-A).
Language: the language of the voice (example: en-US).

AudioPlayer: set here a TsgcAudioPlayer component which will play the audio file received from Google
Servers.

COMPONENTS

603

•
◦

▪
▪
▪

◦
◦
◦
◦
◦

•

TsgcTextToSpeechAmazon
Text-To-Speech is an API provided by Amazon AWS which allows to convert text to mp3 files, requires the use of a
Amazon AWS Account and setup the Polly API.

Properties

AmazonOptions
AWSOptions: here configure the Amazon AWS account settings:

AccessKey
SecretKey
Region (by default us-east-1)

FileName: the full path of the filename where will be stored when received from Amazon Servers.
OutputFormat: the audio encoding format (by default mp3).
TextType: by default text.
Engine: by default neural.
VoiceId: the name of the voice (example: Joanna).

AudioPlayer: set here a TsgcAudioPlayer component which will play the audio file received from the Ama
zon Servers.

COMPONENTS

604

1.

1.
2.

2.
3.

1.

2.

3.

•
◦
◦

▪
▪

◦

•
◦

▪
▪

◦
▪

•

•

•
•
•

•

TsgcAIOpenAIChatBot
To build a ChatBot with voice commands, the following steps are required:

The Microphone Audio must be captured, so a speech to text system is needed to get the text that will be
sent to OpenAI.

Capturing the Microphone Audio is done using the component TsgcAudioRecorderMCI.
Once we've captured the audio, this is sent to the OpenAI whisper api to convert the audio file to text.

Once we get the speech to text, now we send the text to OpenAI using the ChatCompletion API.
The response from OpenAI must be converted now to Speech using one of the following components:

TsgcTextToSpeechSystem: (currently only for Windows) uses the Windows Speech To Text from Op
erating System.
TsgcTextToSpeechGoogle: sends the response from OpenAI to the Google Cloud Servers and an
mp3 file is returned which is played by the TsgcAudioPlayerMCI.
TsgcTextToSpeechAmazon: ends the response from OpenAI to the Amazon AWS Servers and an
mp3 file is returned which is played by the TsgcAudioPlayerMCI.

Properties

OpenAIOptions: configure here the OpenAI properties.

ApiKey: an API key is required to interactuate with the OpenAI APIs.
LogOptions

Enabled: if set to true, the API requests will be log into a text file.
FileName: the filename of the log.

Organization: an optional OpenAI API field.

ChatBotOptions: configure here the ChatBot properties.
Transcription: configure here the OpenAI Transcription API settings.

Model: by default whisper-1
Language: the language code of the transcription (helps the model to transcribe better the
speech to text).

Chatcompletion: configure here the OpenAI ChatCompletion API settings.
Model: by default gpt3.5turbo.

AudioRecorder: assign a TsgcAudioRecorder component to capture the microphone audio.

TextToSpeech: assign a TsgcTextToSpeech component to listen the response from OpenAI.

Events

OnAudioStart: the event is called when the Audio Starts to being recorded.
OnAudioStop: the event is called after the Audio Stops Recording.
OnTranscription: the event is called when receiving a response from OpenAI Transcription API with the
Speech-To-Text result.
OnChatCompletion: the event is called when receiving a response from the OpenAI ChatCompletion API
with the Content text.

Code Example

Create a new ChatBot, using the default Text-To-Speech from Microsoft Windows. Use Start to Start the recording
of the audio and Stop to Stop the recording and send the audio to the OpenAI API and return a response from
ChatGPT.

COMPONENTS

605

// ... create the chatbot component

TsgcAIOpenAIChatBot *sgcChatBot = new TsgcAIOpenAIChatBot(NULL);

sgcChatBot->OpenAIOptions->ApiKey = "your_openapi_api_key";

sgcChatBot->ChatBotOptions->Transcription->Language = "en";

// ... create audio recorder and text-to-speech

TsgcAudioRecorderMCI *sgcAudioRecorder = new TsgcAudioRecorderMCI(NULL);

TsgcTextToSpeechSystem *sgcTextToSpeech = new TsgcTextToSpeechSystem(NULL);

// ... assign audio components to chatbot

sgcChatBot->AudioRecorder = sgcAudioRecorder;

sgcChatBot->TextToSpeech = sgcTextToSpeech;

// ... start the chatbot, speak with a microphone to capture the audio, and stop to process the audio

sgcChatBot->Start();

// ... speak

sgcChatBot->Stop();

COMPONENTS

606

1.

1.
2.

2.
3.

1.

2.

3.

•
◦
◦

▪
▪

◦

•
◦

▪

•

•

•
•
•

TsgcAIOpenAITranslator
To build a Translator with voice commands, the following steps are required:

The Microphone Audio must be captured, so a speech to text system is needed to get the text that will be
sent to OpenAI.

Capturing the Microphone Audio is done using the component TsgcAudioRecorderMCI.
Once we've captured the audio, this is sent to the OpenAI whisper api to convert the audio file to text.

Once we get the speech to text, now we send the text to OpenAI using the ChatCompletion API.
The response from OpenAI must be converted now to Speech using one of the following components:

TsgcTextToSpeechSystem: (currently only for Windows) uses the Windows Speech To Text from Op
erating System.
TsgcTextToSpeechGoogle: sends the response from OpenAI to the Google Cloud Servers and an
mp3 file is returned which is played by the TsgcAudioPlayerMCI.
TsgcTextToSpeechAmazon: ends the response from OpenAI to the Amazon AWS Servers and an
mp3 file is returned which is played by the TsgcAudioPlayerMCI.

Properties

OpenAIOptions: configure here the OpenAI properties.

ApiKey: an API key is required to interactuate with the OpenAI APIs.
LogOptions

Enabled: if set to true, the API requests will be log into a text file.
FileName: the filename of the log.

Organization: an optional OpenAI API field.

TranslatorOptions: configure here the Translator properties.
Translation: configure here the OpenAI Translation API settings.

Model: by default whisper-1

AudioRecorder: assign a TsgcAudioRecorder component to capture the microphone audio.

TextToSpeech: assign a TsgcTextToSpeech component to listen the response from OpenAI.

Events

OnAudioStart: the event is called when the Audio Starts to being recorded.
OnAudioStop: the event is called after the Audio Stops Recording.
OnTranslation: the event is called when receiving a response from OpenAI Translation API with the transla
tion result.

Code Example

Create a new Translator, using the default Text-To-Speech from Microsoft Windows. Use Start to Start the recording
of the audio and Stop to Stop the recording and send the audio to the OpenAI API and translate it.

// ... create the translator component

TsgcAIOpenAITranslator *sgcTranslator = new TsgcAIOpenAITranslator(NULL);

sgcTranslator->OpenAIOptions->ApiKey = "your_openapi_api_key";

// ... create audio recorder and text-to-speech

TsgcAudioRecorderMCI *sgcAudioRecorder = new TsgcAudioRecorderMCI(NULL);

TsgcTextToSpeechSystem *sgcTextToSpeech = new TsgcTextToSpeechSystem(NULL);

// ... assign audio components to translator

sgcTranslator->AudioRecorder = sgcAudioRecorder;

sgcTranslator->TextToSpeech = sgcTextToSpeech;

// ... start the translator, speak with a microphone to capture the audio, and stop to translate it

COMPONENTS

607

sgcTranslator->Start();

// ... speak

sgcTranslator->Stop();

COMPONENTS

608

•
◦
◦

▪
▪

◦
◦

▪
▪
▪

•
◦
◦
◦
◦

•

•
•

TsgcAIOpenAIEmbeddings
Embeddings are a way to represent words, phrases, or even other types of data, like images or audio, in a numeri
cal form. It's like turning words or data into numbers so that computers can understand and work with them better.

Imagine you have a bunch of words, like "dog," "cat," and "bird." These words have meaning, right? Well, embed
dings assign each word a unique set of numbers (vectors) that capture their meaning and relationships to other
words.

For example, the word "dog" might be represented as [0.5, 0.2, -0.7], "cat" as [0.8, -0.3, 0.1], and "bird" as [0.3, 0.9,
0.4]. The numbers in the vectors carry information about the characteristics of each word, like whether they are re
lated to animals or how similar they are to each other.

The amazing thing is that embeddings can be learned from large amounts of data, so they can figure out similari
ties and differences between words automatically. These numerical representations help AI algorithms understand
language and make sense of complex patterns, which is crucial in various applications like language translation,
sentiment analysis, and recommendation systems. They also make it easier and faster for AI models to process in
formation and provide more accurate results!

Properties

OpenAIOptions: configure here the OpenAI properties.

ApiKey: an API key is required to interactuate with the OpenAI APIs.
LogOptions

Enabled: if set to true, the API requests will be log into a text file.
FileName: the filename of the log.

Organization: an optional OpenAI API field.
RetryOptions: sometimes openAI requires to retry the request because it's too busy processing the
HTTP requests.

Enabled: set to true if you want to enable the automatic retry.
Retries: max number of retries, by default 3.
Wait: in miliseconds, the amout of time to wait before retry.

EmbeddingOptions: embeding configurations.

ChunkSize: the size of every chunk when importing a file.
Model: the model used, by default "text-embedding-ada-002".
User: the user who is requesting the embedding.
WaitStoringData: the time in miliseconds to wait between request. Only use if you are using the trial,
to avoid the limitations of 3 requests per minute.

Database: the database component used to store the embeddings data.

Databases

The following databases are currently supported.

TsgcAIDatabaseVectorPinecone: supports pinecone vector database.
TsgcAIDatabaseVectorFile: stores the vectors in a plain text file, only use for testing purposes.

How to use

Just link the property Database of the TsgcAIOpenAIEmbeddings to any of the databases supported.

COMPONENTS

609

•
•

Create Vectors
Use Embeddings & ChatBot

COMPONENTS

610

•
◦
◦

TsgcAIDatabaseVectorFile
The component stores the database vectors and prompts into 2 text files, this component should be used only for
testing purposes, not for production, because is not optimized when the number of vectors is high.

Configuration

VectorFileOptions:
InputFilename: the name of the file used to store the input data.
VectorFilename: the name of the file used to store the vectors.

COMPONENTS

611

•
◦

◦
◦

•
◦
◦

TsgcAIDatabaseVectorPinecone
The component is based on the REST Pinecone API client which allows to create / update / delete indexes and
vectors.

Configuration

PineconeOptions:
ApiKey: configure here the API Key provided by pinecone which can be obtained from your pinecone
account.
Environment: by default is the free account "us-west4-gcp-free".
LogOptions: configure here if you want to store the HTTP requests in a text file.

PineconeIndexOptions:

IndexName: the name of the index used to store or query the data.
ProjectId: the id of the project.

COMPONENTS

612

Embeddings | Create Vectors
To use the embeddings, first we must convert our data to vectors.

Example

If you have a pdf file, first convert the pdf file to text and then use the method CreateEmbeddingsFromFile to get
the vector data. Due to the OpenAI Embeddings size limitation, if the file is too big, the data will be splitted automat
ically in chunks, so from 1 file you can get 1 or multiple vectors.

Find below a code sample.

void ConvertFileToVector()

{

 TOpenDialog* oDialog = new TOpenDialog(NULL);

 try

 {

 oDialog->Filter = "TXT Files|*.txt";

 if (oDialog->Execute())

 {

 TsgcAIOpenAIEmbeddings* oEmbeddings = new TsgcAIOpenAIEmbeddings(NULL);

 try

 {

 TsgcAIDatabaseVectorFile* oFile = new TsgcAIDatabaseVectorFile(NULL);

 try

 {

 oEmbeddings->Database = oFile;

 oEmbeddings->OpenAIOptions->ApiKey = "<your api key>";

 oEmbeddings->CreateEmbeddingsFromFile(oDialog->FileName);

 }

 __finally

 {

 delete oFile;

 }

 }

 __finally

 {

 delete oEmbeddings;

 }

 }

 }

 __finally

 {

 delete oDialog;

 }

}

COMPONENTS

613

Embeddings | ChatBot
Once we've converted all our data to vectors, we can start to build our own model, the idea behind is very simple,
every time we ask the bot, first we convert the question to a vector, then we search into our database which vector
is more similar to the question, and finally we use the most similar data to the question and add it as a context.

void AskToChatGPT(const std::string& aQuestion)

{

 TsgcAIOpenAIChatBot* oChatBot = new TsgcAIOpenAIChatBot(NULL);

 try

 {

 oChatBot->OpenAIOptions->ApiKey = "<your api key>";

 TsgcAIOpenAIEmbeddings* oEmbeddings = new TsgcAIOpenAIEmbeddings(NULL);

 try

 {

 oChatBot->Embeddings = oEmbeddings;

 TsgcAIDatabaseVectorFile* oFile = new TsgcAIDatabaseVectorFile(NULL);

 try

 {

 oEmbeddings->Database = oFile;

 std::string vContext = oChatBot->GetEmbedding(aQuestion);

 std::string message = "Answer the question based on the context below.\n\nContext:\n" +

 vContext + "\nQuestion:" + aQuestion + "\nAnswer:";

 oChatBot->ChatAsUser(message.c_str());

 }

 __finally

 {

 delete oFile;

 }

 }

 __finally

 {

 delete oEmbeddings;

 }

 }

 __finally

 {

 delete oChatBot;

 }

}

COMPONENTS

614

Pinecone
Pinecone.io

Pinecone is a vector database that allows to upload / query / delete vector data in an easy and powerful way.

Pinecone has a public API that allows third-parties to integrate pinecone into it's own applications. The
component TsgcHTTP_API_Pinecone is a wrapper over the Pinecone API.

Configuration

Before start, you must register in Pinecone website and request an API. This API key is used to send the API re
quests and must be set in the property PineconeOptions.ApiKey of the TsgcHTTP_API_Pinecone component.

Index Operations

The following methods are supported:

Method Parame
ters Description

IndexesList This operation returns a list of your Pinecone indexes.

IndexCreate
TsgcHTTP
PineconeIn
dexCreate

This operation creates a Pinecone index. You can use it to specify the mea
sure of similarity, the dimension of vectors to be stored in the index, the
numbers of replicas to use, and more.

IndexDescribe Index Name Get a description of an index.
IndexDelete Index Name This operation deletes an existing index.

IndexConfigure
Index Name,
Replicas,
PodType

This operation specifies the pod type and number of replicas for an index.

Collection Operations

The following methods are supported:

Method Parameters Description
CollectionsList This operation returns a list of your Pinecone collections.
CollectionCreate Collection Name, Source This operation creates a Pinecone collection.
CollectionDescribe Collection Name Get a description of a collection.
CollectionDelete Collection Name This operation deletes an existing collection.

Vector Operations

The following methods are supported:

Method Parame
ters Description

https://www.pinecone.io/

COMPONENTS

615

VectorsDescribeIn
dexStats

Index Name,
Project Id,
Filter

The DescribeIndexStats operation returns statistics about the index's con
tents, including the vector count per namespace and the number of dimen
sions.

VectorsQuery
Index Name,
Project Id,
Params

The Query operation searches a namespace, using a query vector.
It retrieves the ids of the most similar items in a namespace, along with their
similarity scores.

VectorsDelete
Index Name,
Project Id,
Params

The Delete operation deletes vectors, by id, from a single namespace.
You can delete items by their id, from a single namespace.

VectorsFetch
Index Name,
Project
Id, Ids

The Fetch operation looks up and returns vectors, by ID, from a single
namespace.
The returned vectors include the vector data and/or metadata.

VectorsUpdate
Index Name,
Project Id,
Params

The Update operation updates vector in a namespace.
If a value is included, it will overwrite the previous value.
If a set_metadata is included, the values of the fields specified in it will be
added or overwrite the previous value.

VectorsUpsert
Index Name,
Project Id,
Params

The Upsert operation writes vectors into a namespace.
If a new value is upserted for an existing vector id, it will overwrite the previ
ous value.

Example UPSERT

Find below an example of UPSERT a single vector with the Id = "id1".

void UpsertPinecone(const String aIndexName, const String aProjectId, const std::vector<double> aVector)

{

 TsgcHTTP_API_Pinecone* oPinecone = new TsgcHTTP_API_Pinecone(NULL);

 try

 {

 oPinecone->PineconeOptions.API = "your-api-key";

 TsgcHTTPPineconeVectorUpserts* oParams = new TsgcHTTPPineconeVectorUpserts();

 try

 {

 TsgcArrayOfVectorUpsert oVectors;

 oVectors.push_back(new TsgcHTTPPineconeVectorUpsert());

 oVectors[0]->Id = "id1";

 oVectors[0]->Values = aVector;

 oParams->Vectors = oVectors;

 oPinecone->VectorsUpsert(aIndexName, aProjectId, oParams);

 }

 __finally

 {

 oParams->Free();

 }

 }

 __finally

 {

 oPinecone->Free();

 }

}

Example QUERY

Find below an example of QUERY a single vector.

void QueryPinecone(const string aIndexName, const string aProjectId, const std::vector<double>& aVector)

{

 TsgcHTTPPineconeVectorQuery* oParams = new TsgcHTTPPineconeVectorQuery();

 try

 {

 oParams->Vector = aVector;

COMPONENTS

616

 Pinecone.VectorsQuery(aIndexName, aProjectId, oParams);

 }

 __finally

 {

 oParams->Free();

 }

}

COMPONENTS

617

IoT
The Internet of things (IoT) refers to the concept of extending Internet connectivity beyond conventional computing
platforms such as personal computers and mobile devices, and into any range of traditionally "dumb" or non-inter
net-enabled physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other
forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet,
and they can be remotely monitored and controlled.

sgcWebSockets package implements the following IoT clients:

1. Amazon AWS IoT: AWS IoT provides secure, bi-directional communication between Internet-connected devices
such as sensors, actuators, embedded micro-controllers, or smart appliances and the AWS Cloud. This enables
you to collect telemetry data from multiple devices, and store and analyze the data. You can also create applica
tions that enable your users to control these devices from their phones or tablets.

2. Azure IoT Hub: IoT Hub is a managed service, hosted in the cloud, that acts as a central message hub for bi-di
rectional communication between your IoT application and the devices it manages. You can use Azure IoT Hub to
build IoT solutions with reliable and secure communications between millions of IoT devices and a cloud-hosted so
lution backend.

COMPONENTS

618

IoT Amazon MQTT Client
What Is AWS IoT?

AWS IoT provides secure, bi-directional communication between Internet-connected devices such as sensors, ac
tuators, embedded micro-controllers, or smart appliances and the AWS Cloud. This enables you to collect telemetry
data from multiple devices, and store and analyze the data. You can also create applications that enable your users
to control these devices from their phones or tablets.

Message broker

Provides a secure mechanism for devices and AWS IoT applications to publish and receive messages from each
other. You can use either the MQTT protocol directly or MQTT over WebSocket to publish and subscribe.

The AWS IoT message broker is a publish/subscribe broker service that enables the sending and receiving of mes
sages to and from AWS IoT. When communicating with AWS IoT, a client sends a message addressed to a topic
like Sensor/temp/room1.

The message broker, in turn, sends the message to all clients that have registered to receive messages for that
topic. The act of sending the message is referred to as publishing. The act of registering to receive messages for a
topic filter is referred to as subscribing.

The topic namespace is isolated for each AWS account and region pair. For example, the Sensor/temp/room1 topic
for an AWS account is independent from the Sensor/temp/room1 topic for another AWS account. This is true of re
gions, too. The Sensor/temp/room1 topic in the same AWS account in us-east-1 is independent from the same top
ic in us-east-2. AWS IoT does not support sending and receiving messages across AWS accounts and regions.

The message broker maintains a list of all client sessions and the subscriptions for each session. When a message
is published on a topic, the broker checks for sessions with subscriptions that map to the topic. The broker then for
wards the publish message to all sessions that have a currently connected client.

MQTT Client

TsgcIoTAmazon_MQTT_Client is the component used for connect to AWS IoT, one client can connect to only one
device. Client connects using plain MQTT protocol and authenticates using a X.509 Client Certificate.

In order to connect to AWS IoT, client needs the following properties:

Amazon.ClientId: identification of client, optional.
Amazon.Endpoint: server name where MQTT client will connect.
Amazon.Port: by default uses port 8883. If port is 443, uses ALPN automatically to connect (Requires cus
tom Indy version).

AWS IoT Core supports devices and clients that use the MQTT and the MQTT over WebSocket Secure (WSS) pro
tocols to publish and subscribe to messages. The following table lists the protocols that the AWS IoT device end
points support and the authentication methods and ports they use.

Protocol Authentica
tion Port

ALPN
Protocol
Name

MQTT over
WebSocket

Signature
Version 4 443

MQTT over
WebSocket

Custom Au
thentication 443

COMPONENTS

619

MQTT X.509 client
certificate 443 x-amzn-

mqtt-ca

MQTT X.509 client
certificate 8883

MQTT Custom Au
thentication 443 mqtt

Certificates Authentication

Requires to create certificates in your Amazon AWS console and set the path were are stored.

Using OpenSSL as IOHandler you must set the certificate in the following paths

Certificate.Enabled: set to True if you want use certificates.
Certificate.CertFile: path to X.509 client certificate.
Certificate.KeyFile: path to X.509 client key file.

Using SChannel as IOHandler, first convert the PEM Certificate + Key to a PFX certificate, requires openssl bina
ries:

openssl pkcs12 -inkey 884ccf73ff-private.pem.key -in 884ccf73ff-certificate.pem.crt -export -out 884ccf73ff-certificate

Then set the following paths (there is no need to set the keyfile because is already included in the certificate).

Certificate.Enabled: set to True if you want use certificates.
Certificate.CertFile: path to PFX certificate

SignatureV4 Authentication

Requires create an user in your Amazon AWS console and save the Access and Secret key which will be used to
Sign the WebSocket request.

SignatureV4.Enabled: set to True if you want use this type of Authentication.
SignatureV4.Region: the region were is located your device (example: us-east-1).
SignatureV4.AccessKey: the access key created in your amazon console or get as temporary credential
SignatureV4.SecretKey: the secret key created in your amazon console or get as temporary credential
SignatureV4.SessionToken: (conditional) if you are using Temporary Security Credentials, set here the se
curity token.
OpenSSL_Options: configuration of the openSSL libraries.

APIVersion: allows to define which OpenSSL API will be used.
oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

COMPONENTS

620

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

*SignatureV4 requires Indy 10.5.7+

Custom Authentication

Custom authentication enables you to define how to authenticate and authorize clients by using authorizer re
sources. The device passes credentials in either the request’s header fields or query parameters (for MQTT over
WebSockets protocols) or in the user name and password field of the MQTT CONNECT message (for the MQTT
and MQTT over WebSockets protocols).

CustomAuthentication.Enabled: set to True if you want to use this type of Authentication.
CustomAuthentication.Parameters: set here the query parameters which will be passed to the server (by
default is /mqtt)
CustomAuthentication.Headers: here you can put the custom header fields.
CustomAuthentication.WebSockets: if set to true, the connection will work over WebSocket protocol, oth
erwise will work over plain TCP.

MQTTAuthentication.Enabled: if you need to pass the username/password in the mqtt connection, enable
this property
MQTTAuthentication.Username: username of the mqtt connection
MQTTAuthentication.Password: secret of the mqtt connection.

Client can send optionally a ClientId to identifiy client connection, then others clients can subscribe to receive a no
tification every time this client has connected, subscribed, disconnected...

Authorization

If you can't connect using port 8883 and use TCP as transport (which is the default), amazon takes "AWS IoT Core
policy" to provide or not authorization to clients and subscriptions. Most probably you must authorize your client id.
Enter in your Amazon AWS console, go to IoT Core and access the menu "Secure/Policies", there select the policy
attached to your IoT Thing and check at the end how connection is configured. Example:

 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:useast-1:222178873557:client/sdk-java",
 "arn:aws:iot:useast-1:222178873557:client/basicPubSub",
 "arn:aws:iot:useast-1:222178873557:client/sdk-nodejs-*"
]
 }

This configuration means that only clients with ID: sdk-java, basicPubSub and sdk-nodejs-* will be allowed to con
nect. Change accordingly and try again.
If it still doesn't work, enable log and check in cloudwatch the reason why you can't connect.

Other properties

 MQTTHeartBeat: if enabled try to keeps alive MQTT connection sending a ping every x seconds.

Interval: number of seconds between each ping.

COMPONENTS

621

•

•

•

•

•

•

•

•

 MQTTAuthentication: if enabled includes in MQTT connection the username and password

UserName: name of the user
Password: secret string

 WatchDog: if enabled, when an unexpected disconnection is detected, tries to reconnect to the server automati
cally.

Interval: seconds before reconnects.

Attempts: max number of reconnects, if zero, then unlimited.

 LogFile: if enabled save socket messages to a specified log file, useful for debugging. The access to log file is
not thread safe if it's accessed from several threads.

Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.

FileName: full path to the filename.

Implementation

Amazon MQTT implementation is based on MQTT version 3.1.1 but it deviates from the specification as follows:

In AWS IoT, subscribing to a topic with Quality of Service (QoS) 0 means a message is delivered zero or
more times. A message might be delivered more than once. Messages delivered more than once might be
sent with a different packet ID. In these cases, the DUP flag is not set.
AWS IoT does not support publishing and subscribing with QoS 2. The AWS IoT message broker does not
send a PUBACK or SUBACK when QoS 2 is requested.
When responding to a connection request, the message broker sends a CONNACK message. This mes
sage contains a flag to indicate if the connection is resuming a previous session. The value of this flag might
be incorrect if two MQTT clients connect with the same client ID simultaneously.
When a client subscribes to a topic, there might be a delay between the time the message broker sends a
SUBACK and the time the client starts receiving new matching messages.
The MQTT specification provides a provision for the publisher to request that the broker retain the last mes
sage sent to a topic and send it to all future topic subscribers. AWS IoT does not support retained mes
sages. If a request is made to retain messages, the connection is disconnected.
The message broker uses the client ID to identify each client. The client ID is passed in from the client to the
message broker as part of the MQTT payload. Two clients with the same client ID are not allowed to be con
nected concurrently to the message broker. When a client connects to the message broker using a client ID
that another client is using, a CONNACK message is sent to both clients and the currently connected client
is disconnected.
On rare occasions, the message broker might resend the same logical PUBLISH message with a different
packet ID.
The message broker does not guarantee the order in which messages and ACK are received.

Connect to AWS IoT

First, you must sign in your AWS console, register a new device and create a X.509 certificate for this device. Once
is done, you can create create a new TsgcIoTAmazon_MQTT_Client and connect to AWS IoT Server. For example:

oClient = new TsgcIoTAmazon_MQTT_Client();

oClient->Amazon->Endpoint = "a2ohgdjqitsmij-ats.iot.us-west-2.amazonaws.com";

oClient->Amazon->ClientId = "sgcWebSockets";

oClient->Certificate->CertFile = "amazon-certificate.pem.crt";

oClient->Certificate->KeyFile = "amazon-private.pem.key";

oClient->OnMQTTConnect = OnMQTTConnectEvent;

oClient->Active = true;

void OnMQTTConnect(TsgcWSConnection *Connection, const bool Session, const TmqttConnReturnCode

ReturnCode)

{

COMPONENTS

622

 ShowMessage("Connected to AWS");

}

Topics

The message broker uses topics to route messages from publishing clients to subscribing clients. The forward
slash (/) is used to separate topic hierarchy. The following table lists the wildcards that can be used in the topic filter
when you subscribe. # Must be the last character in the topic to which you are subscribing. Works as a wildcard by
matching the current tree and all subtrees.
For example, a subscription to Sensor/# receives messages published to Sensor/, Sensor/temp, Sensor/temp/
room1, but not the messages published to Sensor.
+ Matches exactly one item in the topic hierarchy. For example, a subscription to Sensor/+/room1 receives mes
sages published to Sensor/temp/room1, Sensor/moisture/room1, and so on.

oClient = new TsgcIoTAmazon_MQTT_Client();

...

oClient->OnSubscribe = OnSubscribeEvent;

vPacketIdentifier = oClient->Subscribe("Sensor/moisture/room1");

void OnMQTTSubscribe(TsgcWSConnection *Connection, Word aPacketIdentifier, TsgcWSSUBACKS *aCodes)

{

 if (vPacketIdentifier == aPacketIdentifier)

 {

 ShowMessage("Subscribed to topic Sensor/moisture/room1");

 }

}

// Client, can send a message using Publish method.

oClient->Publish("Sensor/moisture/room1", "{"\"temp"\"=10}");

// Messages received from server, are dispatched OnMQTTPublishEvent.

void OnMQTTPublish(TsgcWSConnection *Connection, string aTopic, string aText)

{

 DoLog("Received Message: " + aTopic + " " + aText);

}

Reserved Topics

Following methods are used to subscribe / publish to reserved topics.

 Subscribe_ClientConnected(const aClientId: String): AWS IoT publishes to this topic when an MQTT client
with the specified client ID connects to AWS IoT
 Subscribe_ClientDisconnected(const aClientId: String): AWS IoT publishes to this topic when an MQTT
client with the specified client ID disconnects to AWS IoT
 Subscribe_ClientSubscribed(const aClientId: String): AWS IoT publishes to this topic when an MQTT client
with the specified client ID subscribes to an MQTT topic
 Subscribe_ClientUnSubscribed(const aClientId: String): AWS IoT publishes to this topic when an MQTT
client with the specified client ID unsubscribes to an MQTT topic

 Publish_Rule(const aRuleName, aText: String): A device or an application publishes to this topic to trigger
rules directly

 Publish_DeleteShadow(const aThingName, aText: String): A device or an application publishes to this topic
to delete a shadow
 Subscribe_DeleteShadow(const aThingName: String): A device or an application subscribe to this topic to
delete a shadow
 Subscribe_ShadowDeleted(const aThingName: String): The Device Shadow service sends messages to this
topic when a shadow is deleted
 Subscribe_ShadowRejected(const aThingName: String): The Device Shadow service sends messages to
this topic when a request to delete a shadow is rejected
 Publish_ShadowGet(const aThingName, aText: String): An application or a thing publishes an empty mes
sage to this topic to get a shadow
 Subscribe_ShadowGet(const aThingName: String): An application or a thing subscribe to this topic to get a
shadow
 Subscribe_ShadowGetAccepted(const aThingName: String): The Device Shadow service sends messages
to this topic when a request for a shadow is made successfully

COMPONENTS

623

•
•

 Subscribe_ShadowGetRejected(const aThingName: String): The Device Shadow service sends messages
to this topic when a request for a shadow is rejected
 Publish_ShadowUpdate(const aThingName, aText: String): A thing or application publishes to this topic to
update a shadow
 Subscribe_ShadowUpdateAccepted(const aThingName: String): The Device Shadow service sends mes
sages to this topic when an update is successfully made to a shadow
 Subscribe_ShadowUpdateRejected(const aThingName: String): The Device Shadow service sends mes
sages to this topic when an update to a shadow is rejected
 Subscribe_ShadowUpdateDelta(const aThingName: String): The Device Shadow service sends messages
to this topic when a difference is detected between the reported and desired sections of a shadow
 Subscribe_ShadowUpdateDocuments(const aThingName: String): AWS IoT publishes a state document to
this topic whenever an update to the shadow is successfully performed

Persistent Sessions

A persistent session represents an ongoing connection to an MQTT message broker. When a client connects to the
AWS IoT message broker using a persistent session, the message broker saves all subscriptions the client makes
during the connection. When the client disconnects, the message broker stores unacknowledged QoS 1 messages
and new QoS 1 messages published to topics to which the client is subscribed. When the client reconnects to the
persistent session, all subscriptions are reinstated and all stored messages are sent to the client at a maximum rate
of 10 messages per second.

You create an MQTT persistent session setting the cleanSession parameter to False OnMQTTBeforeConnect
event. If no session exists for the client, a new persistent session is created. If a session already exists for the
client, it is resumed.

Devices need to look at the Session attribute in the OnMQTTConnect event to determine if a persistent session is
present. If Session is True, a persistent session is present and stored messages are delivered to the client. If Ses
sion is False, no persistent session is present and the client must re-subscribe to its topic filters.

Persistent sessions have a default expiry period of 1 hour. The expiry period begins when the message broker de
tects that a client disconnects (MQTT disconnect or timeout). The persistent session expiry period can be in
creased through the standard limit increase process. If a client has not resumed its session within the expiry period,
the session is terminated and any associated stored messages are discarded. The expiry period is approximate,
sessions might be persisted for up to 30 minutes longer (but not less) than the configured duration.

Temporary Credentials

AWS IoT Core can work with Temporary Credentials obtained through Identity Pools, there are 2 types of Identities:

UnAuthenticated: only requires to set the policy type in the IAM
Authenticated: requires to set the policy type in IAM and AWS IoT Core policies

Unauthenticated

If you are using Unauthenticated credentials, just attach the policy in the UnAuthenticated Role automatically creat
ed in the IAM menu. Then configure the client setting the Access, Secret Key and Token returned by Cognito ser
vice.
Find below a code in .NET to get unauthenticated credentials

CognitoAWSCredentials credentials = new CognitoAWSCredentials(

 "us-east-1:cc3c9c48-646d-44ef-bfd5-0c5fb2f0882f", // Identity pool ID

 Amazon.RegionEndpoint.USEast1 // Region

);

var identityPoolId = credentials.GetCredentialsAsync();

AmazonCognitoIdentityClient cognitoClient = new AmazonCognitoIdentityClient(

 credentials, // the anonymous credentials

 Amazon.RegionEndpoint.USEast1 // the Amazon Cognito region

);

COMPONENTS

624

GetIdRequest idRequest = new GetIdRequest();

idRequest.AccountId = "222178873557";

idRequest.IdentityPoolId = "us-east-1:cc3c9c48-646d-44ef-bfd5-0c5fb2f0882f";

GetIdResponse idResp = cognitoClient.GetId(idRequest);

string AccessKey = identityPoolId.Result.AccessKey;

string SecretKey = identityPoolId.Result.SecretKey;

string SessionToken = identityPoolId.Result.Token;

string IdentityId = idResp.IdentityId;

Authenticated

Authenticated credentials, requires to attache de policy in the Authenticated Role automatically created in the IAM
menu and attach the policy of the user in AWS IoT Core policies.
So create a new policy in the IoT Core policies menu and every time a new user authenticates, attach this policy to
this user.
You can use the following command of AWS to attach a policy or create a lambda function.

aws iot attach-policy --policy-name PolicyName --target us-east-1:XXXXX-XXXX-XXXX-
XXXX-XXXXXXXXXXXX

COMPONENTS

625

•
•

•
•

IoT Azure MQTT Client
What is Azure IoT Hub?

IoT Hub is a managed service, hosted in the cloud, that acts as a central message hub for bi-directional communi
cation between your IoT application and the devices it manages. You can use Azure IoT Hub to build IoT solutions
with reliable and secure communications between millions of IoT devices and a cloud-hosted solution backend. You
can connect virtually any device to IoT Hub.

IoT Hub supports communications both from the device to the cloud and from the cloud to the device. IoT Hub sup
ports multiple messaging patterns such as device-to-cloud telemetry, file upload from devices, and request-reply
methods to control your devices from the cloud. IoT Hub monitoring helps you maintain the health of your solution
by tracking events such as device creation, device failures, and device connections.

IoT Hub's capabilities help you build scalable, full-featured IoT solutions such as managing industrial equipment
used in manufacturing, tracking valuable assets in healthcare, and monitoring office building usage.

Message broker

IoT Hub gives you a secure communication channel for your devices to send data. IoT Hub and the device SDKs
support the following protocols for connecting devices:

MQTT
MQTT over WebSockets

Multiple authentication types support a variety of device capabilities:

SAS token-based authentication to quickly get started with your IoT solution.
Individual X.509 certificate authentication for secure, standards-based authentication.

MQTT Client

TsgcIoTAzure_MQTT_Client is the component used for connect to Azure IoT, one client can connect to only one
device. Client connects using plain MQTT protocol and authenticates using SAS / X.509 Client Certificate.

In order to connect to Azure IoT Hub, client needs the following properties:

Azure.IoTHub: server name where MQTT client will connect.
Azure.DeviceId: name of device in azure IoT Hub.

Azure allows multiple authentication types, by default uses SAS tokens.

SAS Authentication

SAS.Enabled: enable if authentication uses SAS.
SAS.SecretKey: the SAS Token from your Azure IoT Account.
SAS.KeyName: the Shared Access Key Name.
SAS.Expiry: set the number of minutes before SAS Token expires. Default value is 1440 (24 hours).

If you have a connection string, you can read the connection string values automatically using the method
ReadConnectionString. Example:

ReadConnectionString('HostName=yourhub.azure-
devices.net;SharedAccessKeyName=iothubowner;SharedAccessKey=Yj7RRPnkSDTv+UCFLgwIP/
FrbDymZv4qVAIoTLHUFR8=');

COMPONENTS

626

•

•

•

X509 Certificates

Using OpenSSL as IOHandler

Certificate.Enabled: enable if authentication uses certificates.
Certificate.CertFile: path to X.509 client certificate.
Certificate.KeyFile: path to X.509 client key file.
Certificate.Password: if certificate has a password set here.
Version: TLS version, by default uses TLS 1.0

Using SChannel as IOHandler

Certificate.Enabled: enable if authentication uses certificates.
Certificate.CertFile: path to PFX certificate (first the certificate must be converted to PFX). Read More.
Certificate.Password: if certificate has a password set here.
Version: TLS version, by default uses TLS 1.0

Other properties:

 MQTTHeartBeat: if enabled try to keeps alive MQTT connection sending a ping every x seconds.

Interval: number of seconds between each ping.

 WatchDog: if enabled, when an unexpected disconnection is detected, tries to reconnect to the server automati
cally.

Interval: seconds before reconnects.

Attempts: max number of reconnects, if zero, then unlimited.

 LogFile: if enabled save socket messages to a specified log file, useful for debugging. The access to log file is
not thread safe if it's accessed from several threads.

Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.

FileName: full path to the filename.

Azure MQTT implementation is based on MQTT version 3.1.1 but it deviates from the specification as follows:

IoT Hub does not support QoS 2 messages. If a device app publishes a message with QoS 2, IoT Hub clos
es the network connection.
IoT Hub does not persist Retain messages. If a device sends a message with the RETAIN flag set to 1, IoT
Hub adds the x-opt-retain application property to the message. In this case, instead of persisting the retain
message, IoT Hub passes it to the backend app.
IoT Hub only supports one active MQTT connection per device. Any new MQTT connection on behalf of the
same device ID causes IoT Hub to drop the existing connection.

Connect to Azure IoT Hub

First, you must sign in your Azure account, register a new device and create an authentication method for this de
vice. Once is done, you can create create a new TsgcIoTAzure_MQTT_Client and connect to Azure IoT Hub.

For example:

TsgcIoTAzure_MQTT_Client oClient = new TsgcIoTAzure_MQTT_Client;

oClient->Azure.IoTHub = "youriothub.azure-devices.net";

oClient->Azure->DeviceId = "YourDeviceId";

oClient->SAS->Enabled = True;

oClient->SAS.SecretKey = "YourSecretKey";

oClient->OnMQTTConnect += OnMQTTConnectEvent;

oClient->Active = true;

private void OnMQTTConnect(TsgcWSConnection *Connection, const bool Session, const TmqttConnReturnCode *ReturnCode)

{

COMPONENTS

627

 ShowMessage("Connected to Azure IoT Hub");

}

Device To Cloud

When sending information from the device app to the solution back end, IoT Hub exposes following options:

1. Device-to-cloud messages for time series telemetry and alerts.

oClient->Send_DeviceToCloud("{\"temp\": 10}", azuIoTQoS1);

You can send key-value properties using a TStringList, just fill the TStringList with the desired message properties
and pass these as argument.

TStringList *oProperties = new TStringList;

try

{

 oProperties->AddPair("prop_name1", "prop_value1");

 oProperties->AddPair("prop_name2", "prop_value2");

 oClient->Send_DeviceToCloud("{\"temp\": 10}", oProperties, azuIoTQoS1);

}

__finally

{

 oProperties->Free();

}

If you need to set the ContentType and ContentEncoding of the message, you must add the these values to the
Properties List, the name of these properties are defined by Azure.

Name Value
$.ct application/json
$.ce utf-8

TStringList *oProperties = new TStringList();

try

{

 oProperties->AddPair("$.ct", "application/json");

 oProperties->AddPair("$.ce", "utf-8");

 oClient->Send_DeviceToCloud("{\"temp\": 10}", oProperties, azuIoTQoS1);

}

__finally

{

 oProperties->Free();

}

2. Device twin's reported properties for reporting device state information such as available capabilities, condi
tions, or the state of long-running workflows. For example, configuration and software updates.

oClient->Set_DeviceTwinsProperties("1", "{\"sgc\":1}");

Cloud To Device

IoT Hub provides three options for device apps to expose functionality to a back-end app:

1. Direct methods for communications that require immediate confirmation of the result. Direct methods are often
used for interactive control of devices such as turning on a fan.

oClient->Subscribe_DirectMethod;

You can respond to public methods, using following method.

COMPONENTS

628

•
•
•
•
•

•
•
•

oClient->RespondPublicMethod(RequestId, Status, "Your Response", azuIoTQoS1);

2. Twin's desired properties for long-running commands intended to put the device into a certain desired state.
 For example, set the telemetry send interval to 30 minutes. You can get Properties using following method.

oClient->Get_DeviceTwinsProperties("1");

3. Cloud-to-device messages for one-way notifications to the device app. To get messages, first you must sub
scribe.

oClient->Subscribe_CloudToDevice;

Messages are received OnMQTTPublish event.

void AzureIoTMQTTPublish(TsgcWSConnection *Connection, string aTopic, string aText)

{

 DoLog("Received Message: " + aTopic + " " + aText);

}

Upload Files

IoT hub facilitates file uploads from connected devices by providing them with shared access signature (SAS) URIs
or X509 certificates.

If you select SAS, you must set the following properties:

Azure.IoTHub: example youriothub.azure-devices.net
Azure.DeviceId: example: myDevice
SAS.SecretKey: example: Yj7RRPnkSDTv+UCFLgwIP/FrbDymZv4qVAIoTLHUFR8=
SAS.KeyName: example: iothubowner
SAS.Enabled: the value must be set to true.

If you select X509 certificates, you must set the following properties:

Certificate.CertFile: the path to your PEM certificate.
Certificate.KeyFile: the path to your PEM key file.
Certificate.Enabled: the value must set to true.

Use the method UploadFile to upload a file to the Azure Servers.

void UploadFileToAzure()

{

 TOpenDialog* oDialog = new TOpenDialog(NULL);

 try

 {

 if (oDialog->Execute())

 {

 AnsiString fileName = oDialog->FileName;

 AzureIoT::UploadFile(fileName.c_str());

 }

 }

 __finally

 {

 oDialog->Free();

 }

}

COMPONENTS

629

Device Provisioning Service

Azure IoT allows to register devices from code using DPS. Currently, the library supports registering a device pass
ing the Scope Id and Registration Id as parameters.

TsgcIoTAzure_MQTT_Client* oClient = new TsgcIoTAzure_MQTT_Client(NULL);

try

{

 oClient->Certificate->CertFile = L"cert.pem";

 oClient->Certificate->KeyFile = L"key.pem";

 oClient->Certificate->Enabled = true;

 TsgcIoT_Azure_OperationRegistrationState* oResponse = new TsgcIoT_Azure_OperationRegistrationState();

 try

 {

 if (oClient->ProvisioningDeviceClient_Register(L"scope_id", L"registration_id", oResponse))

 ShowMessage(L"#Provisioning Register OK: " + oResponse->Status);

 else

 ShowMessage(L"#Provisioning Register Error: " + oResponse->Status);

 }

 __finally

 {

 delete oResponse;

 }

}

__finally

{

 delete oClient;

}

Azure IoT Explorer

You can use the application Azure IoT Explorer to interact with devices connected to your IoT Hub, you can see
the telemetry messages received, the devices registered... the application is free and can be downloaded from:

https://github.com/Azure/azure-iot-explorer/releases

https://github.com/Azure/azure-iot-explorer/releases

COMPONENTS

630

•

•
•
•

•

•

•

HTTP
HTTP protocol allows to fetch resources from servers like images, html documents...it's a slicent-server protocol
which means that client request to server which resources need.

When a client wants connect to a server, follows next steps:

1. Open a new TCP connection
2. Sends a message to server with data requested

GET / HTTP/1.1

Host: server.com

Accept-Language: en-us

3. Read response sent by server

HTTP/1.1 200 OK

Server: Apache

Content-Length: 120

Content-Type: text/html

...

Components

HTTP/2: HTTP/2 (or h2) is a binary protocol that brings push, multiplexing streams and frame control to the
web.
HTTP/1 Client: non-visual component that inherits from TIdHTTP client component.
OAuth2: OAuth2 allows third-party applications to receive a limited access to an HTTP service
JWT: JWT allows creating data with optional signature and/or encryption whose Payloads holds JSON that
asserts some number of claims.
Amazon SQS: is a fully managed message queues for microservices, distributed systems, and serverless
applications.
Google Cloud Pub/Sub: provides messaging between applications and is designed to provide reliable,
many-to-many, asynchronous messaging between applications.
Google Calendar: allows to use Google Calendar API V3: get Calendars, events, synchronize with your
own calendar...

COMPONENTS

631

•
•
•
•
•

•

•

•

•

•

HTTP/2
HTTP/2 is an evolution of the HTTP 1.1 protocol, basically tries to be more efficient using networks. The semantics
are the same, so it's designed to be compatible with old protocols.

HTTP 1.1 Limitations

HTTP 1.1 is limited to process one request per connection, so usually clients use more than one connection to re
quest files to servers. But this arise a problem, because when there are too many open TCP connections, there is a
race between clients to use the server resources and performance is lower and lower as much clients connect to
servers.

Main features

HTTP/2 is a binary protocol (remember that HTTP 1.1 is a text protocol).
HTTTP/2 works over TLS and ALPN.
It's multiplexed (allows to send more than one request over a single TCP Conenction).
Server can push responses to clients.
Reduces Round Trip Times, so clients can load faster.

HTTP/2 introduces other improvements, more details: RFC7540.

HTTP/2 requires our custom Indy version because requires ALPN protocol.

Components

TsgcHTTP2Client: client component that fully supports HTTP/2 protocol (sgcWebSockets 100% Pascal
code, without external libraries).
TsgcWebSocketHTTPServer: server component that fully supports HTTP/2 protocol (sgcWebSockets
100% Pascal code, without external libraries). By default HTTP/2 is disabled, you can enable using
HTTPOptions property and set Enable = true.
TsgcWebSocketServer_HTTPAPI: server component that supports HTTP/2 protocol (Microsoft implemen
tation and Requires Windows 2016+ or Windows 10+).
DataSnap Servers: datasnap server can support HTTP/2 protocol too.

APIs

Apple Push Notifications: push user-facing notifications to the user's device from a server provider.

https://tools.ietf.org/html/rfc7540

COMPONENTS

632

•
•
•
•
•
•

•
•
•
•
•

•
•
•

•
•
•
•

TsgcHTTP2Client
TsgcHTTP2Client implements Client HTTP/2 Component and can connect to a HTTP/2 Servers. Follow the next
steps to configure this component:

1. Create a new instance of TsgcHTTP2Client component.

2. Send the request to server and process the response using OnHTTP2Response event. example:

TsgcHTTP2Client oClient = new TsgcHTTP2Client();

oClient->OnHTTP2Response = OnHTTP2ResponseEvent();

oClient->Get("https://www.google.com");

void OnHTTP2ResponseEvent(TObject *Sender; const

 TsgcHTTP2ConnectionClient *Connection; const TsgcHTTP2RequestProperty *Request;

 const TsgcHTTP2ResponseProperty *Response)

{

 ShowMessage(Response->DataString);

}

Most common uses

Requests
Request HTTP/2 Method
HTTP/2 Server Push
Download File
HTTP/2 Partial Responses
HTTP/2 Headers

Connection

Client Close Connection
Client Keep Connection Active
HTTP/2 Reason Disconnection
Client Pending Requests

Authentication

Client Authentication
HTTP/2 and OAuth2

Classes

TsgcHTTP2ConnectionClient
TsgcHTTP2RequestProperty
TsgcHTTP2ResponseProperty

Methods

The following HTTP methods are supported:

 GET: The GET method requests a representation of the specified resource. Requests using GET should
only retrieve data.

 HEAD: The HEAD method asks for a response identical to that of a GET request, but without the re
sponse body.

 POST: The POST method is used to submit an entity to the specified resource, often causing a change in
state or side effects on the server.

COMPONENTS

633

 PUT: The PUT method replaces all current representations of the target resource with the request pay
load.

 DELETE: The HEAD method asks for a response identical to that of a GET request, but without the re
sponse body.

 CONNECT: The CONNECT method establishes a tunnel to the server identified by the target resource.

 OPTIONS: The OPTIONS method is used to describe the communication options for the target resource.

 TRACE: The TRACE method performs a message loop-back test along the path to the target resource.

 PATCH: The PATCH method is used to apply partial modifications to a resource.

HTTP/2 client component also implement the following methods:

 Ping: sends a ping to a Server.

 Close: sends a message to server about connection will be closed.

 Disconnect: disconnects the socket connection.

Properties

 Authentication: allows to authenticate against OAuth2 before send an HTTP/2 request.
Token

OAuth: assign here a TsgcHTTP_OAuth_Client component to get OAuth2 credentials. Read more
about OAuth2.
JWT: assign here a TsgcHTTP_JWT_Client component to get JWT credentials. Read more about
JWT.

 Request: Specifies the header values to send to the HTTP/2 server.

 Settings: Specifies the header values to send to the HTTP/2 server.

EnablePush: by default enabled, this setting can be used to avoid server push content to client.

HeaderTableSize: Allows the sender to inform the remote endpoint of the maximum size of the header com
pression table used to decode header blocks, in octets. The encoder can select any size equal to or less
than this value by using signaling specific to the header compression format inside a header block. The ini
tial value is 4,096 octets.

InitialWindowSize: Indicates the sender’s initial window size (in octets) for stream-level flow control. The
initial value is 65,535 octets. This setting affects the window size of all streams.

MaxConcurrentStreams: Indicates the maximum number of concurrent streams that the sender will allow.
This limit is directional: it applies to the number of streams that the sender permits the receiver to create. Ini
tially, there is no limit to this value.

MaxFrameSize: Indicates the size of the largest frame payload that the sender is willing to receive, in
octets. The initial value is 16,384 octets.

MaxHeaderListSize: This advisory setting informs a peer of the maximum size of header list that the sender
is prepared to accept, in octets. The value is based on the uncompressed size of header fields, including the
length of the name and value in octets plus an overhead of 32 octets for each header field.

 FragmentedData: this property allows to configure how handle the fragments received.

h2fdOnlyBuffer: it's the default option, the response is dispatched only when has been received the latest
packet.

COMPONENTS

634

h2fdAll: the response is dispatched for every packet received (one or more) on the event
OnHTTP2ResponseFragment and on the event OnHTTP2Response when the latest packet has been re
ceived.

h2fdOnlyFragmented:: the response is only dispatched in the event OnHTTP2ResponseFragment for
every packet received (one response can be compound of 1 or multiple packets).

 Host: IP or DNS name of the server.

 HeartBeat: if enabled try to keeps alive HTTP/2 connection sending a ping every x seconds.

Interval: number of seconds between each ping.

 TCPKeepAlive: if enabled, uses keep-alive at TCP socket level, in Windows will enable SIO_KEEPALIVE_VALS
if supported and if not will use keepalive. By default is disabled. Read about Dropped Disconnections.

Time: if after X time socket doesn't sends anything, it will send a packet to keep-alive connection (value in
milliseconds).

Interval: after sends a keep-alive packet, if not received a response after interval, it will send another packet
(value in milliseconds).

 ConnectTimeout: max time in milliseconds before a connection is ready.

 ReadTimeout: max time in milliseconds to read messages.

 WriteTimeOut: max time in milliseconds sending data to other peer, 0 by default (only works under Windows
OS).

 Port: Port used to connect to the host.

 LogFile: if enabled save socket messages to a specified log file, useful for debugging. The access to log file is
not thread safe if it's accessed from several threads.

Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.

FileName: full path to the filename.

 NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

 Proxy: here you can define if you want to connect through a HTTP Proxy Server. If you need to connect to
SOCKS proxies, just enable SOCKS.Enable property too.

 WatchDog: if enabled, when an unexpected disconnection is detected, tries to reconnect to the server automati
cally.

Interval: seconds before reconnects.

Attempts: max number of reconnects, if zero, then unlimited.

 Throttle: used to limit the number of bits per second sent/received.

 TLS: enables a secure connection.

 TLSOptions: if TLS enabled, here you can customize some TLS properties.

COMPONENTS

635

ALPNProtocols: list of the ALPN protocols which will be sent to server.
RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica
tion is performed for the X.509 certificate.
Version: by default uses TLS 1.0, if server requires a higher TLS version, here can be selected.
IOHandler: select which library you will use to connection using TLS.

iohOpenSSL: uses OpenSSL library and is the default for Indy components. Requires to deploy
openssl libraries for win32/win64.
iohSChannel: uses Secure Channel which is a security protocol implemented by Microsoft for Win
dows, doesn't require to deploy openssl libraries. Only works in Windows 32/64 bits.

OpenSSL_Options: configuration of the openSSL libraries.
APIVersion: allows to define which OpenSSL API will be used.

oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

SChannel_Options: allows to use a certificate from Windows Certificate Store.
CertHash: is the certificate Hash. You can find the certificate Hash running a dir command in power
shell.
CipherList: here you can set which Ciphers will be used (separated by ":"). Example:
CALG_AES_256:CALG_AES_128
CertStoreName: the store name where is stored the certificate. Select one of below:

scsnMY (the default)
scsnCA
scsnRoot
scsnTrust

CertStorePath: the store path where is stored the certificate. Select one of below:
scspStoreCurrentUser (the default)
scspStoreLocalMachine

Events

 OnHTTP2Response

 This event is called when client receives a Response from Server. Access to Response object to get full informa
tion about Server Response.

 Response.Headers: HTTP/2 headers
 Response.Data: Raw body response.
 Response.DataString: body response as string.

COMPONENTS

636

 Response.DataUTF8: body response as UTF-8 string.

void OnHTTP2ResponseEvent(TObject *Sender; const TsgcHTTP2ConnectionClient *Connection;

 const TsgcHTTP2RequestProperty *Request; const TsgcHTTP2ResponseProperty *Response)

{

 ShowMessage(Response->Headers->Text + #13#10 + Response->DataString);

}

 OnHTTP2ResponseFragment

 This event is called when client receives a fragment response from Server, so means that this stream will receive
more updates.

 OnHTTP2Authorization

 In this event you can set the UserName and Password when Authentication is Basic, or the Token for OAuth2
Authentications.

 OnHTTP2BeforeRequest

 This event is called before client sends Headers Request to server. You can add or modify the headers before
are sent to HTTP/2 server.

 OnHTTP2Connect

 This event is called just after client connects successfully to server.

 OnHTTP2Disconnect

 This event is called when connection is closed.

 OnHTTP2Exception

 If there is any exception while client is connected to server, here you can catch the Exception.

 OnHTTP2GoAway

 This event is raised when client receives a GoAway message from server.

 OnHTTP2PendingRequests

 After a disconnection, if there are pending requests to be sent or received, here you can set if you want recon
nect and/or clear pending requests.

 OnHTTP2PushPromise

 When server sends a PushPromise to client, client can accept or not the PushPromise packets.

 OnHTTP2RSTStream

 When server resets a stream, this event is called.

COMPONENTS

637

COMPONENTS

638

TsgcHTTP2Client | Request HTTP/2 Method
HTTP/2 Client can work in blocking and non-blocking mode, internally the component works in a secondary thread
and requests are processed asynchronously, but you can call a request and wait till this request is completed.

Find below an example of how client can request an HTML page to a HTTP/2 Server and how can work in both
modes.

Asynchronous Mode

Get the following url: https://www.google.com and be notified when client receives the full response. After you call
GETASYNC method, the process continues and OnHTTP2Response event is called when response is received.

TsgcHTTP2Client oClient = new TsgcHTTP2Client();

oClient->OnHTTP2Response = OnHTTP2ResponseEvent;

oClient->GetAsync("https://www.gooogle.com");

void OnHTTP2ResponseEvent(TObject *Sender; const TsgcHTTP2ConnectionClient *Connection;

 const TsgcHTTP2RequestProperty *Request; const TsgcHTTP2ResponseProperty *Response)

{

 ShowMessage(Response->Headers->Text + #13#10 + Response->DataString);

}

Blocking Mode

Get the following url: https://www.google.com and wait till client receives the full response. After you call GET
method, the process waits till response is received or time out is reached.
You can access to the Raw Response data, using Response property of HTTP/2 client. Here you can access to
Raw Headers, Status response code, Charset and more.

sgcHTTP2Client oClient = new TsgcHTTP2Client();

vResponse = oClient->Get("https://www.gooogle.com");

if oClient->Response->Status = 200 then

 ShowMessage("Response from server: " + vResponse)

else

 ShowMessage("Response Code: " + IntToStr(oClient.Response.Status));

COMPONENTS

639

Requests | HTTP/2 Server Push
Server Push is the ability of the server to send multiple responses for a single client request. That is, in addition to
the response to the original request, the server can push additional resources to the client, without the client having
to request each one explicitly.

Every time server sends to client a PushPromise message, OnHTTP2PushPromise event is called. When client re
ceives a PushPromise, means that server will send in the next packets this resource, so client can accepts or not
this.

TsgcHTTP2Client oClient = new TsgcHTTP2Client();

oClient->OnHTTP2PushPromise = OnHTTP2PushPromiseEvent;

oClient->Get("https://http2.golang.org/serverpush");

...

void OnHTTP2PushPromiseEvent(TObject *Sender; const TsgcHTTP2ConnectionClient *Connection;

 const TsgcHTTP2_Frame_PushPromise *PushPromise; ref boolean Cancel)

{

 if (PushPromise->URL == "/serverpush/static/godocs.js")

 {

 Cancel = true;

 }

 else

 {

 Cancel = false;

 }

}

COMPONENTS

640

TsgcHTTP2Client | HTTP/2 Download File
When client request a file to server, use OnHTTP2Response event to load the stream response.

TsgcHTTP2Client *oClient = new TsgcHTTP2Client();

oClient->OnHTTP2Response = OnHTTP2ResponseEvent;

oClient->Get("https://http2.golang.org/file/gopher.png");

...

void OnHTTP2ResponseEventEvent(TObject: *Sender; const TsgcHTTP2ConnectionClient *Connection;

 const TsgcHTTP2RequestProperty *Request; const TsgcHTTP2ResponseProperty *Response)

{

 TFileStream oStream = new TFileStream("file", fmOpenWrite or fmCreate);

 try

 {

 oStream->CopyFrom(Response->Data, Response->Data->Size);

 }

 __finally

 {

 oStream.Free;

 }

}

COMPONENTS

641

TsgcHTTP2Client | HTTP/2 Partial Respons
es
Usually when you send an HTTP Request, server sends a response with the file requested, sometimes, instead of
send a single response, server can send multiple response like a stream, in these cases you can use
OnHTTP2ResponseFragment event to capture these responses and show to user.

Example: send a request to https://http2.golang.org/clockstream and server will send a stream response every
second.

TsgcHTTP2Client oClient = new TsgcHTTP2Client();

oClient->OnHTTP2ResponseFragment = OnHTTP2ResponseFragmentEvent;

oClient->Get("https://http2.golang.org/clockstream");

...

void OnHTTP2ResponseFragmentEvent(TObject *Sender; const TsgcHTTP2ConnectionClient *Connection;

 const TsgcHTTP2RequestProperty *Request; const TsgcHTTP2ResponseFragmentProperty *Fragment)

{

 ShowMessage(Fragment->DataString);

}

COMPONENTS

642

TsgcHTTP2Client | HTTP/2 Headers
TsgcHTTP2Client allows to customize Headers sent to server when client connects
Example: if you need to add this HTTP Header "Client: sgcWebSockets"

void OnHTTP2BeforeRequestt(TObject *Sender; const TsgcHTTP2ConnectionClient *Connection,

 ref TStringList *Headers)

{

 Headers->Add("Client: sgcWebSockets");

}

You can use Request.CustomHeaders to add your customized headers too.

COMPONENTS

643

•
•
•
•
•
•
•
•
•
•
•
•
•
•

TsgcHTTP2Client | Client Close Connection
Connection can be closed using Active property or using Close/Disconnect methods.

Active property

When connection is active and you set Active := False, the connection will be closed inmediately without sending
any message to server about the disconnection.

Disconnect

You can use Disconnect method (from TsgcHTTP2Client or TsgcHTTP2ConnectionClient) to disconnect the socket.

Close

This method, sends a message to server informing that connection will be closed and you can send optionally
some info about the reason of the disconnection. Is a clean mode of close a HTTP/2 connection.
Close method can be called from TsgcHTTP2Client or TsgcHTTP2ConnectionClient objects.

The following errors reasons can be send:

 no error
 protocol error
 internal error
 flow control error
 settings timeout
 stream closed
 frame size error
 refused stream
 cancel
 compression error
 connect error
 enhance your calm
 inadequate security
 required

COMPONENTS

644

TsgcHTTP2Client | Client Keep Connection
Active
Once your client has connected to server, sometimes connection can be closed due to poor signal, connection er
rors... there are 2 properties which helps to keep connection active.

HeartBeat

HeartBeat property allows to send a Ping every X seconds to maintain connection alive. Some servers, close
TCP connections if there is no data exchanged between peers. HeartBeat solves this problem, sending a ping
every a specific interval. Usually this is enough to maintain a connection active.

Example: send a ping every 30 seconds

oClient = new TsgcHTTP2Client();

oClient->HeartBeat->Interval := 30;

oClient->HeartBeat->Enabled := true;

oClient->Active = true;

WatchDog

If WatchDog is enabled, when client detects a disconnection, WatchDog try to reconnect again every X seconds
until connection is active again.

Example: reconnect every 10 seconds after a disconnection with unlimited attempts.

oClient = new TsgcHTTP2Client();

oClient->WatchDog->Interval := 10;

oClient->WatchDog->Attempts := 0;

oClient->WatchDog->Enabled := true;

oClient->Active = true;

COMPONENTS

645

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

TsgcHTTP2Client | HTTP/2 Reason Discon
nection
HTTP/2 Server can disconnect a client for several reasons, when server wants inform to client the reason why is
disconnecting, it sends a GoAway message to client with information about disconnection.

Use OnHTTP2GoAway event to catch the reason why server has disconnected (if client wants to close a connec
tion, can use the method close to send the reason why is closing the connection).

TsgcHTTP2GoAwayProperty Object contains the information about disconnection

LastStreamId: is the last stream processed by server.
ErrorCode: integer which identifies the error code.
ErrorDescription: description of the error, one of the following:

 no error
 protocol error
 internal error
 flow control error
 settings timeout
 stream closed
 frame size error
 refused stream
 cancel
 compression error
 connect error
 enhance your calm
 inadequate security
 required

AdditionalDebugData: optional string which offers more information about disconnection.

COMPONENTS

646

TsgcHTTP2Client | Client Pending Requests
When client sends several requests, these are processed in a secondary thread, sometimes connection can be
closed for any reason, and there are still requests pending. Use OnHTTP2PendingRequests event to handle these
pending requests. This event is called when client detects a disconnection and there are still pending requests.
This event has 2 parameters:

1. Reconnect: by default disable, if you set to true, client will reconnect automatically.
2. Clear: by default enabled, if you set to false, when client connects again, it will try to resend pending requests to
server.

COMPONENTS

647

TsgcHTTP2Client | Client Authentication
HTTP/2 client supports 2 authentication types: Basic Authentication and OAuth2 Authentication.

Use OnHTTP2Authorization event to handle both types of authentication.

Basic Authentication

If server returns a header requesting Basic Authentication, set OnHTTP2Auithorization the username and pass
word.

TsgcHTTP2Client oClient = new TsgcHTTP2Client()

oClient->OnHTTP2Authorization = OnHTTP2AuthorizationEvent;

...

void OnHTTP2AuthorizationEvent(TObject: *Sender; const TsgcHTTP2ConnectionClient *Connection; const string AuthType;

{

 if (AuthType == "Basic")

 {

 UserName = "user";

 Password = "secret";

 }

}

Bearer Token

If server returns a header requesting Bearer Token Authentication, set OnHTTP2Authorization the token.

TsgcHTTP2Client oClient = new TsgcHTTP2Client()

oClient->OnHTTP2Authorization = OnHTTP2AuthorizationEvent;

...

void OnHTTP2AuthorizationEvent(TObject: *Sender; const TsgcHTTP2ConnectionClient *Connection; const string AuthType;

{

 if (AuthType == "Bearer")

 {

 aToken = "bearer token";

 }

}

Bearer value from Third-party

If you already know the Bearer Value, because you have obtained using another method, you can pass the Bearer
value as an HTTP header using the following properties of the request, just set before calling any HTTP Request
method:

TsgcHTTP2Client.Request.BearerAuthentication

 = true

TsgcHTTP2Client.Request.BearerToken = "< value of the token >"

OAuth2

Read the following article if you want to use our OAuth2 component with HTTP/2 client.

COMPONENTS

648

TsgcHTTP2Client | HTTP/2 and OAuth2
OAuth2 is a common authorization method uses by several companies like Google. When you want authenticate
against google servers to use any of their APIs, usually requires an Authentication using OAuth2.

sgcWebSockets supports OAuth2 under HTTP/2 client, there is a property called Authentication.Token.OAuth
where you must assign of TsgcHTTP_OAuth2.

How connect to GMail Google API

In order to connect to Google APIs, we will need to create an instance of TsgcHTTP_OAuth2 and fill the following
data:

TsgcHTTP_OAuth1.AuthorizationServerOptions.AuthURL := 'https://accounts.google.com/o/oauth2/auth';

TsgcHTTP_OAuth1.AuthorizationServerOptions.TokenURL := 'https://accounts.google.com/o/oauth2/token';

TsgcHTTP_OAuth1.LocalServerOptions.IP := '127.0.0.1';

TsgcHTTP_OAuth1.LocalServerOptions.Port := 8080;

TsgcHTTP_OAuth1.OAuth2Options.ClientId := 'your client id';

TsgcHTTP_OAuth1.OAuth2Options.ClientSecret := 'your client secret';

After fill the OAuth2 client component, create a new instance of TsgcHTTP2Client and Assign the OAuth2 compo
nent to the HTTP/2 client.

 TsgcHTTP2Client1.Authentication.Token.OAuth := TsgcHTTP_OAuth1;

Finally, do a request to get a list of messages of account yourname@gmail.com

oStream := TStringStream.Create('');

Try

 TsgcHTTP2Client1.Get('https://gmail.googleapis.com/gmail/v1/users/yourname@gmail.com/messages', oStream);

 ShowMessage(oStream.DataString);

Finally

 oStream.Free;

End;

COMPONENTS

649

•
•
•
•

TsgcHTTP2ConnectionClient
TsgcHTTP2ConnectionClient is a wrapper of client HTTP/2 connections, you can access to this object on Client
Events.

Methods

Ping: sends a ping to server to maintain connection alive.
Close: sends a message to server with information about why is disconnecting.
Disconnect: closes the connection without sending any informational message to then server.
HTTP/2 Methods:

 GET: The GET method requests a representation of the specified resource. Requests using GET should
only retrieve data.

 HEAD: The HEAD method asks for a response identical to that of a GET request, but without the re
sponse body.

 POST: The POST method is used to submit an entity to the specified resource, often causing a change in
state or side effects on the server.

 PUT: The PUT method replaces all current representations of the target resource with the request pay
load.

 DELETE: The HEAD method asks for a response identical to that of a GET request, but without the re
sponse body.

 CONNECT: The CONNECT method establishes a tunnel to the server identified by the target resource.

 OPTIONS: The OPTIONS method is used to describe the communication options for the target resource.

 TRACE: The TRACE method performs a message loop-back test along the path to the target resource.

 PATCH: The PATCH method is used to apply partial modifications to a resource.

COMPONENTS

650

•
•
•

TsgcHTTP2RequestProperty
This object is received as an argument OnHTTP2Response event, it allows to know the original request of the re
sponse send by the server.

Properties

Method: identifies the HTTP/2 method (GET, POST...)
URL: is the URL requested.
Request: contains the fields of the request.

COMPONENTS

651

•
•
•
•
•

TsgcHTTP2ResponseProperty
This object is received as an argument OnHTTP2Response event, it allows to know the response sent by the serv
er to the client.

Properties

Headers: contains a list of raw headers received from server.
Data: contains the raw body sent by the server as response to request.
DataString: is the conversion to string of Data.
DataUTF8: is the conversion to UTF8 string of Data.
PushPromise: if assigned, contains the PushPromise object sent by the server to client (means that this re
sponse object has not been requested by client).

COMPONENTS

652

•
•
•
•

•
•
•

•
•

HTTP2 | Apple Push Notifications
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server

Apple allow to send push notifications to apple devices using the Apple Push Notification Service (APNs).

When you want to send a notification to a device, the provider must send a HTTP/2 POST to APNs including the
following information:

JSON Payload with the information you want to send.
A Device Token that identifies the user's device.
Some HTTP Headers about how deliver the notification.
A SSL Certificate or a JWT Token to Authenticate your request against APNs

What's required to Send Notifications

In order to send notifications to your device using Rad Studio, you must follow the next steps

Register your APP with APNs
Generate a Remote Notification
Sending Notification Requests to APNs

Token-Based Connection to APNs
Certificate-Based Connection to APNs

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server

COMPONENTS

653

APN | Generate a Remote Notification APNs
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/
generating_a_remote_notification

The Apple Notifications use a JSON payload to send the notification object. The maximum size of the payload is
4096 bytes.

JSON Payload Samples

Simple alert message

{

 "aps":{

 "alert":"Alert from sgcWebSockets!"

 }

}

Alert with title and subttile.

{

 "aps" : {

 "alert" : {

 "title" : "Game Request",

 "subtitle" : "Five Card Draw"

 "body" : "Bob wants to play poker",

 },

 "category" : "GAME_INVITATION"

 },

 "gameID" : "12345678"

}

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/generating_a_remote_notification

COMPONENTS

654

•
•

APN | Sending Notification Requests to AP
Ns
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server

Send your remote notification payload and device token information to Apple Push Notification service (APNs).

How Connect to APNs

You must use HTTP/2 protocol and at least TLS 1.2 or later to establish a successful connection between your
Server Provider and one of the following servers:

Development Server: https://api.sandbox.push.apple
Production Server: https://api.push.apple

Sample Code

Create a new instance of TsgcHTTP2Client and call the method POST to send a notification to APNs.

TsgcHTTP2Client *oHTTP = new TsgcHTTP2Client();

try

{

 // ... requires authorization code

 TStringStream *oStream = new TStringStream.Create("{\"aps\":{\"alert\":\"Alert from sgcWebSockets!\"}}",

 TEncoding.UTF8);

 try

 {

 oHTTP->Post("https://api.push.apple/3/device/device_token", oStream);

 if (oHTTP->Response->Status == 200)

 {

 ShowMessage("Notification Sent Successfully");

 }

 else

 {

 ShowMessage("Notification error");

 }

 }

 __finally

 {

 oHTTP.Free();

 }

}

__finally

{

 oHTTP.Free();

}

To send notifications, you must establish either token-based or certificate-based trust with APNs using HTTP/2
protocol and TLS 1.2 or later.

Token-Based Connection to APNs
Certificate-Based Connection to APNs

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server

COMPONENTS

655

•

•
•

•

•

APNs Trusted | Token-Based Connection to
APNs
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/
establishing_a_token-based_connection_to_apns

Secure your communications with Apple Push Notification service (APNs) by using stateless authentication Tokens.

First you must obtain an Encryption Key and a Key ID from Apple Developer Account. Once a successful registra
tion, you will obtain a 10-Character string with the Key ID and an Authentication Token signing key as a .p8 file ex
tension.

You must use the sgcWebSockets JWT Client to generate a JWT using ES256 as algorithm. The token must not be
generated for every HTTP/2 request, the token must not be refreshed before 20 minutes and not after 60 minutes.

Configure JWT Client

Configure the JWT Client with the following values:

JWTOptions.Header.Algorithm: is the encryption algorithm you used to encrypt the token. APNs supports
only the ES256 algorithm.
JWTOptions.Header.kid: is the 10-character Key ID obtained from your developer account.
JWTOptions.Payload.iss: the value for which is the 10-character Team ID you use for developing your
company’s apps. Obtain this value from your developer account.
JWTOptions.Payload.iat: The "issued at" time, whose value indicates the time at which this JSON token
was generated. Specify the value as the number of seconds since Epoch, in UTC. The value must be no
more than one hour from the current time.
JWTOptions.RefreshTokenAfter: set the value in seconds to 40 minutes (60*40).

Using Token-Based connections, requires to send the apns-topic with the value of your app's bundle ID/app id (ex
ample: com.example.application).

TsgcHTTP2Client oHTTP = new TsgcHTTP2Client.Create();

oHTTP->TLSOptions->IOHandler = iohOpenSSL;

TsgcHTTP_JWT_Client oJWT = new TsgcHTTP_JWT_Client.Create();

oHTTP->Authentication->Token->JWT = oJWT;

oJWT->JWTOptions->Header->alg = jwtES256;

oJWT->JWTOptions->Header->kid = "apple key id";

oJWT->JWTOptions->Payload->iss = "issuer";

oJWT->JWTOptions->Payload->iat = StrToInt64(GetDateTimeUnix(Now, False));

oJWT->JWTOptions->Algorithms->ES->PrivateKey->LoadFromFile("AuthKey_**.p8");

oJWT->JWTOptions->RefreshTokenAfter = 60*40;

oHTTP->Request->CustomHeaders->Clear();

oHTTP->Request.CustomHeaders->Add("apns-topic: com.example.application");

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/establishing_a_token-based_connection_to_apns

COMPONENTS

656

•
•

Certificate-Based Connection to APNs
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/
establishing_a_certificate-based_connection_to_apns

You can secure your communications with Apple Push Notification service (APNs) using a certificate obtained from
Apple.

First enter in your developer account and create a new certificate for Apple Push Notification service

Once you have downloaded your certificate, the sgcWebSockets HTTP/2 client allows to use 2 security IOHandlers
(only for windows, for other personalities only openSSL is supported).

OpenSSL
SChannel (only for windows)

OpenSSL

If you use openSSL, you must deploy the openSSL libraries with your application. Before set the certificate with the
TsgcHTTP2Client, first this certificate must be converted to PEM format because openSSL doesn't allow to import
P12 certificates directly.

Use the following commands to convert a single P12 certificate to a certificate in PEM format and a private key file

create PEM certificate file

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/establishing_a_certificate-based_connection_to_apns

COMPONENTS

657

openssl pkcs12 -in INFILE.p12 -out OUTFILE.crt -nokeys

Create Private Key file

openssl pkcs12 -in INFILE.p12 -out OUTFILE.key -nodes -nocerts

Once you have your certificate and private key in PEM format, you can configure the TsgcHTTP2Client as follows.

TsgcHTTP2Client oHTTP = new TsgcHTTP2Client.Create();

oHTTP->TLSOptions->IOHandler = iohOpenSSL;

oHTTP->TLSOptions->CertFile = "certificate_file.pem";

oHTTP->TLSOptions->KeyFile = "private_key.pem";

oHTTP->TLSOptions->Password = "certificate password";

oHTTP->TLSOptions->Version = tls1_2;

SChannel

If you use SChannel there is no need to deploy any libraries and the certificate downloaded from Apple can be di
rectly imported without the need of a previous conversion to PEM format.

TsgcHTTP2Client oHTTP = new TsgcHTTP2Client.Create();

oHTTP->TLSOptions->IOHandler = iohSChannel;

oHTTP->TLSOptions->CertFile = "certificate_file.p12";

oHTTP->TLSOptions->Password = "certificate password";

oHTTP->TLSOptions->Version = tls1_2;

Errors

If you get the error "missing topic" most probably you are using an universal certificate (certificates that can be
used for push notifications, voip...) which requires to set the topic name with the value of your app's bundle ID/app
id (example: com.example.application). Just set the apns-topic header with the correct value in the Request proper
ty of the HTTP/2 client.

oHTTP->Request->CustomHeaders->Clear();

oHTTP->Request.CustomHeaders->Add("apns-topic: com.example.application");

COMPONENTS

658

HTTP/1
TsgcHTTP1Client is a non-visual component that inherits from TIdHTTP indy component and adds some new
properties.
This component is located in sgcHTTP unit.

TLSOptions

Allows to configure how connect to secure SSL/TLS servers using HTTP/1 protocol

ALPNProtocols: list of the ALPN protocols which will be sent to server.
RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica
tion is performed for the X.509 certificate.
Version: by default uses TLS 1.0, if server requires a higher TLS version, here can be selected.
Proxy: here you can define if you want to connect through a Proxy Server, you can connect to the following
proxy servers:

pxyHTTP: HTTP Proxy Server.
pxySocks4: SOCKS4 Proxy Server.
pxySocks4A: SOCKS4A Proxy Server.
pxySocks5: SOCKS5 Proxy Server.

IOHandler: select which library you will use to connection using TLS.
iohOpenSSL: uses OpenSSL library and is the default for Indy components. Requires to deploy
openssl libraries for win32/win64.
iohSChannel: uses Secure Channel which is a security protocol implemented by Microsoft for Win
dows, doesn't require to deploy openssl libraries. Only works in Windows 32/64 bits.

OpenSSL_Options: configuration of the openSSL libraries.
APIVersion: allows to define which OpenSSL API will be used.

oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

SChannel_Options: allows to use a certificate from Windows Certificate Store.
CertHash: is the certificate Hash. You can find the certificate Hash running a dir command in power
shell.
CipherList: here you can set which Ciphers will be used (separated by ":"). Example:
CALG_AES_256:CALG_AES_128
CertStoreName: the store name where is stored the certificate. Select one of below:

scsnMY (the default)

COMPONENTS

659

scsnCA
scsnRoot
scsnTrust

CertStorePath: the store path where is stored the certificate. Select one of below:
scspStoreCurrentUser (the default)
scspStoreLocalMachine

Log

If Log property is enabled it saves socket messages to a specified log file, useful for debugging.

LogOptions.FileName: full path to the filename.

Authentication

Allows to Authenticate using OAuth2 or JWT.

Examples

Request a GET method to HTTPs server and using TLS 1.2

TsgcHTTP1Client *oHTTP = new TsgcHTTP1Client()

try

{

 oHTTP->TLSOptions->Version = tls1_2;

 ShowMessage(oHTTP->Get("https://www.google.es"));

}

__finally

}

 oHTTP->Free();

}

Request a GET method to HTTPs server using openSSL 1.1 and TLS 1.3

TsgcHTTP1Client *oHTTP = new TsgcHTTP1Client()

try

{

 oHTTP->TLSOptions->OpenSSL_Options->APIVersion = oslAPI_1_1;

 oHTTP->TLSOptions->Version = tls1_2;

 ShowMessage(oHTTP->Get("https://www.google.es"));

}

__finally

}

 oHTTP->Free();

}

Request a GET method to HTTPs server using SChannel for Windows.

TsgcHTTP1Client *oHTTP = new TsgcHTTP1Client()

try

{

 oHTTP->TLSOptions->IOHandler = iohSChannel;

 oHTTP->TLSOptions->Version = tls1_2;

 ShowMessage(oHTTP->Get("https://www.google.es"));

}

__finally

}

 oHTTP->Free();

}

Request SSE method to get data events

TsgcHTTP1Client *oHTTP = new TsgcHTTP1Client();

oHTTP->OnSSEMessage() = OnSSEMessageEvent();

COMPONENTS

660

oHTTP->GetSSE("https://www.yoursite.com/sse");

void OnSSEMessageEvent(TObject *Sender, const string aMessage, ref bool Cancel)

{

 ShowMessage(aMessage);

}

COMPONENTS

661

•
•

•
•

•

•

•

HTTP | OAuth2
OAuth2 allows third-party applications to receive a limited access to an HTTP service which is either on behalf of a
resource owner or by allowing a third-party application obtain access on its own behalf. Thanks to OAuth2, service
providers and consumer applications can interact with each other in a secure way.

In OAuth2, there are 4 roles:

Resource Owner: the user.
Resource Server: the server that hosts the protected resources and provides access to it based on the ac
cess token.
Client: the external application that seeks permission.
Authorization Server: issues the access token after having authenticated the user.

Components

TsgcHTTP_OAuth2_Client: is a client with support for OAuth2, so it can connect to OAuth2 servers to re
quest an authentication like Google, Facebook...
TsgcHTTP_OAuth2_Server: is the server implementation of OAuth2 protocol, allows to protect the re
sources of the Server.
TsgcHTTP_OAuth2_Server_Provider: allows to implement external OAuth2 Providers (like Azure AD,
Google, Facebook...) in your Server, so the user can login using the Azure, Google, Facebook... user cre
dentials.

COMPONENTS

662

OAuth2 | TsgcHTTP_OAuth2_Client
This component allows to handle flow between client and the other roles, basically, when you set Active := True,
opens a new Web Browser and requests user grant authorization, if successful, authorization server sends a token
to application which is processed and with this token, client can connect to resource server. This component, starts
a simple HTTP server which handles authorization server responses and uses an HTTP client to request Access
Tokens.

GrantType

Client supports 2 types of Authorization:

auth2Code: It's used to perform authentication and authorization in the majority of application types, including sin
gle page applications, web applications, and natively installed applications. The flow enables apps to securely ac
quire access_tokens that can be used to access resources secured, as well as refresh tokens to get additional
access_tokens, and ID tokens for the signed in user.

auth2ClientCredentials: This type of grant is commonly used for server-to-server interactions that must run in the
background, without immediate interaction with a user. These types of applications are often referred to as dae
mons or service accounts.

COMPONENTS

663

•
•
•
•

•

•

◦
◦

•
•
•

•
•
•
•

LocalServerOptions

When a client needs a new Access Token, automatically starts an HTTP server to process response from Autho
rization server. This server is transparent for user and usually works in localhost. By default uses port 8080 but you
can change if needed.

IP: IP server listening, example: 127.0.0.1
Port: by default 8080
RedirectURL: (optional) allows to customized redirect url, example: http://localhost:8080/oauth/.
SSL: enable this property if local server runs on a secure port (*only supported by Professional and Enter
prise Editions).
SSLOptions: allows to customize the SSL properties of server (*only supported by Professional and Enter
prise Editions).
LogOptions: allows to save the log of the Requests/Responses received and sent by the HTTP Internal
Server (*Only for Professional and Enterprise Editions).

Enabled: set to True to enable the log to file.
FileName: set the file name to store the log file.

AuthorizationServerOptions

Here you must set URL for Authorization and Acces Token, usually these are provided in API specification. Scope
is a list of all scopes requested by client. Example:

AuthURL: https://accounts.google.com/o/oauth2/auth
TokenURL: https://accounts.google.com/o/oauth2/token
Scope: https://mail.google.com/

OAuth2Options

ClientId is a mandatory field which informs server which is the identification of client. Check your API specification
to know how get a ClientId. The same applies for client secret.
Sometimes, server requires a user and password to connect using Basic Authentication, if this is the case, you can
setup this in Username/Password fields. Example:

ClientId: 180803918307-eqjtm20gqfhcs6gjklbbrreng022mqqc.apps.googleusercontent.com
ClientSecret: _by1iYYrvVHxC2Z8TbtNEYJN
Username:
Password:

HTTPClientOptions

COMPONENTS

664

Here you can customize the Client Options when connects to HTTP Server to request a new token.

 TLSOptions: if TLS enabled, here you can customize some TLS properties.

ALPNProtocols: list of the ALPN protocols which will be sent to server.
RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica
tion is performed for the X.509 certificate.
Version: by default uses TLS 1.0, if server requires a higher TLS version, here can be selected.
IOHandler: select which library you will use to connection using TLS.

iohOpenSSL: uses OpenSSL library and is the default for Indy components. Requires to deploy
openssl libraries for win32/win64.
iohSChannel: uses Secure Channel which is a security protocol implemented by Microsoft for Win
dows, doesn't require to deploy openssl libraries. Only works in Windows 32/64 bits.

OpenSSL_Options: allows to define which OpenSSL API will be used.
APIVersion: allows to define which OpenSSL API will be used.

oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

SChannel_Options: allows to use a certificate from Windows Certificate Store.
CertHash: is the certificate Hash. You can find the certificate Hash running a dir command in power
shell.
CertStoreName: the store name where is stored the certificate. Select one of below:

scsnMY (the default)
scsnCA
scsnRoot
scsnTrust

CertStorePath: the store path where is stored the certificate. Select one of below:
scspStoreCurrentUser (the default)
scspStoreLocalMachine

 LogOptions: if a filename is set, it will save a log of HTTP requests/responses of the HTTP client

OnBeforeAuthorizeCode

This is the first event, it's called before client opens a new Web Browser session. URL parameter can be modified if
needed (usually not necessary).

COMPONENTS

665

void OnOAuth2BeforeAuthorizeCode(TObject *Sender, ref string URL, ref bool Handled)

{

 DoLog("BeforeAuthorizeCode: " + URL);

}

OnAfterAuthorizeCode

After a successful Authorization, server redirects the response to internal HTTP server, this response informs to
client about Authorization code (which will be use later to get Access Token), state, scope...

void OnOAuth2AfterAuthorizeCode(TObject *Sender, const string Code, const string State, const string Scope,

 const string RawParams, ref bool Handled)

{

 DoLog("AfterAuthorizeCode: " + Code);

}

OnErrorAuthorizeCode

If there is an error, this event will be raised with information about error.

void OnOAuth2ErrorAuthorizeCode(TObject *Sender, const string Error, const string Error_Description,

 const string Error_URI, const string State, const string RawParams)

{

 DoLog("ErrorAuthorizeCode: " + Error + " " + Error_Description);

}

OnBeforeAccessToken

After get an Authorization Code, client connects to Authorization Server to request a new Access Token. Before
client connects, this event is called where you can modify URL and parameters (usually not needed).

void OnOAuth2BeforeAccessToken(TObject *Sender, ref string URL, ref string Parameters,

 ref bool Handled);

{

 DoLog("BeforeAccesToken: " + URL + " " + Parameters);

}

OnAfterAccessToken

If server accepts client requests, it releases a new Access Token which will be used by client to get access to re
sources server.

void OnOAuth2AfterAccessToken(TObject *Sender, const string Access_Token, const string Token_Type,

 const string Expires_In, const string Refresh_Token, const string Scope, const string RawParams, ref bool Handled)

{

 DoLog("AfterAccessToken: " + Access_Token + " " + Refresh_Token + " " + Expires_In);

}

OnErrorAccessToken

If there is an error, this event will be raised with information about error.

void OnOAuth2ErrorAccessToken(TObject *Sender, const string Error, const string Error_Description,

 const string Error_URI, const string RawParams)

{

 DoLog("ErrorAccessToken: " + Error + " " + Error_Description);

}

COMPONENTS

666

OnBeforeRefreshToken

Access token expire after some certain time. If Authorization server releases a refresh token plus access token,
client can connect after token has expires with a refresh token to request a new access token without the need of
user Authenticates again with own credentials. This event is called before client requests a new access token.

void ONOAuth2BeforeRefreshToken(TObject *Sender, ref string URL, ref string Parameters, ref bool Handled)

{

 DoLog("BeforeRefreshToken: " + URL + " " + Parameters);

}

OnAfterRefreshToken

If server accepts client requests, it releases a new Access Token which will be used by client to get access to re
sources server.

void OnOAuth2AfterRefreshToken(TObject *Sender, const string Access_Token, const string Token_Type,

 const string Expires_In, const string Refresh_Token, const string Scope, const string RawParams, ref bool Handled)

{

 DoLog("AfterRefreshToken: " + Access_Token + " " + Refresh_Token + " " + Expires_In)

}

OnErrorRefreshToken

If there is an error, this event will be raised with information about error.

void OnOAuth2ErrorRefreshToken(TObject *Sender, const string Error, const string Error_Description,

 const string Error_URI, const string RawParams)

{

 DoLog("ErrorRefreshToken: " + Error + " " + Error_Description);

}

OnHTTPResponse

This event is called before HTTP response is sent after a successful Access Token.

void OnOAuth2HTTPResponse(TObject *Sender, ref int Code, ref string Text, ref bool Handled)

{

 Code = 200;

 Text = "Successful Authorization";

}

OAuth2 Code Example

Example of use to connect to Google Gmail API using OAuth2.

oAuth2 = new TsgcHTTP2_OAuth2.Create();

oAuth2->LocalServerOptions->Host = "127.0.0.1";

oAuth2->LocalServerOptions->Port = 8080;

oAuth2->AuthorizationServerOptions->AuthURL = "https://accounts.google.com/o/oauth2/auth";

oAuth2->AuthorizationServerOptions->Scope->Add("https://mail.google.com/");

oAuth2->AuthorizationServerOptions->TokenURL = "https://accounts.google.com/o/oauth2/token";

oAuth2->OAuth2Options->ClientId = "180803918357-eqjtn20gqfhcs6gjkebbrrenh022mqqc.apps.googleusercontent.com";

oAuth2->OAuth2Options->ClientSecret = "_by0iYYrvVHxC2Z8TbtNEYQN";

void OnOAuth2AfterAccessToken(TObject *Sender, const string Access_Token, const string Token_Type,

 const string Expires_In, const string Refresh_Token, const string Scope, const string RawParams, ref bool Handled)

{

// write your code here

}

oAuth2->OnAfterAccessToken = OnOAuth2AfterAccessToken;

oAuth2->Start();

COMPONENTS

667

Using TWebBrowser

You can use a TWebBrowser (if the webpage supports it) instead of regular WebBrowser like Chrome, Firefox or
Edge.
Use the event OnBeforeAuthorizeCode to avoid opening a new WebBrowser session and use a TWebBrowser.

void OnBeforeAuthorizeCode(TObject *Sender, ref string URL, ref bool Handled)

{

 Handled = true;

 WebBrowser1->Navigate(URL);

}

COMPONENTS

668

OAuth2 | TsgcHTTP_OAuth2_Client_Google
This component lets you login with your Google Account in an easy way.

Configuration

The module requires first configure your OAuth2 Application in your Google Account, once are configure just
add a couple of lines in your application to allow users login with any Google Account.

The Local Server used to read the response from Google, by default listens on IP Address 127.0.0.1 and port
8080. So you must configure the CallBack URL in the Google Application. Of course, you can modify the IP Ad
dress and port.

Once configured the OAuth2 Application in the Google Account, just create an instance
of TsgcHTTP_OAuth2_Client_Google and call the method Authenticate passing as parameters
the Client_Id and Client_Secret. This method waits (by default up to 60 seconds) till the user has login success
fully. Returns an object where you can check if the user has authenticated or not, the Name, Id... and more data
from the user profile.

Example

void GoogleSignIn()

{

 TsgcHTTP_OAuth2_Client_Google *oClient = new TsgcHTTP_OAuth2_Client_Google.Create(this);

 Try

 {

 TsgcOAuth2_Google_Data *oData = oClient.Authenticate("client_id", "client_secret");

 if oData->Authenticated() then

 ShowMessage(oData->UserProfile->_Name);

 }

 __Finally

 oClient->Free();

 }

}

COMPONENTS

669

TsgcHTTP_OAuth2_Client_Microsoft
This component lets you login with your Microsoft Account in an easy way.

Configuration

The module requires first configure your OAuth2 Application in your Microsoft Account, once are configure just
add a couple of lines in your application to allow users login with any Microsoft Account.

The Local Server used to read the response from Google, by default listens on IP Address 127.0.0.1 and port
8080 and uses SSL. So you must configure the CallBack URL as https://localhost:8080 (Microsoft only allows lo
calhost as a local IP Address) in the Microsoft Application. Of course, you can modify the IP Address and port.

Once configured the OAuth2 Application in the Microsoft Account, just create an instance
of TsgcHTTP_OAuth2_Client_Microsoft and call the method Authenticate passing as parameters the TenantId, Client_Id
This method waits (by default up to 60 seconds) till the user has login successfully. Returns an object where you
can check if the user has authenticated or not, the Name, Id... and more data from the user profile.

Example

void GoogleSignIn()

{

 TsgcHTTPComponentClient_OAuth2_Microsoft *oClient = new TsgcHTTPComponentClient_OAuth2_Microsoft.Create(this);

 Try

 {

 TsgcOAuth2_Microsoft_Data *oData = oClient.Authenticate("tenant_id", "client_id", "client_secret");

 if oData->Authenticated() then

 ShowMessage(oData->UserProfile->DisplayName);

 }

 __Finally

 oClient->Free();

 }

}

COMPONENTS

670

•
•
•
•

•

•

OAuth2 | TsgcHTTP_OAuth2_Server
This component provides the OAuth2 protocol implementation in Server Side Components.

The server components have a property called Authorization.OAuth.OAuth2 where you can assign an instance of
TsgcHTTP_OAuth2_Server, so if Authentication is enabled and OAuh2 property is attached to OAuth2 Server Com
ponent, the WebSocket and HTTP Requests require a Bearer Token to be processed, if not the connection will be
closed automatically.

TsgcHTTP_OAuth2_Server *OAuth2 = new TsgcHTTP_OAuth2_Server(this);

Server->Authentication->Enabled = true;

Server->Authentication->OAuth->OAuth2 = OAuth2;

EndPoints

By default, the component is configured with the following endpoints to handle Authorization and Token request

Authorization: /sgc/oauth2/auth
Token: /sgc/oauth2/token

So if server is listening on port 443 and domain is www.esegece.com, the EndPoints will be:

Authorization: https://www.esegece.com/sgc/oauth2/auth
Token: https://www.esegece.com/sgc/oauth2/token

The endpoints can be configured in OAuth2Options property.

Configuration

Before you can begin the OAuth2 process, you must register which Apps will be available, this is done using Apps
property of OAuth2 server component.

Register App

Use Apps.AddApp to add a new Application to OAuth2 server, you must set the following parameters:

App Name: is the name of the Application. Example: MyApp
RedirectURI: is where the responses will be redirected. Example: http://127.0.0.1:8080
ClientId: is public information and is the ID of the client.
ClientSecret: must be kept confidential.

Optionally you can set the following parameters:

ExpiresIn: by default is 3600 seconds, so the token will expire in 1 hour, you can set a greater value if you
need.
RefreshToken: by default refresh tokens are supported, if not, set this parameter to false.

Delete App

Use Apps.RemoveApp to delete an existing App.

https://www.esegece.com/sgc/oauth2/auth
https://www.esegece.com/sgc/oauth2/token

COMPONENTS

671

•
•
•
•

•
•
•
•
•
•

•
•
•

AddToken

If the server has been restarted while there were some token issued, you can recover these tokens using the
method AddToken before starting the OAuth2 Server and after registering the Apps

AppName: the name of the application.
Token: access token.
Expires: when the token expires.
RefreshToken: refresh token.

RemoveToken

Removes an already issued Token.

Most common uses

QuickStart
OAuth2 Server Example
OAuth2 Customize Sign-in HTML
OAuth2 Server Endpoints
OAuth2 Register Apps
OAuth2 Recover Access Tokens

Authenticate

OAuth2 Server Autentication
OAuth2 None Authenticate some URLs

Connections

While OAuth2 is enabled on Server-side, if a websocket client tries to connect without providing a valid Token, the
connection will be closed automatically. The same applies to HTTP requests.

TsgcWebSocketClient can be configured to request a OAuth2 token and sent when connects to server. You have 2
options in order to send a Bearer Token:

1. Use Authentication.Token property, this is usefull when you have a valid token obtained from an external third-
party and you only want to pass as a connection header to get Access to server.

Authorization->Enabled = true;

Authorization->Token.Enabled = true;

Authorization->Token->AuthName = "Bearer";

Authorization->Token->AuthToken = "your token here";

2. Attach a TsgcHTTP_OAuth2_Client and let the client request an Access Token and send it automatically when
websocket client connects to server.

Events

Some events are provided to handle the OAuth2 Flow Control.

COMPONENTS

672

OnOAuth2BeforeRequest

This event is called when a new HTTP connection is established with server and before checks if the connection
request is trying to do an Authorization or request a new token. If you don't need that this request is processed by
OAuth2 server, set Cancel parameter to true.

The event is called too when checks if the Token is valid.

OnOAuth2BeforeDispatchPage

The event is called before the Authorization web-page is showed to user, allows to customize the HTML code
shown to user.

OnOAuth2Authentication

When a client request Authorization, server shows a page were user can allow connection and requires to login to
server. This is the event where you can read the User/Password set by user and accept or not the connection.

OnOAuth2AfterAccessToken

After the server process successfully the Access Token, this event is called. Useful for log purposes.

OnOAuth2AfterRefreshToken

After the server process successfully the Refresh Token, this event is called. Useful for log purposes.

OnOAuth2AfterValidateAccessToken

When a client do a request with a Token, this token is processed by server to check if it's valid or not, if the token is
valid and not expired, this event is called. Useful for log purposes.

OnOAuth2Unauthorized

This event is called before the connection is closed because there is no authorization token or is invalid, by default,
the Disconnect parameter is true, you can set to false if you still want to accept the connection. This event can con
figure which endpoints must implement OAuth2 Authorization or not.

COMPONENTS

673

OAuth2 | Server Example
Let's do a simple OAuth2 server example, using a TsgcWebSocketHTTPServer.

First, create a new TsgcWebSocketHTTPServer listening on port 443 and using a self-signed certificate in sgc.pem
file.

oServer = new TsgcWebSocketHTTPServer(this);

oServer->Port := 80;

oServer->SSLOptions->Port = 443;

oServer->SSLOptions->CertFile = "sgc.pem";

oServer->SSLOptions->KeyFile = "sgc.pem";

oServer->SSLOptions->RootCertFile = "sgc.pem";

oServer->SSL = true;

Then create a new instance of TsgcHTTP_OAuth2_Server and assign to previously created server.
Register a new Application with the following values:

Name: MyApp
RedirectURI: http://127.0.0.1:8080
ClientId: client-id
ClientSecret: client-secret

OAuth2 = new TsgcHTTP_OAuth2_Server.Create(this);

OAuth2->Apps->AddApp("MyApp", "http://127.0.0.1:8080", "client-id", "client-secret");

oServer->Authentication->Enabled = true;

oServer->Authentication->OAuth->OAuth2 = OAuth2;

Then handle OnOAuth2Authentication event of OAuth2 server component and implement your own method to login
users. I will use the pair "user/secret" to accept a login.

void OnOAuth2Authentication(TsgcWSConnection *Connection, TsgcHTTPOAuth2Request *OAuth2, string aUser,

 string aPassword, ref bool Authenticated)

{

 if ((aUser == "user") and (aPassword == "secret"))

 {

 Authenticated = true;

 }

}

Finally start the server and use a OAuth2 client to login, example you can use the TsgcHTTP_OAuth2_Client in
cluded with sgcWebSockets library.

COMPONENTS

674

Request a New Access Token, a new Web Browser session will be shown and user must Allow connection and
then login.

COMPONENTS

675

If login is successful a new Token will be returned to the client. Then all the requests must include this bearer token
in the HTTP Headers.

COMPONENTS

676

COMPONENTS

677

OAuth2 | Customize Sign-In HTML
When an OAuth2 client do a request to get a new Access Token, a Web-Page is shown in a web-browser to Allow
this connection and login with an User and Password.
The HTML page is included by default in Server component, but this code can be customized using
OnAuth2BeforeDispatchPage event.

void OnOAuth2BeforeDispatchPage(TObject *Sender; TsgcHTTPOAuth2Request *OAuth2; ref string HTML)

{

 HTML = "your custom html";

}

If you customize your HTML with a completely new HTML code, at least you must maintain the form where the
Username and password are sent:

<form action="">
<input type="hidden" name="request_type" value="sign-in" />
<input type="username" name="username" placeholder="Username" />
<input type="password" name="password" placeholder="Password" />
<input type="hidden" name="id" value="" />
<p></p>
<button>Sign In</button>
</form>

The id parameter, which is hidden, must maintain the same value of the original form to allow server identify the re
quest.

COMPONENTS

678

OAuth2 | Server Endpoints
By default, the OAuth2 Server uses the following Endpoints:

Authorization: /sgc/oauth2/auth
Token: /sgc/oauth2/token

Which means that if your server listens on IP 80.54.41.30 and port 8443, the full OAuth2 Endpoints will be:

Authorization: https://80.54.41.30:8443/sgc/oauth2/auth
Token: https://80.54.41.30:8443/sgc/oauth2/token

This Endpoints can be modified easily, just access to OAuth2Options property of component and modify Authoriza
tion and Token URLs.
Example: if your endpoints must be

Authorization: https://80.54.41.30:8443/authentication/auth
Token: https://80.54.41.30:8443/authentication/token

Set the OAuth2Options property with the following values:

OAuth2Options.Authorization.URL = /authentication/auth
OAuth2Options.Token.URL = /authentication/token

COMPONENTS

679

•
•
•
•

•

•

OAuth2 | Register Apps
Before a new OAuth2 is requested by a client, the App must be registered in the server.
Register a new App requires the following information:

App Name: is the name of the Application. Example: MyApp
RedirectURI: is where the responses will be redirected. Example: http://127.0.0.1:8080
ClientId: is public information and is the ID of the client.
ClientSecret: must be kept confidential.

Optionally you can set the following parameters:

ExpiresIn: by default is 3600 seconds, so the token will expire in 1 hour, you can set a greater value if you
need.
RefreshToken: by default refresh tokens are supported, if not, set this parameter to false.

If a new client wants to authenticate using OAuth2, first the App requires to be registered in the server, you can
use:

1. RegisterApp
This method requires the App Name and RedirectURI, and will return a ClientId and ClientSecret.

2. Apps.AddApp
This method requires AppName, RedirectURI, ClientId and ClientSecret. Usually you can use this method when a
server has some already created Apps and you want to load them before is started.

Both methods do the same, register the Application in the server, but first is most useful when the App is registered
the first time and second method when you want to load all registered apps before start the server (because are
saved on database for example).

COMPONENTS

680

•
•
•
•

OAuth2 | Recover Access Tokens
If the OAuth2 Server is destroyed (because it's restarted) and there are valid Access Tokens issued, these are lost
by default. You can recover these Access Tokens using the method AddToken. This method stores the tokens in
the OAuth2 Server.

Add a Token requires the following information:

AppName: the name of the app.
Token: access token.
Expires: when the token expires.
RefreshToken: refresh token.

You can save the issued tokens handling the OAuth2AfterAccessToken event.

private void OnOAuth2AfterAccessToken(TObject *Sender, TsgcWSConnection *Connection, TsgcHTTPOAuth2Request *OAuth2,

 string aResponse)

{

 // ... store OAuth2 Token data

}

OAuth2 = new TsgcHTTP_OAuth2_Server.Create(this);

OAuth2->Apps->AddApp("MyApp", "http://127.0.0.1:8080", "client-id", "client-secret");

OAuth2->AddToken("MyApp", "12146ce12b0e4813987f2794f768905cefc39da6fbd54f6d9b38387489280608", EncodeDate(2022,1,1

 "ef3e3dfa56ec44109c3d345b1541f08e539ce21432d9433099b48a3d08d34bc0");

oServer->Authentication->Enabled = true;

oServer->Authentication->OAuth->OAuth2 = OAuth2;

COMPONENTS

681

OAuth2 | Server Authentication
When an OAuth2 client requests a new Authorization, the server shows a web page where the user must allow the
connection and then login. This page is provided by sgcWebSockets library and is dispatched automatically when a
client requests an Authorization.

If the user Allows the access, a login form will be shown where the user must set the Username and Password.
This data will be received OnOAuth2Authentication event, so you must validate than the user/password is correct
and if it is, then set Authenticated parameter to true.

void OnOAuth2Authentication(TsgcWSConnection *Connection, TsgcHTTPOAuth2Request *OAuth2, string aUser,

 string aPassword, ref bool Authenticated)

{

 if ((aUser == "user") and (aPassword == "secret"))

 {

 Authenticated = true;

 }

}

COMPONENTS

682

OAuth2 | None Authenticate URLs
By default, when OAuth2 is enabled on Server Side, all the HTTP Requests require Authentication using Bearer To
kens.
If you want allow some URLs to be accessed without the need of use a Bearer Token, you can use the event
OnOAuth2BeforeRequest

procedure OnOAuth2BeforeRequest(TObject *Sender; TsgcWSConnection *aConnection; TStringList *aHeaders;

 ref bool Cancel)

{

 if (DecodeGETFullPath(aHeaders) == "/Public.html")

 {

 Cancel = true;

 }

}

COMPONENTS

683

•
•
•

•

•

•
•
•

OAuth2 |
TsgcHTTP_OAuth2_Server_Provider
This component allows to integrate External OAuth2 Providers (like Azure AD, Google, Facebook...) in your server
component (like an HTP server), so an user can login using the Azure AD credentials and if the authentication is
successful, the HTTP server can provide access to protected resources.

The server components have a property called Authorization.OAuth.OAuth2Provider where you can assign an in
stance of TsgcHTTP_OAuth2_Server_Provider, so if Authentication is enabled and OAuh2Provider property is at
tached to OAuth2 Provider Server Component, the WebSocket and HTTP Requests require a Cookie / Bearer To
ken to be processed, if not the connection will be closed automatically.

TsgcHTTP_OAuth2_Server_Provider *OAuth2Provider = new TsgcHTTP_OAuth2_Server_Provider(this);

Server->Authentication->Enabled = true;

Server->Authentication->OAuth->OAuth2Provider = OAuth2Provider;

Register OAuth2 Provider

Before the server is started, you must configure the OAuth2 Providers that the server will use to authenticate. Use
the method RegisterProvider to configure the OAuth2 Providers, this method has the following parameters:

Name: is the name of the provider, it can be any name, is just to identify the provider later.
ClientId: is the public client Id, this value is provided by the OAuth2 Provider.
ClientSecret: is the private client secret (must be keep confidential), this value is provided by the OAuth2
Provider.
AuthorizeURL: is the URL where the OAuth2 client will redirect to login (the connection is using a web
browser).
TokenURL: is the URL the server will use to validate the token provided after a successful authorization (the
connection is server to server).
Scope: is the value of the scope/s.
URL: is the URL of the HTTP Server that will be used to redirect to the Authorization URL.
CallbackURL: is the URL configured in the OAuth2 Provider that will process the response sent from the
OAuth2 server after a successful Authorization.

Example: to configure Azure AD, it requires a tenant-id which is added to the OAuth2 URLs, ClientId, ClientSecret,
Scope and a CallbackURL.

 RegisterProvider(
 'azure',
 '90945b8d-f6b7-4b97-b2bd-21c3c90b5f3x',
 'PN67Q~5m06c-~X_GMyMf9zMntmm5l2dt~3jVq',
 'https://login.microsoftonline.com/a0ca2055-5dd1-467f-bf13-291f6fd715c6/oauth2/v2.0/authorize',
 'https://login.microsoftonline.com/a0ca2055-5dd1-467f-bf13-291f6fd715c6/oauth2/v2.0/token',
 'user.read',
 '/login',
 'https://localhost/callback'
);

To delete an existing Provider, use the method UnRegisterProvider.

Properties

The following properties can be configured in the OAuth2Options property.

COMPONENTS

684

•

•

•
•

•
•
•
•

HTTPClientOptions: when the server receives the response from the OAuth2 provider after a successful
authorization, uses a connection from the HTTP server to the OAuth2 provider to validate the code received
is valid. This connection can be configured using this property.
Cookies: when the server receives a successful Token Access, if this property is enabled, a server cookie is
created to store a public ID that it's linked to the private Token Access. Here you can configure the cookies
values.

Most common uses

QuickStart
OAuth2 Provider Azure AD

Authenticate

OAuth2 Provider Private Endpoints
OAuth2 Provider Authentication
OAuth2 Provider Requests

COMPONENTS

685

OAuth2 Provider | Azure AD
Azure AD uses the following OAuth2 Authorization URLs

Authorization: https://login.microsoftonline.com/<tenant-id>/oauth2/v2.0/authorize
Token: https://login.microsoftonline.com/<tenant-id>/oauth2/v2.0/token

The <tenant-id> must be replaced by your own values.

When you create the OAuth2 configuration, you must configure a server callback url, this url will be used by Azure
to send a response to your server after a successful authorization.

Example: find below a simple example of how register Azure AD provider.

Values provided by Azure AD

ClientId: 90945b8df6b7-4b97-b2bd-21c3c90b5f3x
ClientSecret: PN67Q~5m06c~X_GMyMf9zMntmm5l2dt~3jVq
tenant: a0ca20555dd1467fbf13-291f6fd715c6
scope: user.read
CallbackURL: https://localhost/callback

How Register Azure AD

 RegisterProvider(
 'azure',
 '90945b8d-f6b7-4b97-b2bd-21c3c90b5f3x',
 'PN67Q~5m06c-~X_GMyMf9zMntmm5l2dt~3jVq',
 'https://login.microsoftonline.com/a0ca2055-5dd1-467f-bf13-291f6fd715c6/oauth2/v2.0/authorize',
 'https://login.microsoftonline.com/a0ca2055-5dd1-467f-bf13-291f6fd715c6/oauth2/v2.0/token',
 'user.read',
 '/login',
 'https://localhost/callback'
);

COMPONENTS

686

OAuth2 Provider | Private Endpoints
Every time the Server receives a HTTP Request, the event OnOAuth2IsPrivateEndpoint is called to ask if the
Endpoint is private or not. By default, is not private.

void OnOAuth2IsPrivateEndpoint(TObject *Sender, const string aEndpoint, ref bool IsPrivate)

{

 if (aEndpoint == "/private")

 {

 IsPrivate = True;

 }

}

COMPONENTS

687

OAuth2 Provider | Authentication
The OAuth2 Provider Server Component allows to Authenticate using an External OAuth2 Provider (like Azure AD,
Google...) to access the protected resources of your server. Example: you can configure your HTTP Server and al
low login using the Azure Credentials to your uses, so if the login is successful, you will allow to enter to the pro
tected resources of your server to these users.

The Authentication process is done from the server side and the OAuth2 tokens are not shared with the clients, this
means that when the user logins using Azure for example, if the authentication is successful, Azure returns an Ac
cess Token that allows to send requests to the Azure server to get some information (depending of the scope)
about the user profile, emails... This Access Token IS NOT SHARED with the client (example a web-browser), in
stead of returning the Access token to the client, the server creates a random ID that it's linked internally with the
Access Token, so every time the Client (Web Browser) wants to do a call to the OAuth2 Server, uses the public ID
and the server uses this ID to get the OAuth2 Access Token to proxy the HTTP Requests.

Find below an example of how the OAuth2 Authentication works. The example will use the Azure AD configuration
described in the following link OAuth2 Provider Azure AD.

Start the Server

The server starts listening on localhost and port 443. The sgcWebSockets HTTP Server is linked to the OAuth2
Server Provider Component and the Authentication property is enabled.
Before the server is started, the Azure OAuth2 Provider is registered using the following method call.

 RegisterProvider(
 'azure',
 '90945b8d-f6b7-4b97-b2bd-21c3c90b5f3x',
 'PN67Q~5m06c-~X_GMyMf9zMntmm5l2dt~3jVq',
 'https://login.microsoftonline.com/a0ca2055-5dd1-467f-bf13-291f6fd715c6/oauth2/v2.0/authorize',
 'https://login.microsoftonline.com/a0ca2055-5dd1-467f-bf13-291f6fd715c6/oauth2/v2.0/token',
 'user.read',
 '/login',
 'https://localhost/callback'
);

User Logins

The user opens a new web browser and go to '/login' endpoint.
The server detects that the '/login' endpoint is used to login using the Azure provider so redirects to

https://login.microsoftonline.com/a0ca2055-5dd1-467f-bf13-291f6fd715c6/oauth2/v2.0/authorize

And the OAuth2 authentication Flow Starts.

OAuth2 Authentication

The user is redirected to the OAuth2 Server Authentication Endpoint, now he must login using the credentials and
accept the terms of the OAuth2 Application.

If the authorization is successful, Azure AD sends a Code to the url

https://localhost/callback

Validate the OAuth2 Code

Now, the server has received a code from Azure and it will do an internal connection to Azure (from server to serv
er) to validate this token is correct (and avoid someone is trying to hack the server).

The server connects to

COMPONENTS

688

https://login.microsoftonline.com/a0ca2055-5dd1-467f-bf13-291f6fd715c6/oauth2/v2.0/token

Passing some paramenters like the code received and the clientsecret, if the validation is successful, Azure returns
the Access Token that can be used to access the Azure Protected Resources like read the profile, email...

Successful Access Token

When the server receives a success full AccessToken, the event OnOAuth2ProviderTokenValid is called, so here
you can configure how the AccessToken is stored (if it is) accessing to the parameter
class TsgcHTTPOAuth2ProviderToken

AccesToken: is the OAuth2 Token returned by Azure
ID: is the public identifier stored as a cookie.

In this event you can configure what to do after a successful authentication, example: if you want to redirect the
user to the private url, use the following

Response.Redirect.URL := 'https://localhost/private';

Send Requests to Azure

Now, you can send requests to the Azure server using the Public ID stored as a cookie.
Example: if you want to read the profile data, use the following method.

Get('ID', 'https://graph.microsoft.com/v1.0/me');

Where ID is the public ID identifier.

COMPONENTS

689

OAuth2 Provider | Requests
Once the Authentication has been successful, you can send requests to the OAuth2 Protected Server using the
Public ID Token stored as a cookie.

The OAuth2 Provider Server Component, has several methods to send HTTP Requests: GET, POST, DELETE...

You can pass the Token as a parameter or pass the RequestInfo class if you are using the Indy Server compo
nents.

void OnCommandGet(TIdContext *AContext, TIdHTTPRequestInfo *ARequestInfo, TIdHTTPResponseInfo *AResponseInfo)

{

 if (ARequestInfo->Document == "/private"

 {

 // return OAuth2 profile data

 AResponseInfo->ContentText = OAuth2Provider->Get(ARequestInfo, "https://graph.microsoft.com/v1.0/me");

 AResponseInfo->ContentType = "application/json";

 AResponseInfo->ResponseNo = 200;

 }

 else

 {

 AResponseInfo->ResponseNo = 404;

 }

}

COMPONENTS

690

•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•

HTTP | JWT
JWT (JSON Web Token) typically consists of a header + payload + signature.

Header

Contains the metadata information about JWT

alg: is the algorithm used to sign the token
typ: is the type of the token, always JWT

{

 "alg": "HS256",

 "typ": "JWT"

}

You can find more headers but the previous will be always there.

Payload

The payload contains the claims of the JWT. The standard headers are the following:

iss: is the issuer, the entity who generates and issue the JWT.
sub: is the subject, the entity identified by this token.
aud: is the audience, the target audience for this JWT.
exp: is the expiry, is the timestamp in UNIX format after the token should not be accepted.
iat: is issued at, specifies the date when the token has been issued.

{

 "sub": "1234567890",

 "name": "John Doe",

 "iat": 1516239022

}

Signature

The signature is created using the Encoded Header, Encoded Payload, a Secret and a Cryptographic Algorithm.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0

NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5M

DIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

Algorithms supported

The following algorithms are supported by both Client and Server JWT components.

HS256
HS384
HS512
RS256
RS384
RS512
ES256
ES384
ES512

COMPONENTS

691

•

•

OpenSSL libraries are required to sign and verify the JWT.

Components

TsgcHTTP_JWT_Client: JWT client which allows to encode and sign JWT and send as an Authorization
Header in HTTP and WebSocket protocols.
TsgcHTTP_JWT_Server: JWT server which allows to decode and validate JWT received as an Authoriza
tion Header in HTTP and WebSocket protocols.

* JWT Components require at least Indy version 10.6.0.5169 or sgcWebSockets Enterprise Edition.

COMPONENTS

692

JWT | TsgcHTTP_JWT_Client
The TsgcHTTP_JWT_Client component allows to encode and sign JWT Tokens, attached to a WebSocket Client or
HTTP/2 client, the token will be sent automatically as an Authorization Bearer Token Header.

Configuration

You can configure the JWT values in the JWTOptions properties, there are 2 main properties: Header and Pay
load, just set the values for every required property.

If the Signature is encrypted using a Private Key (RS and ES algorithms), set the value in the PrivateKey property
of the Algorithm.
If the Signature is encrypted using a Secret (HS algorithms), set the value in the Secret property of the Algorithm.

OpenSSL Options

Configure which openSSL libraries you will use when using JWT client.

OpenSSL_Options: configuration of the openSSL libraries.
APIVersion: allows to define which OpenSSL API will be used.

oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

Custom Headers

The Header and Payload properties contains the most common headers used to generate a JWT, but you can add
more headers calling the method AddKeyValue and passing the Key and Value as parameters.
Example: if you want add a new record in the JWT Header with your name, use the following method

Header->AddKeyValue("name", "John Smith");

After configuring the properties, to generate the JWT, just call the method Sign and will return the value of the JWT.

COMPONENTS

693

WebSocket Client and JWT

TsgcWebSocketClient allows the use of JWT when connecting to WebSocket servers, just create a new JWT client
and assign to Authentication.Token.JWT property.

TsgcWebSocketClient oClient = new TsgcWebSocketClient();

oClient->URL = "ws://www.esegece.com:2052";

TsgcHTTP_JWT_Client oJWT = new TsgcHTTP_JWT_Client();

oJWT->JWTOptions->Header.alg = jwtRS256;

oJWT->JWTOptions->Payload.sub = "1234567890";

oJWT->JWTOptions->Payload.iat = 1516239022;

oClient->Authentication->Enabled = true;

oClient->Authentication->URL->Enabled = false;

oClient->Authentication->Token->Enabled = true;

oClient->Authentication->Token->JWT = oJWT;

oClient->Active = true;

HTTP Clients and JWT

TsgcHTTP2Client and TsgcHTTP1Client allows the use of JWT when connecting to HTTP/2 servers, just create a
new JWT client and assign to Authentication.Token.JWT property.

TsgcHTTP2Client oHTTP = new TsgcHTTP2Client();

TsgcHTTP_JWT_Client oJWT = new TsgcHTTP_JWT_Client();

oJWT->JWTOptions->Header->alg = jwtRS256;

oJWT->JWTOptions->Payload->sub = "1234567890";

oJWT->JWTOptions->Payload->iat = 1516239022;

oHTTP->Authentication->Token->JWT = oHTTP;

oHTTP->Get("https://your.api.com");

Expiration

The Authorization Token can be re-created every time you send an HTTP request using an HTTP client or can be
reused several times till it expires.
Example: calling Apple APNs using Tokens, requires that the token is reused at least during 20 minutes and at a
maximum of 1 hour. Use the Property RefreshTokenAfter to set the seconds when the token will expire, for exam
ple after 30 minutes.

RefreshTokenAfter = 60 * 40.

Create JWT Signature

You can create JWT Signatures manually to use on applications that doesn't make use of WebSocket or HTTP
Protocol, or if you are using components from third-parties applications and you only need the JWT Token.

COMPONENTS

694

In order to obtain the JWT Signature, just create a new instance of the JWT Client and fill the properties manually,
when all properties are set, call the method Sign and it will return the JWT Token.

TsgcHTTP_JWT_Client oJWT = new TsgcHTTP_JWT_Client(this);

// ... header

oJWT->JWTOptions->Header->alg = jwtHS256;

oJWT->JWTOptions->Algorithms->HS->Secret = "79F66F1E-E998-436B-8A0A-3E5DEFA4FD9E";

// ... payload

oJWT->JWTOptions->Payload->jti = "9B66FB94-B761-42B1-A1AF-3C44233DBE87";

oJWT->JWTOptions->Payload->iat = 1630925658;

oJWT->JWTOptions->Payload->iss = "2886EC7547B7BA6A9009";

oJWT->JWTOptions->Payload->exp = 1630933158;

// ... custom payload values

oJWT->JWTOptions->Payload->ClearKeyValues;

oJWT->JWTOptions->Payload->AddKeyValue("origin", "www->yourwebsite->com");

oJWT->JWTOptions->Payload->AddKeyValue("ip", "69.39.46.178");

// ... get JWT Token

ShowMessage(oJWT->Sign());

COMPONENTS

695

JWT | TsgcHTTP_JWT_Server
The TsgcHTTP_JWT_Server component allows to decode and validate JWT tokens received in WebSocket
Handshake when using WebSocket protocol or as HTTP Header when using HTTP protocol.

Configuration

You can configure the following properties in the JWTOptions property of the component:

If the Signature is validated using a Public Key (RS and ES algorithms), set the value in the PublicKey property of
the Algorithm.
If the Signature is validated using a Secret (HS algorithms), set the value in the Secret property of the Algorithm.

To validate JWT tokens, just attach a TsgcHTTP_JWT_Server instance to Authentication.JWT.JWT property of
the WebSocket/HTTP Server.

TsgcWebSocketHTTPServer oServer = new TsgcWebSocketHTTPServer();

oServer->Port = 80;

TsgcHTTP_JWT_Server oJWT = new TsgcHTTP_JWT_Server();

oJWT->JWTOptions->Algorithms->RS->PublicKey->Text = "public key here";

oServer->Authorization->Enabled = true;

oServer->Authorization->JWT->JWT = oJWT;

oServer->Active = true;

Checks property allows to enable some checks in the Payload of JWT, by default checks if the issued dates are
valid.

Events

Use the following events to control the flow of JWT Validating Token.

OnJWTBeforeRequest

The event is called when a new HTTP / WebSocket connection is detected and before any validation is done.
This connection can contain or not a JWT Token.
If you don't want to process this Connection using JWT Validation, just set the Cancel parameter to True (means
that this connection will bypass JWT validations).
By default, all connections continue the process of JWT validation.

OnJWTBeforeValidateToken

The event is called when the connection contains an Authorization token and before is validated.
If you don't want to validate this token, just set the Cancel parameter to True (means that this connection will by
pass JWT validations).
By default, all connections continue the process of JWT validation.

OnJWTBeforeValidateSignature

This event is called after the token has been decoded, so using Header and Payload parameters you have ac
cess to the content of JWT and before the signature is validated.
The parameter Secret is the secret that will be used to validate the signature and uses the PublicKey or Secret of
the JWTOptions property. If this Token must be validated with another secret, the new value can be set to Secret
parameter.
By default, all signatures are validated

COMPONENTS

696

OnJWTAfterValidateToken

The event is called after the signature has been validated, the parameter Valid shows if the signature is correct or
not. If it's not correct the connection will be closed, otherwise the connection will continue.
You can access to the content of Header and Payload of JWT using the arguments provided.
If there is any error validating the JWT, will be informed in the Error argument.

OnJWTException

If there is any exception while processing the JWT Decoding and Validation, this event will be called with the con
tent of error.

OnJWTUnauthorized

This event is called before the connection is closed because there is no authorization token or is invalid, by default,
the Disconnect parameter is true, you can set to false if you still want to accept the connection. This event can con
figure which endpoints must implement JWT Authorization or not.

COMPONENTS

697

Amazon AWS | SQS
What is Amazon SQS?

Amazon Simple Queue Service (SQS) is a fully managed message queuing service that enables you to decouple
and scale microservices, distributed systems, and serverless applications. SQS eliminates the complexity and over
head associated with managing and operating message oriented middleware, and empowers developers to focus
on differentiating work. Using SQS, you can send, store, and receive messages between software components at
any volume, without losing messages or requiring other services to be available.

Benefits

Eliminate administrative overhead

With SQS, there is no upfront cost, no need to acquire, install, and configure messaging software, and no
time-consuming build-out and maintenance of supporting infrastructure.

Reliably deliver messages

SQS lets you decouple application components so that they run and fail independently, increasing the over
all fault tolerance of the system.

Keep sensitive data secure

You can use Amazon SQS to exchange sensitive data between applications using server-side encryption
(SSE) to encrypt each message body.

Scale elastically and cost-effectively

SQS scales elastically with your application so you don’t have to worry about capacity planning and pre-pro
visioning.

WorkFlow

The following scenario describes the lifecycle of an Amazon SQS message in a queue, from creation to deletion.

COMPONENTS

698

1.
2.
3.
4.
5.

1.
2.
3.

Getting Started with Amazon SQS

Before you begin, complete the steps in Setting Up Amazon SQS.

Step 1: Create a Queue

Sign in to the Amazon SQS console.
Choose Create New Queue.
On the Create New Queue page, ensure that you're in the correct region and then type the Queue Name.
Standard is selected by default. Choose FIFO.
To create your queue with the default parameters, choose Quick-Create Queue.

Your new queue is created and selected in the queue list.

Step 2: Send a Message

After you create your queue, you can send a message to it. The following example shows sending a message to an
existing queue.

From the queue list, select the queue that you've created.
From Queue Actions, select Send a Message.
Your message is sent and the Send a Message to QueueName dialog box is displayed, showing the attribut
es of the sent message.

COMPONENTS

699

Step 3: Receive and Delete Your Message

After you send a message into a queue, you can consume it (retrieve it from the queue). When you request a mes
sage from a queue, you can't specify which message to get. Instead, you specify the maximum number of mes
sages (up to 10) that you want to get.

Step 4: Delete Your Queue

If you don't use an Amazon SQS queue (and don't foresee using it in the near future), it is a best practice to delete
it from Amazon SQS.

SQS Client

// TsgcHTTPAWS_SQS_Client is the component used for connect to Amazon SQS.

// Client connects using HTTPs protocol and authenticates using Access Key provided by Amazon.

// Before you try to connect to SQS service, you must set some data in AWSOptions property.

// Region: your endpoint region, example: us-east-1.

// AccessKey: access key provided by Amazon.

// SecretKey: secret key provided by Amazon.

// The following methods are supported by SQS client:

// AddPermission

// Adds a permission to a queue for a specific principal. This allows sharing access to the queue.

// ChangeMessageVisibility

// Changes the visibility timeout of a specified message in a queue to a new value. The default visibility timeout for a message is 30 seconds.

// The minimum is 0 seconds. The maximum is 12 hours.

// ChangeMessageVisibilityBatch

// Changes the visibility timeout of multiple messages. This is a batch version of ChangeMessageVisibility.

// The result of the action on each message is reported individually in the response. You can send up to 10 ChangeMessageVisibility requests.

// CreateQueue

// Creates a new standard or FIFO queue. You can pass one or more attributes in the request.

 vURL = SQS->CreateQueue("sqs_queue");

 if (vURL != "")

 {

 DoLog("#CreateQueue: " + vURL);

 }

// DeleteMessage

// Deletes the specified message from the specified queue. To select the message to delete, use the ReceiptHandle of the message.

 if (SQS->DeleteMessage("sqs_queue", "...receipt handle goes here...") == true)

 {

 DoLog("#DeleteMessage: ok");

 }

 else

 {

 DoLog("#DeleteMessage: error");

 }

// DeleteMessageBatch

// Deletes up to ten messages from the specified queue. This is a batch version of DeleteMessage. The result of the action on each message is reported individually in the response.

// DeleteQueue

// Deletes the queue specified by the queue name, regardless of the queue's contents.

 if (SQS->DeleteQueue(txtQueueName->Text) == true)

 {

 DoLog("#Delete Queue: ok")

 }

 else

COMPONENTS

700

 {

 DoLog("#Delete Queue: error");

 }

// GetQueueAttributes

// Gets attributes for the specified queue.

 TsgcSQSAttributes *oAttributes = new TsgcSQSAttributes();

 try

 {

 if (SQS->GetQueueAttributes("sqs_queue", oAttributes) == true

 {

 for (int i = 0; i

 Count; i++)

 {

 DoLog("#Attribute: " + static_cast

 (oAttributes.Item[i])

 ->AttributeName + " " + static_cast

 (oAttributes.Item[i])

 ->AttributeValue);

 }

 }

 else

 {

 DoLog("#GetQueueAttributes: error");

 }

 }

 __finally

 {

 oAttributes->Free();

 }

// GetQueueUrl

// Returns the URL of an existing Amazon SQS queue.

// ListDeadLetterSourceQueues

// Returns a list of your queues that have the RedrivePolicy queue attribute configured with a dead-letter queue.

// ListQueueTags

// List all cost allocation tags added to the specified Amazon SQS queue.

// PurgeQueue

// Deletes the messages in a queue specified by the QueueName parameter.

 if (SQS->PurgueQueue("sqs_queue") == true)

 {

 DoLog("#PurgueQueue: ok")

 }

 else

 {

 DoLog("#PurgueQueue: error");

 }

// ReceiveMessage

// Retrieves one or more messages (up to 10), from the specified queue.

 oResponses = new TsgcSQSReceiveMessageResponses();

 Try

 {

 if (SQS->ReceiveMessage("sqs_test", oResponses) == true)

 {

 for (int i = 0; i

 Count; i++)

 {

 DoLog("#ReceiveMessage: " + static_cast

 (oResponses->Item[i])->Body);

 FReceiptHandle := static_cast

 (oResponses->Item[i])->ReceiptHandle;

 }

 }

 }

 __finally

 {

 oResponses.Free();

 }

// RemovePermission

// Revokes any permissions in the queue policy that matches the specified Label parameter.

// SendMessage

// Delivers a message to the specified queue.

 if (SQS->SendMessage("sqs_queue", "My First Message") == true)

 {

 DoLog("#SendMessage: ok")

 }

COMPONENTS

701

Events

OnSQSBeforeRequest

This event is called before sqs component does an HTTP request. You can get access to URL parameter and if
Handled parameter is set to True, means component won't do an HTTP request.

OnSQSError

If there is any error when component do a request, this event will be called with Error Code and Error Description.

OnSQSResponse

This event is called after an HTTP request with raw response from server.

 else

 {

 DoLog("#SendMessage: error");

 }

// SendMessageBatch

// Delivers up to ten messages to the specified queue. This is a batch version of SendMessage.

// SetQueueAttributes

// Sets the value of one or more queue attributes. When you change a queue's attributes, the change can take up to 60 seconds

// for most of the attributes to propagate throughout the Amazon SQS system.

 TsgcSQSAttributes *oAttributes = new TsgcSQSAttributes();

 Try

 {

 oAttributes->AddSQSAttribute(sqsatVisibilityTimeout, "45");

 if (SQS->SetQueueAttributes("sqs_queue", oAttributes) == true)

 {

 DoLog("#SetQueueAttributes: ok")

 }

 else

 {

 DoLog("#SetQueueAttributes: error");

 }

 }

 __finally

 {

 oAttributes->Free();

 }

// TagQueue

// Add cost allocation tags to the specified Amazon SQS queue.

// UntagQueue

// Remove cost allocation tags from the specified Amazon SQS queue.

COMPONENTS

702

Google Cloud | Google OAuth2 Keys
In order to use the sgcWebSockets Google Cloud components and Authenticate using OAuth2, first you must ob
tain the OAuth2 Key from Google Cloud.
Find below the steps to get Google OAuth2 Keys and how configure in our PubSub sample application.

First login to your Google Cloud Account and use an existing project or create a new one.
After that, go to Credentials menu and press the button CREATE CREDENTIALS, select the option OAuth Client
ID.

Select your application type and set a description name

If successful, you will get your Client Id and Client Secret

COMPONENTS

703

Don't share your OAuth2 data with anyone!
Now copy to the sgcWebSockets PubSub sample, and add the Project Id (NOT the project name)

COMPONENTS

704

This is how will must be configured in sgcWebSocket PubSub sample

COMPONENTS

705

Then you can try to create a new topic for example, the first time, you must authorize the OAuth2 connection, so a
new web-browser will be shown to request an authorization to access your account with the OAuth2 credentials
provided by google

COMPONENTS

706

Allow the connection, and if successful you can start to work with this API

COMPONENTS

707

COMPONENTS

708

Google Cloud | Google Service Accounts
In order to use the sgcWebSockets Google Cloud components and Authenticate using Service Accounts, first you
must obtain the Private Key Certificate
from Google Cloud.
Find below the steps to get Google Private Key Certificate and how configure in our PubSub sample application.

First login to your Google Cloud Account and use an existing project or create a new one.

Select CREATE SERVICE ACCOUNT and a new page will be shown where you must set the service account
name and description

Then select at least one Role, I select PubSub Admin to allow the client publish and subscribe topics, but you can
select other role with less privileges

COMPONENTS

709

Press CONTINUE and finally you can grant access to other users

Press DONE when you finish and a new record will be shown

COMPONENTS

710

The next step is create a new Key, so select the option Create Key in actions column. Select JSON to download the
configuration in JSON format and a new Key will be created

Finally you only need to fill the data provided by google in the sgcWebSockets PubSub client. You can use Load
SettingsFromFile to load the configuration JSON file.

COMPONENTS

711

COMPONENTS

712

Google Cloud | Pub/Sub
What is Google Cloud Pub/Sub?

Pub/Sub brings the flexibility and reliability of enterprise message-oriented middleware to the cloud. At the same
time, Pub/Sub is a scalable, durable event ingestion and delivery system that serves as a foundation for modern
stream analytics pipelines. By providing many-to-many, asynchronous messaging that decouples senders and re
ceivers, it allows for secure and highly available communication among independently written applications. Pub/
Sub delivers low-latency, durable messaging that helps developers quickly integrate systems hosted on the Google
Cloud Platform and externally.

Features

Atleastonce de
livery Synchro
nous, cross-zone
message replica
tion and permes
sage receipt track
ing ensures at-
least-once delivery
at any scale.

Open Open APIs
and client libraries
in seven languages
support cross-cloud
and hybrid deploy
ments.

Exactlyonce pro
cessing Cloud
Dataflow supports
reliable, expressive,
exactlyonce pro
cessing of Cloud
Pub/Sub streams.

Global by default
Publish from any
where in the world
and consume from
anywhere, with
consistent latency.
No replication nec
essary.

No provisioning,
auto-everything
Cloud Pub/Sub
does not have
shards or partitions.
Just set your quota,
publish, and con
sume.

Compliance and
security Cloud Pub/
Sub is a HIPAA-
compliant service,
offering fine-grained
access controls and
endtoend encryp
tion.

Integrated Take
advantage of inte
grations with multi
ple services, such
as Cloud Storage
and Gmail update
events and Cloud
Functions for
serverless event-
driven computing.

Seek and replay
Rewind your back
log to any point in
time or a snapshot,
giving the ability to
reprocess the mes
sages. Fast forward
to discard outdated
data.

Publisher-subscriber relationships

A publisher application creates and sends messages to a topic. Subscriber applications create a subscription to a
topic to receive messages from it. Communication can be one-to-many (fan-out), many-to-one (fan-in), and many-
to-many.

COMPONENTS

713

•

•

•

•

•

•

•

•
•

•

•

Common use cases

Balancing workloads in network clusters. For example, a large queue of tasks can be efficiently distrib
uted among multiple workers, such as Google Compute Engine instances.
Implementing asynchronous workflows. For example, an order processing application can place an order
on a topic, from which it can be processed by one or more workers.
Distributing event notifications. For example, a service that accepts user signups can send notifications
whenever a new user registers, and downstream services can subscribe to receive notifications of the event.
Refreshing distributed caches. For example, an application can publish invalidation events to update the
IDs of objects that have changed.
Logging to multiple systems. For example, a Google Compute Engine instance can write logs to the moni
toring system, to a database for later querying, and so on.
Data streaming from various processes or devices. For example, a residential sensor can stream data to
backend servers hosted in the cloud.
Reliability improvement. For example, a single-zone Compute Engine service can operate in additional
zones by subscribing to a common topic, to recover from failures in a zone or region.

Authorization

Google Pub/Sub component client can login to Google Servers using the following methods:

gcaOAuth2: OAuth2 protocol
gcaJWT: JWT tokens.

OAuth2

The login is done using a webbrowser where the user logins with his own user and authorizes the PubSub re
quests.

GoogleCloudOptions.OAuth2.ClientId: is the ClientID provided by Google to Authenticate through OAuth2
protocol.
GoogleCloudOptions.OAuth2.ClientSecret: is the Client Secret string provided by Google to Authenticate
through OAuth2 protocol.

COMPONENTS

714

•

•

•
•

•

•

•

•
•
•

GoogleCloudOptions.OAuth2.Scope: is the scope of OAuth2, usually there is no need to modify the de
fault value unless you need to get more access than default.
GoogleCloudOptions.OAuth2.LocalIP: OAuth2 protocol requires a server listening answer from Authenti
cation server, this is the IP or DNS. By default is 127.0.0.1.
GoogleCloudOptions.OAuth2.LocalPort: Local server listening port.
GoogleCloudOptions.OAuth2.RedirectURL: if you need to set a redirect url different from LocalPort + Lo
calIP, you can set in this property (example: http://127.0.0.1:8080/oauth2).

Service Accounts

The login is done signing the requests using a private key provided by google, these method is recommended for
automated services or applications without user interaction.

GoogleCloudOptions.JWT.ClientEmail: is the Client Email name provided creating the new service ac
count. "client_email" node in the JSON configuration file.
GoogleCloudOptions.JWT.PrivateKeyId: is the Private Key Id provided by google. "private_key_id" node
in the JSON configuration file.
GoogleCloudOptions.JWT.PrivateKey: is the Private Key certificate provided by google. "private_key"
node in the JSON configuration file.

When a new service account is created, you can download a JSON file with all configurations. This file can be
processed by the PubSub component, just call the method LoadSettingsFromFile and pass the JSON filename as
argument.

Most common uses

Configuration
Google OAuth2 Keys
Service Accounts

Google Pub/Sub Client

OAuth2

In order to work with Google Pub/Sub API, sgcWebSockets Pub/Sub component uses OAuth2 as default authenti
cation, so first you must set your ClientId and ClientSecret from your google account.

oPubSub = new TsgcHTTPGoogleCloud_PubSub_Client();

oPubSub->GoogleCloudOptions->Authorization = gcaOAuth2;

oPubSub->GoogleCloudOptions->OAuth2->ClientId = "... your google client id...";

oPubSub->GoogleCloudOptions->OAuth2->ClientSecret = "... your google client secret...";

Service Accounts

Service Accounts requires to build a JWT and pass as an Authorization Token

TsgcHTTPGoogleCloud_PubSub_Client oPubSub = new TsgcHTTPGoogleCloud_PubSub_Client(this);

oPubSub->GoogleCloudOptions->Authorization = gcaJWT;

oPubSub->GoogleCloudOptions->JWT->ClientEmail = "...google email...";

oPubSub->GoogleCloudOptions->JWT->PrivateKeyId = "...private key id...";

oPubSub->GoogleCloudOptions->JWT->PrivateKey->Lines->Text = "...private key certificate...";

This is required in order to get an Authorization Token Key from Google which will be used for all Rest API calls.

All methods return a response, which may be successful or return an error.

COMPONENTS

715

Projects.Snapshots

Method Para
meters Description Example

CreateS
napshot

project,
snap
shot,
sub
scription

Creates a snapshot
from the requested
subscription. Snap
shots are used in
subscriptions.seek
operations, which al
low you to manage
message acknowl
edgments in bulk.
That is, you can set
the acknowledgment
state of messages in
an existing subscrip
tion to the state cap
tured by a snapshot.

CreateSnapshot('pubsub-270909',
'snapshot-1', 'subscription-1')

DeleteS
napshot

project,
snap
shot

Removes an existing
snapshot

DeleteSnapshot('pubsub-270909',
'snapshot-1')

List
Snap
shots

project
Lists the existing
snapshots

ListSnapshots('pubsub-270909')

Projects.Subscriptions

Method Para
meters Description Example

Ac
knowl
edge
Sub
scription

Create
Sub
scription

project,
subscrip
tion, top
ic

Creates a subscrip
tion to a given topic.
If the subscription
already exists, re
turns
ALREADY_EXISTS.
If the corresponding
topic doesn't exist,
returns
NOT_FOUND.

CreateSubscription('pubsub-270909',
'subscription-1', 'topic-1')

Delete
Sub
scripton

project,
subscrip
tion

Deletes an existing
subscription. All
messages retained
in the subscription

DeleteSubscription('pubsub-270909',
'subscription-1')

COMPONENTS

716

are immediately
dropped.

GetSub
scription

project,
subscrip
tion

Gets the configura
tion details of a sub
scription.

GetSubscription('pubsub-270909',
'subscription-1')

ListSub
scrip
tions

project
Lists matching sub
scriptions.

ListSubscriptions('pubsub-270909',
'subscription-1')

Modify
Ack
Deadli
neSub
scription

project,
subscrip
tion, Ack
Ids

Modifies the ack
deadline for a spe
cific message. This
method is useful to
indicate that more
time is needed to
process a message
by the subscriber, or
to make the mes
sage available for
redelivery if the pro
cessing was inter
rupted. Note that
this does not modify
the subscriptionlev
el ackDeadlineSec
onds used for sub
sequent messages.

Modify
Push
Config
Sub
scription

project,
subscrip
tion

Modifies the Push
Config for a speci
fied
subscription.This
may be used to
change a push sub
scription to a pull
one (signified by an
empty PushConfig)
or vice versa, or
change the end
point URL and other
attributes of a push
subscription. Mes
sages will accumu
late for delivery con
tinuously through
the call regardless
of changes to the
PushConfig.

Pull
project,
subscrip
tion

Pulls messages
from the server. The
server may return
UNAVAILABLE if
there are too many
concurrent pull re
quests pending for

pull('pubsub-270909', 'subscrip-
tion-1')

COMPONENTS

717

the given subscrip
tion.

Seek

project,
subscrip
tion,
timeUTC,
snapshot

Seeks an existing
subscription to a
point in time or to a
given snapshot,
whichever is provid
ed in the request.
Snapshots are used
in
subscriptions.seek
operations, which
allow you to man
age message ac
knowledgments in
bulk. That is, you
can set the ac
knowledgment state
of messages in an
existing subscription
to the state cap
tured by a snap
shot. Note that both
the subscription and
the snapshot must
be on the same top
ic.

Projects.Topics

Method Parame
ters Description Example

Create
Topic

project,
topic

Creates the given top
ic with the given name

CreateTopic('pubsub-270909',
'topic-1')

Delete
Topic

project,
topic

Deletes the topic with
the given name. Re
turns NOT_FOUND if
the topic does not ex
ist. After a topic is
deleted, a new topic
may be created with
the same name; this
is an entirely new top
ic with none of the old
configuration or sub
scriptions.

DeleteTopic('pubsub-270909',
'topic-1')

GetTopic
project,
topic

Gets the configuration
of a topic.

GetTopic('pubsub-270909',
'topic-1')

List
Topics

project Lists matching topics. ListTopics('pubsub-270909')

COMPONENTS

718

Publish
project,
topic, mes
sage

Adds one or more
messages to the top
ic. Returns
NOT_FOUND if the
topic does not exist.

Publish('pubsub-270909',
'topic-1', 'My First PubSub
Message.')

Projects.Topics.Subscriptions

Method Para
meters

De
scrip
tion

Example

List
Topic
Sub
scrip
tions

project,
topic

Lists the
names of
the sub
scriptions
on this
topic.

ListTopicSubscriptions('pubsub-270909',
'topic-1')

Most common methods

Find below the most common methods used with Google Cloud Pub/Sub API

How create a new Topic

Create a new topic for project with id: pubsub-270909 and topic name topic-1.

oPubSub = new TsgcHTTPGoogleCloud_PubSub_Client();

oPubSub->GoogleCloudOptions->OAuth2->ClientId := "... your google client id...";

oPubSub->GoogleCloudOptions->OAuth2->ClientSecret = "... your google client secret...";

oPubSub->CreateTopic("pubsub-270909", "topic-1");

Response from Server

{

 "name": "projects/pubsub-270909/topics/topic-1"

}

Publish a message

Publish a new message in new topic created

oPubSub = new TsgcHTTPGoogleCloud_PubSub_Client();

oPubSub->GoogleCloudOptions->OAuth2->ClientId := "... your google client id...";

oPubSub->GoogleCloudOptions->OAuth2->ClientSecret = "... your google client secret...";

oPubSub->Publish("pubsub-270909", "topic-1", "My First Message from sgcWebSockets."));

Response from Server

{

 "messageIds": [

 "1050732082561505"

COMPONENTS

719

]

}

Publish a Message with Attributes

TsgcHTTPGoogleCloud_PubSub_Client *oPubSub = new TsgcHTTPGoogleCloud_PubSub_Client();

oPubSub->GoogleCloudOptions->OAuth2->ClientId := "... your google client id...";

oPubSub->GoogleCloudOptions->OAuth2->ClientSecret = "... your google client secret...";

oAttributes = new TStringList.Create();

try

{

 oAttributes->CommaText = "origin=gcloud-sample,username=gcp";

 oPubSub->Publish("pubsub-270909", "topic-1", "My First Message from sgcWebSockets.", oAttributes, "username"));

}

__finally

{

 oAttributes->Free();

}

How Create a new Subscription

Create a new subscription for project with id: pubsub-270909, with subscription name subscription-1 and topic-1

oPubSub = new TsgcHTTPGoogleCloud_PubSub_Client();

oPubSub->GoogleCloudOptions->OAuth2->ClientId := "... your google client id...";

oPubSub->GoogleCloudOptions->OAuth2->ClientSecret = "... your google client secret...";

oPubSub->CreateSubscription("pubsub-270909", "subscription-1", "topic-1");

Response from Server

{

 "name": "projects/pubsub-270909/subscriptions/subscription-1",

 "topic": "projects/pubsub-270909/topics/topic-1",

 "pushConfig": {},

 "ackDeadlineSeconds": 10,

 "messageRetentionDuration": "604800s",

 "expirationPolicy": {

 "ttl": "2678400s"

 }

}

How Read messages from Subscription

Read messages from previous subscription created.

oPubSub = new TsgcHTTPGoogleCloud_PubSub_Client();

oPubSub->GoogleCloudOptions->OAuth2->ClientId := "... your google client id...";

oPubSub->GoogleCloudOptions->OAuth2->ClientSecret = "... your google client secret...";

oPubSub->pubsub->Pull("pubsub-270909", "subscription-1");

Response from Server

{

 "receivedMessages": [

 {

 "ackId": "PjA-RVNEUAYWLF1GSFE3GQhoUQ5PXiM_NSAoRREFC08CKF15MEorQVh0Dj4N",

 "message": {

 "data": "TXkgRmlyc3QgTWVzc2FnZSBmcm9tIHNnY1dlYlNvY2tldHMu",

 "messageId": "1050732082561505",

 "publishTime": "2020-03-14T15:25:31.505Z"

 }

 }

]

}

Message is received Encode in Base64, so you must decode first to read contents.

COMPONENTS

720

sgcBase_Helpers->DecodeBase64("TXkgRmlyc3QgTWVzc2FnZSBmcm9tIHNnY1dlYlNvY2tldHMu=");

COMPONENTS

721

•

•

•

•

•

•

•

•
•
•
•
•
•

◦
◦

•

•

•

•

Google Cloud | Calendar
The Google Calendar API lets you integrate your app with Google Calendar, creating new ways for you to engage
your users. The Calendar API lets you display, create and modify calendar events as well as work with many other
calendar-related objects, such as calendars or access controls.

API Resources

Google Calendar uses the following resources:

Event: An event on a calendar containing information such as the title, start and end times, and attendees.
Events can be either single events or recurring events. An event is represented by an Event resource. The
Events collection for a given calendar contains all event resources for that calendar.
Calendar: A calendar is a collection of events. Each calendar has associated metadata, such as calendar
description or default calendar time zone. The metadata for a single calendar is represented by a Calendar
resource. The Calendars collection contains Calendar resources for all existing calendars.
CalendarList: A list of all calendars on a user's calendar list in the Calendar UI. The metadata for a single
calendar that appears on the calendar list is represented by a CalendarListEntry resource. This metadata in
cludes userspecific properties of the calendar, such as its color or notifications for new events. The Calen
darList collection contains all CalendarListEntry resources for a given user. For a further explanation of the
difference betweeen the Calendars and CalendarList collections, see Calendar and Calendar List
Setting: A user preference from the Calendar UI, such as the user's time zone. A single user preference is
represented by a Setting Resource. The Settings collection contains all Setting resources for a given user.
ACL: An access control rule granting a user (or a group of users) a specified level of access to a calendar. A
single access control rule is represented by an ACL resource. The ACL collection for a given calendar con
tains all ACL resources that grant access to that calendar.
Color: A color presented in the Calendar UI. The Colors resource represents the set of all colors available in
the Calendar UI, in two groups: colors available for events and colors available for calendars.
Free/busy: A time when a calendar has events scheduled is considered "busy", a time when a calendar has
no events is considered "free". The Freebusy resource allows querying for the set of busy times for a given
calendar or set of calendars.

Main Features

Fully Featured Google Calendar Client API V3.
All Methods supported by API can be called using client API.
Client requests using HTTP/2 protocol (*only Enterprise Edition).
Automatic Handling of partial responses using PageNextToken.
Easy access to Calendar and Event data properties.
Authentication methods:

OAuth2: requires user interaction.
Service Accounts (requires Domain-Wide Delegation): for windows services, daemons...

Configuration

Google Calendar component client has the following properties:

OAuth2

GoogleCloudOptions.OAuth2.ClientId: is the ClientID provided by Google to Authenticate through OAuth2
protocol.
GoogleCloudOptions.OAuth2.ClientSecret: is the Client Secret string provided by Google to Authenticate
through OAuth2 protocol.
GoogleCloudOptions.OAuth2.Scope: is the scope of OAuth2, usually there is no need to modify the de
fault value unless you need to get more access than default.
GoogleCloudOptions.OAuth2.LocalIP: OAuth2 protocol requires a server listening answer from Authenti
cation server, this is the IP or DNS. By default is 127.0.0.1.

COMPONENTS

722

•
•

•

•

•

•

•
•
•

•
•
•

GoogleCloudOptions.OAuth2.LocalPort: Local server listening port.
GoogleCloudOptions.OAuth2.RedirectURL: if you need to set a redirect url different from LocalPort + Lo
calIP, you can set in this property (example: http://127.0.0.1:8080/oauth2).

You can modify the Scopes of your client API using Scopes property, just select which scopes are supported by
your client.

JWT

The login is done signing the requests using a private key provided by google, these method is recommended for
automated services or applications without user interaction. Requires configure the Service Account with Domain-
Wide Delegation.

GoogleCloudOptions.JWT.ClientEmail: is the Client Email name provided creating the new service ac
count. "client_email" node in the JSON configuration file.
GoogleCloudOptions.JWT.PrivateKeyId: is the Private Key Id provided by google. "private_key_id" node
in the JSON configuration file.
GoogleCloudOptions.JWT.PrivateKey: is the Private Key certificate provided by google. "private_key"
node in the JSON configuration file.
GoogleCloudOptions.JWT.Subject: is the workspace email account linked to the service account using
Domain-Wide Delegation.

Most common uses

Configuration
Google Calendar Refresh Token
Google Calendar Service Account

Synchronization

Google Calendar Sync Calendars
Google Calendar Sync Events

Synchronize Calendars

TsgcHTTPGoogleCloud_Calendar_Client component allows to synchronize the calendars using direct Google API
calls or using our easy Calendars methods to synchronize the calendars.

Method Parameters Description

NewCalen
dar

aSummary: the
title of the cal
endar.

Creates a new Calen
dar

DeleteCalen
dar

aId: identifier of
the calendar.

Deletes an existing Cal
endar.

UpdateCal
endar

aResource:
object with the
calendar data.

Updates an existing
Calendar.

LoadCalen
dars

Loads all calendars and
Calendars property is
filled with this data.

LoadCalen
darsChanged

aSyncToken:
last token used
to update your
calendar.

Loads all changes in
your calendars from To
ken set.

Calendar Client has a property called Calendars, where you can access to Calendar Data after calling any of previ
ous methods, this property is synchronized automatically.

https://developers.google.com/identity/protocols/oauth2/service-account#delegatingauthority

COMPONENTS

723

Synchronize Events

TsgcHTTPGoogleCloud_Calendar_Client component allows to synchronize the events using direct Google API
calls or using our easy Event methods to synchronize the Events.

Method Parameters Description

NewEvent

aCalendarId: id
of the calendar.
aResource:
object with the
event data.

Creates a new Event.

DeleteEvent

aCalendarId: id
of the calendar.
aId: identifier of
the event.

Deletes an existing
Event.

UpdateEvent

aCalendarId: id
of the calendar.
aResource:
object with the
event data.

Updates an existing
Event.

LoadEvents aCalendarId: id
of the calendar.

Loads all events of
the calendar.

LoadE
ventsChanged

aCalendarId: id
of the calendar.
aSyncToken:
last token used
to update your
calendar.

Loads all events of
the calendar from To
ken set.

You can access to events data, using the property Calendars, select any of the existing calendars of the list and
accessing to Events property.

Google Calendar API Calls

Method Description

ACL_Delete Deletes an access con
trol rule.

ACL_Get Returns an access con
trol rule.

ACL_Insert Creates an access con
trol rule.

ACL_List
Returns the rules in the
access control list for
the calendar.

ACL_Patch

Updates an access con
trol rule. This method
supports patch seman
tics.

ACL_Update Updates an access con
trol rule.

COMPONENTS

724

ACL_Watch Watch for changes to
ACL resources.

Method Description

CalendarList_Delete

Removes a cal
endar from the
user's calendar
list.

CalendarList_Get

Returns a cal
endar from the
user's calendar
list.

CalendarList_Insert

Inserts an exist
ing calendar in
to the user's cal
endar list.

CalendarList_List

Returns the cal
endars on the
user's calendar
list.

CalendarList_Patch

Updates an ex
isting calendar
on the user's
calendar list.
This method
supports patch
semantics.

CalendarList_Update

Updates an ex
isting calendar
on the user's
calendar list.

CalendarList_Watch

Watch for
changes to Cal
endarList re
sources.

Method Description

Calendar_Clear

Clears a primary
calendar. This oper
ation deletes all
events associated
with the primary
calendar of an ac
count.

Calendar_Delete

Deletes a sec
ondary calendar.
Use calendars.clear
for clearing all
events on primary
calendars.

Calendar_Get Returns metadata
for a calendar.

COMPONENTS

725

Calendar_Insert Creates a sec
ondary calendar.

Calendar_Patch

Updates metadata
for a calendar. This
method supports
patch semantics.

Calendar_Update Updates metadata
for a calendar.

Method Description

Channel_Stop
Stop watching re
sources through this
channel.

Method Description

Color_Get
Returns the color defini
tions for calendars and
events.

Method Description
Event_Delete Deletes an event.
Event_Get Returns an event.

Event_Import

Imports an event.
This operation is
used to add a pri
vate copy of an ex
isting event to a cal
endar.

Event_Insert Creates an event.

Event_Instances
Returns instances of
the specified recur
ring event.

Event_List
Returns events on
the specified calen
dar.

Event_Move

Moves an event to
another calendar,
i.e. changes an
event's organizer.

Event_Patch

Updates an event.
This method sup
ports patch seman
tics. The field values
you specify replace
the existing values.
Fields that you don’t
specify in the re
quest remain un
changed. Array
fields, if specified,
overwrite the exist

COMPONENTS

726

ing arrays; this dis
cards any previous
array elements.

Event_QuickAdd
Creates an event
based on a simple
text string.

Event_Update Updates an event.

Event_Watch Watch for changes
to Events resources.

Method Description

Freebusy_Query
Returns free/busy
information for a set
of calendars.

Method Description

Settings_Get Returns a single user
setting.

Settings_List
Returns all user set
tings for the authenti
cated user.

Settings_Watch Watch for changes to
Settings resources.

COMPONENTS

727

1.
2.

Google Calendar | Load Calendars
The process to get all calendars of your account is very easy, just follow the next steps:

Call the method LoadCalendars.
If method returns True, then you can Access to Calendars property and iterate over the list to get access to
all Calendars.

TsgcHTTPGoogleCloud_Calendar_Client oGoogleCalendar = new TsgcHTTPGoogleCloud_Calendar_Client;

// ... configure OAuth2 options

oGoogleCalendar->GoogleCloudOptions->OAuth2->ClientId = "google ClientId";

oGoogleCalendar->GoogleCloudOptions->OAuth2->ClientSecret = "google ClientSecret";

// ... request calendars

if (oGoogleCalendar->LoadCalendars)

{

 // ... get calendars data

 for (int i = 0; i < oGoogleCalendar.Calendars->Count; i++)

 {

 vCalendarTitle = oGoogleCalendar->Calendars->Calendar[i]->Summary;

 }

}

else

{

 raise Exception->Create("Error Calendar Sync");

}

COMPONENTS

728

1.
2.

Google Calendar | Sync Events
The process to get all calendars of your account is very easy, just follow the next steps:

Call the method LoadEvents and pass the CalendarId as parameter.
If method returns True, then you can Access to Calendars.Events property and iterate over the list to get
access to all Events of the calendar.

TsgcHTTPGoogleCloud_Calendar_Client oGoogleCalendar = new TsgcHTTPGoogleCloud_Calendar_Client;

// ... configure OAuth2 options

oGoogleCalendar->GoogleCloudOptions->OAuth2->ClientId = "google ClientId";

oGoogleCalendar->GoogleCloudOptions->OAuth2->ClientSecret = "google ClientSecret";

// ... request calendars first;

oGoogleCalendar->LoadCalendars;

// ... request events from first calendar

oCalendar = TsgcGoogleCalendarItem(oGoogleCalendar->Calendars->Calendar[0]);

if (oGoogleCalendar->LoadEvents(oCalendar->ID))

{

 // ... get events data

 for (int i = 0; i oCalendar->Events->Count; i++)

 {

 vEventTitle = oCalendar->Events[i]->Summary;

 }

}

else

{

 raise Exception->Create("Error Event Sync");

}

COMPONENTS

729

Google Calendar | RefreshToken
Google Calendar API uses OAuth2 to authenticate against google servers, sgcWebSockets has a component
which handles all the authentication process, but if your application closes and you try to connect again, you have 2
options:

1. Authenticate again using your Google APIs
2. Use the Refresh Token (if still valid), so you avoid the authentication process.

Using RefreshToken

The first time you Authenticate, use OnAuthToken event to save the RefreshToken if exists, you can save in an IN
IFile for example:

void OnGoogleCalendarAuthToken(TObject *Sender, string TokenType, string Token, string Data)

{

 TsgcJSON *oJSON = new TsgcJSON();

 try

 {

 oJSON->Read(Data);

 if Assigned(oJSON->Node["refresh_token'])

 {

 oINI = new TINIFile(ChangeFileExt(Application->ExeName, ".ini"));

 Try

 oINI->WriteString("OAUTH2", "Token", oJSON->Node["refresh_token"]->Value);

 __finally

 {

 oINI->Free;

 }

 }

 }

 __finally

 {

 oJSON->Free;

 }

}

Then when you start your application again, if there is a RefreshToken, call the method RefreshToken and pass the
token as argument (previously you must set the Google Calendar API keys). If successful, you will login to google
servers without re-authenticate again.

GoogleCalendar->RefreshToken("your refresh token here");

COMPONENTS

730

•
•

•
◦
◦
◦

•

Google Calendar | Service Account
The Google Calendar client can work as a service without user interaction, so this is useful when you want to run a
windows service, a daemon...

Google Cloud requires to create a Service Account (instead of OAuth2 credentials) to run this type of projects and
the Google Calendar API requires the service account is using Domain-Wide Delegation to get the required cre
dentials to access the calendars.

You can read more about how create Google Service Accounts.

Once the Google Cloud Account has configured with a service account and linked to a workspace email account
using Domain-Wide delegation, you can configure the Google Calendar client to work with it, following the next
steps:

Set the property GoogleCloudOptions.Authentication the value gcaJWT.
Import the JSON file generated in your Google Cloud Account using the method LoadSettingsFromFile.
This file contains the private key to encrypt the JWT and some other properties required by the client.
After importing the JSON file, the following properties are automatically filled:

ClientEmail: is the service account name
PrivateKeyId: is the id of the private key file
PrivateKey: is the private key file

Finally, set in the property GoogleCloudOptions.JWT.Subject the Workspace email account linked to the
service account.

After configuring the client, you can start to send requests to Google Calendar API without user interaction.

COMPONENTS

731

TsgcUDPClient
TsgcUDPClient implements the UDP Client based on Indy library.

UDP it's a connection less protocol where there is no assurance that message sent arrive to the destination but op
posite to TCP protocol, it's much faster.

1. Drop a TsgcUDPClient component onto the form

2. Set Host and Port (default is 80) to connect to an available UDP Server.

oClient = new TsgcUDPCLient();

oClient->Host = "127.0.0.1";

oClient->Port = 80;

3. You can connect through an HTTP Proxy Server, you need to define proxy properties:

 Host: hostname of the proxy server.
 Port: port number of the proxy server.
 Username: user to authenticate, blank if anonymous.
 Password: password to authenticate, blank if anonymous.

4. If you want, you can handle the events

 OnUDPRead: called when a new message is received from the server. The message is in Bytes format.

 OnUDPException: called when there is any exception in the UDP protocol.

 OnDTLSVerifyPeer: allows to verify if the peer's certificate is correct.

5. Call WriteData method to send any message to the UDP server.

Properties

 Host: IP or DNS name of the server.

 Port: Port used to connect to the host.

 LogFile: if enabled save socket messages to a specified log file, useful for debugging. The access to log file is
not thread safe if it's accessed from several threads.

Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.

FileName: full path to the filename.

UnMaskFrames: by default True, means that saves the websocket messages sent unmasked.

 NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

COMPONENTS

732

 Proxy: here you can define if you want to connect through a Proxy Server, you can connect to the following
proxy servers:

pxyHTTP: HTTP Proxy Server.
pxySocks4: SOCKS4 Proxy Server.
pxySocks4A: SOCKS4A Proxy Server.
pxySocks5: SOCKS5 Proxy Server.

 DTLSOptions: if DTLS property is enabled, here you can customize some DTLS options (*DTLS is only support
ed on Enterprise Edition).

RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica
tion is
OpenSSL_Options: configuration of the openSSL libraries.

APIVersion: allows to define which OpenSSL API will be used. only openSSL API 1.1+ supports
DTLS.

oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

COMPONENTS

733

TsgcUDPServer
TsgcUDPServer implements the UDP Serverbased on Indy library.

UDP it's a connection less protocol where there is no assurance that message sent arrive to the destination but op
posite to TCP protocol, it's much faster.

1. Drop a TsgcUDPServer component onto the form

2. Set the listening Port.

oClient = new TsgcUDPServer();

oClient->Port = 80;

3. To start the server, set the property Active = true.

4. The following events are available:

 OnStartup: when the UDP server start listening.

 OnShutdown: when the UDP server stops listening.

 OnUDPRead: called when a new message is received from the server. The message is in Bytes format.

 OnUDPException: called when there is any exception in the UDP protocol.

 OnDTLSVerifyPeer: allows to verify if the peer's certificate is correct.

Properties

 Bindings: used to manage IP and Ports.

 LogFile: if enabled save socket messages to a specified log file, useful for debugging.

Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.

FileName: full path to the filename.

 NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

 WatchDog: if enabled, restart the server after unexpected disconnection.

Interval: seconds before reconnects.

Attempts: max number of reconnects, if zero, then unlimited.

 DTLSOptions: if DTLS property is enabled, here you can customize some DTLS options (*DTLS is only support
ed on Enterprise Edition).

RootCertFile: path to root certificate file.
CertFile: path to certificate file.

COMPONENTS

734

KeyFile: path to certificate key file.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyCertificate_Options:

FailfIfNoCertificate: if the client did not return a certificate, the TLS/SSL handshake is immediately
terminated with a "handshake failure" alert.
VerifyClientOnce: only request a client certificate on the initial TLS/SSL handshake. Do not ask for a
client certificate again in case of a renegotiation.

VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica
tion is
OpenSSL_Options: configuration of the openSSL libraries.

APIVersion: allows to define which OpenSSL API will be used. only openSSL API 1.1+ supports
DTLS.

oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

COMPONENTS

735

•

•

STUN
STUN (Session Traversal Utilitiies for NAT) it's an IETF protocol used for real-time audio video in IP networks.
STUN is a server-client protocol, a STUN server usually operates on both UPD and TCP and listens on port 3478.

The main purpose of the STUN protocol is to enable a device running behind a NAT discover its public IP and what
type of NAT is.

STUN provides a mechanism to communicate between peers behind a NAT. The peers send a request to a STUN
server to know which is the public IP address and Port. The binding requests sent from client to server are used to
determine the IP and ports bindings allocated by NAT's. The STUN client sends a Binding request to the STUN
server, the server examines the source IP and Port used by client, and returns this information to the client.

The STUN server basically sends 2 types of responses: successful or error, every response has a list of attributes
which contains information about binding IP address, error code, reason of error...

Components

TsgcSTUNClient: it's the client component that implements the STUN protocol and allows to send binding
requests to STUN servers.

TsgcSTUNServer: it's the server component that implements the STUN protocol.

COMPONENTS

736

•
•

•

•

•
•
•

• •

STUN | TsgcSTUNClient
TsgcSTUNClient is the client that implements the STUN protocol and allows to send binding requests to STUN
servers.

The components allows to use UDP and TCP as transport, and when used UDP as transport implements a Re
transmission mechanism to re-send requests if the response not arrived after a small time.

Basic usage

Usually stun servers runs on UDP port 3478 and don't require authentication, so in order to send a STUN request
binding, fill the server properties to allow the client know where connect and Handle the events where the compo
nent will receive the response from server.

Configure the server

Host: the IP or DNS name of the server, example: stun.sgcwebsockets.com
Port: the listening Server port, example: 3478

Call the method SendRequest, to send a request binding to STUN server.

Handle the events

If the server returns a successful response, the event OnSTUNResponseSuccess will be called and you
can access to the Binding information reading the aBinding object.
If the server returns an error, the event OnSTUNResponseError will be called and you can access the Error
Code and Reason reading the aError object.

TsgcSTUNClient oSTUN = new TsgcSTUNClient(this);

oSTUN->Host = "stun.sgcwebsockets.com";

oSTUN->Port = 3478;

oSTUN->SendRequest();

private void OnSTUNResponseSuccess(TObject *Sender, const TsgcSocketConnection *aSocket,

 const TsgcSTUN_Message *aMessage, const TsgcSTUN_ResponseBinding *aBinding)

{

 DoLog("Remote IP: " + aBinding->RemoteIP + ". Remote Port: " + IntToStr(aBinding->RemotePort));

}

private void OnSTUNResponseError(TObject *Sender, const TsgcSocketConnection *aSocket,

 const TsgcSTUN_Message *aMessage, const TsgcSTUN_ResponseError *aError)

{

 DoLog("Error: " + IntToStr(aError->Code) + " " + aError->Reason);

}

Most common uses

Bindings
UDP Retransmissions
Long Term Credentials
Attributes

Methods

There is a single method called SendRequest, which sends a request to STUN Server, requesting binding informa
tion.

COMPONENTS

737

•

•
•

Properties

 Host: it's the IP Address or DNS name of STUN server where the client will send a binding request.

 Port: it's the listening port of STUN server, by default 3478.

 IPVersion: it's the Family Address, by default IPv4.

 Transport: it's the transport used to connect to STUN server, by default UDP.

 STUNOptions: here are defined the specific STUN options of client component

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the client.

Authentication: some STUN servers requires that requests are authenticated.

Credentials: there are 2 types of Authentication: LongTermCredentials and ShortTermCredentials.
By default the requests are not authenticated
Username: the string that identifies the user.
Password: the secret string.

 RetransmissionOptions: when messages are sent using UDP as transport, UDP doesn't includes a mechanism
to know if a message has arrived or not to other peer. This property allows to configure a mechanism to re-send
UDP messages if not arrived after a small time.

Enabled: if enabled, the message will be re-send until receives a confirmation or the maximum number of
retries has been reached.

RTO: retransmission time in milliseconds, by default 500ms. For example, assuming an RTO of 500 ms, re
quests would be sent at times 0 ms, 500 ms, 1500 ms, 3500 ms, 7500 ms, 15500 ms, and 31500 ms.

MaxRetries: Max number of retries, by default 7.

 LogFile: if enabled save stun messages to a specified log file, useful for debugging. The access to log file is not
thread safe if it's accessed from several threads.

Enabled: if enabled every time a message is received and sent by client it will be saved on a file.

FileName: full path to the filename.

 NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Events

 OnSTUNBeforeSend

This event is called before the stun client sends a message to the server. You can access to the message
properties through the aMessage parameter and modify if required.

COMPONENTS

738

 OnSTUNResponseSuccess

When the server processes successfully a request binding, it sends a message with the binding properties
(IP Address, Port and family) and other attributes, this event is called when the client receives this success
ful response.

 OnSTUNResponseError

When there is any error in the response sent by server, this event is called with the error details.

 OnSTUNException

This event is called when there is any exception processing the STUN protocol messages.

COMPONENTS

739

STUN Client | UDP Retransmissions
When running STUN over UDP, it's possible that the STUN message might be dropped by the network. Reliability
of STUN request/response transactions is accomplished through retransmissions of the request message by the
client application itself.

A client should retransmit a STUN request message starting with an interval of RTO ("Retransmission TimeOut"),
doubling after each retransmission. The RTO is an estimate of the round-trip time.

By default, the sgcWebSockets STUN Client is already configured with a RTO of 500 ms and a Max Retries value
of 7.

For example, assuming an RTO of 500 ms, requests would be sent at times 0 ms, 500 ms, 1500 ms, 3500 ms,
7500 ms, 15500 ms, and 31500 ms. If the client has not received a response after 39500 ms, the client will consid
er the transaction to have timed out.

TsgcSTUNClient oSTUN = new TsgcSTUNClient(this);

oSTUN->Host = "stun.sgcwebsockets.com";

oSTUN->Port = 3478;

oSTUN->RetransmissionOptions->Enabled = true;

oSTUN->RetransmissionOptions->RTO = 500;

oSTUN->RetransmissionOptions->MaxRetries = 7;

oSTUN->SendRequest();

COMPONENTS

740

STUN Client | Long Term Credentials
The long-term credential mechanism relies on a long-term credential, in the form of a username and password that
are shared between client and server. The credential is considered long-term since it is assumed that it is provi
sioned for a user and remains in effect until the user is no longer a subscriber of the system or until it is changed.

You can configure the Long-term credentials in the sgcWebSockets STUN client using the following code.

TsgcSTUNClient oSTUN = new TsgcSTUNClient(this);

oSTUN->Host = "stun.sgcwebsockets.com";

oSTUN->Port = 3478;

oSTUN->STUNOptions->Authentication->Credentials = stauLongTermCredential;

oSTUN->STUNOptions->Authentication->Username = "user_name";

oSTUN->STUNOptions->Authentication->Password = "secret";

oSTUN->SendRequest();

If server requires long-term credentials and the credentials sent by the client are wrong, the will receive a 401
Unauthorized error as a response in the OnSTUNResponseError event.

COMPONENTS

741

STUN Client | Attributes
Every time a server sends a message to client, as a response message to a request binding, the STUN message
contains a list of attributes with information about the response.

You can access to these attributes, using the TsgcSTUN_Message class and accessing to Attributes properties,
which contains a list of TsgcSTUN_Attribute with useful information.

private void OnSTUNResponseSuccess(TObject * Sender, const TsgcSocketConnection *aSocket,

 const TsgcSTUN_Message *aMessage, const sgcSTUN_ResponseBinding *aBinding)

{

 DoLog("#binding: " + aBinding->RemoteIP + ":" + IntToStr(aBinding->RemotePort));

 for (int i = 0; i < aMessage->Attributes->Count; i++)

 {

 switch (TsgcSTUN_Attribute(aMessage.Attributes.Items[i])->AttributeType)

 stmaFingerprint:

 DoLog("#fingerprint: " + IntToStr(dynamic_cast<TsgcSTUN_Attribute_FINGERPRINT*>

 (aMessage->Attributes.Items[i])->Fingerprint));

 stmaSoftware:

 DoLog("#software: " + dynamic_cast<TsgcSTUN_Attribute_SOFTWARE>

 (aMessage->Attributes->Items[i])->Software);

 stmaResponse_Origin:

 DoLog("#response_origin: " + dynamic_cast<TsgcSTUN_Attribute_RESPONSE_ORIGIN*>

 (aMessage->Attributes->Items[i])->Address + ":" +

 IntToStr(dynamic_cast<TsgcSTUN_Attribute_RESPONSE_ORIGIN*>(aMessage->Attributes->Items

 [i])->Port));

 end;

 }

}

COMPONENTS

742

•

•
•
•

•
•

STUN | TsgcSTUNServer
TsgcSTUNServer is the server that implements the STUN protocol and allows to process binding requests from
STUN clients.

The STUN server can be configured with or without Authentication, can verify Fingerprint Attribute, send an alter
nate server and more.

Basic usage

Usually stun servers runs on UDP port 3478 and don't require authentication, so in order to configure a STUN serv
er, set the listening port (by default 3478) and start the server.

Configure the server

Port: the listening Server port, example: 3478

Set the property Active = True to start the STUN server.

TsgcSTUNServer oSTUN = new TsgcSTUNServer();

oSTUN->Port = 3478;

oSTUN->Active = true;

Most common uses

Configurations
Long-Term Credentials
Alternate Server

Properties

 Active: set the property to True to Start the STUN server and set to False to Stop the Server.

 Host: it's the IP Address or DNS name of STUN server.

 Port: it's the listening port of STUN server, by default 3478.

 IPVersion: it's the Family Address, by default IPv4.

 STUNOptions: here are defined the specific STUN options of server component

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the server.

Authentication: here you can configure if the server requires Authentication requests to send binding re
sponses.

Enabled: set to True if the server requires Authentication requests, by default false.
LongTermCredentials: Enable if the server supports Long-Term credentials. The long-term creden
tial mechanism relies on a long-term credential, in the form of a username and password that are
shared between client and server.

COMPONENTS

743

•
•
•

•

•
•

Enabled: set to True if the server requires Long-Term credentials.
Realm: the string of the realm sent to client.
StaleNonce: time in seconds after the nonce is no longer valid.

BindingAttributes: when the server sends a successful response after a binding request, here you can cus
tomize which attributes will be sent to the client.

OtherAddress: if enabled and the server binds to more than one address, this attribute will be
sent with all other addresses except the default one.
ResponseOrigin: is the Local IP of the server to send the response.
SourceAddress: is the Local IP of the server to send the response.

 LogFile: if enabled save stun messages to a specified log file, useful for debugging.

Enabled: if enabled every time a message is received and sent by server it will be saved on a file.

FileName: full path to the filename.

 NotifyEvents: defines which mode to notify the events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Events

 OnSTUNRequestAuthorization

This event is called when a binding request is received and requires authentication.

 OnSTUNRequestSuccess

When the server processes successfully a request binding, it sends a message with the binding properties
(IP Address, Port and family) and other attributes, this event is called before the message is sent to client.

 OnSTUNRequestError

When there is any error in the response sent by server, , this event is called before the message is sent to
client.

 OnSTUNException

This event is called when there is any exception processing the STUN protocol messages.

COMPONENTS

744

STUN Server | Long-Term Credentials
Usually STUN Servers are configured without Authentication, so any STUN client can send a binding request and
expect a response from server without Authentication.

sgcWebSockets STUN Server supports Long-Term Credentials, so you can configure TsgcSTUNServer to only al
low binding requests with Long-Term credentials info.

To configure it, access to STUNOptions.Authorization property and enable it.
Then access to LongTermCredentials property and enabled it. By default, this type of authorization is already con
figured with a Realm string and with a default StaleNonce value of 10 minutes (= 600 seconds).

TsgcSTUNServer oSTUN = new TsgcSTUNServer();

oSTUN->STUNOptions->Authentication->Enabled = true;

oSTUN->STUNOptions->Authentication->LongTermCredentials->Enabled = true;

oSTUN->STUNOptions->Authentication->ongTermCredentials->Realm = "sgcWebSockets";

oSTUN->STUNOptions->Authentication->LongTermCredentials->StaleNonce = 600;

oSTUN->Port = 3478;

oSTUN->Active = true;

private void OnSTUNRequestAuthorization(TObject *Sender, const TsgcSTUN_Message *aRequest,

 const string aUsername, const string aRealm, ref string Password)

{

 if (aUsername == "my-user")

 {

 Password = "my-password";

 }

}

COMPONENTS

745

STUN Server | Alternate Server
The alternate server represents an alternate transport address identifying a different STUN server that the STUN
client should try.

The STUN Server can be configured to send an alternate server as a response to a binding request, to configure
this behaviour, just access to STUNOptions.BindingAttributes.AlternateServer property and configure here the val
ues required.

TsgcSTUNServer oSTUN = new TsgcSTUNServer();

oSTUN->Port = 3478;

oSTUN->STUNOptions->BindingAttributes->AlternateServer->Enabled = true;

oSTUN->STUNOptions->BindingAttributes->AlternateServer->IPAddress = "80.54.54.1";

oSTUN->TUNOptions->BindingAttributes->AlternateServer->Port = 3478;

oSTUN->Active = true;

When the client receives the Alternate Server response attribute, it will try to send a request binding to the new
server.

COMPONENTS

746

•

•

TURN
Traversal Using Relays around NAT (TURN) protocol enables a server to relay data packets between devices.

If the public IP address of both the caller and callee is not discovered, TURN provides a fallback technique to relay
the call between endpoints.

Connecting a WebRTC session is an orchestrated effort done with the assistance of multiple WebRTC servers. The
NAT traversal servers in WebRTC are in charge of making sure the media gets properly connected. These servers
are STUN and TURN.

How WebRTC sessions connect

Directly

If both devices are on the local network, then there’s no special effort needed to be done to get them connected to
each other. If one device has the local IP address of the other device, then they can communicate with each other
directly.

Directly with public IP Address

Connecting WebRTC directly using public IP address obtained via STUN protocol.

Route through a TURN Server

When peers are behind a NAT and there are Firewalls, direct connection is not possible, so a TURN server is re
quired to route the data between the peers.

Components

TsgcTURNClient: it's the client component that implements the TURN protocol and allows to Allocate, cre
ate permissions, Send Indications... to TURN Server.

TsgcTURNServer: it's the server component that implements the TURN protocol.

COMPONENTS

747

•
•

•

•

•
•
•

•
•

•
•

TURN | TsgcTURNClient
TsgcTURNClient is the client that implements the TURN protocol and allows to send allocation requests to TURN
servers. The client inherits from STUN Client, so all methods supported by STUN client are already supported by
TURN Client.

Basic usage

Usually TURN servers runs on UDP port 3478 and don't require authentication, so in order to send a TURN re
quest, fill the server properties to allow the client know where connect and Handle the events where the component
will receive the response from server.

Configure the server

Host: the IP or DNS name of the server, example: turn.sgcwebsockets.com
Port: the listening Server port, example: 3478

Call the method Allocate, to send a request to allocate an IP Address and a Port to the TURN server.

Handle the events

If the server returns a successful response, the event OnTURNAllocateSuccess will be called and you can
access to the Allocation information reading the aAllocation object.
If the server returns an error, the event OnSTUNResponseError will be called and you can access the Error
Code and Reason reading the aError object.

TsgcTURNClient oTURN = new TsgcTURNClient(this);

oTURN->Host = "turn.sgcwebsockets.com";

oTURN->Port = 3478;

oTURN->Allocate();

private void OnTURNAllocate(TObject *Sender, const TsgcSocketConnection *aSocket,

 const TsgcSTUN_Message *aMessage, const TsgcTURN_ResponseAllocation *aAllocation)

{

 DoLog("Relayed IP: " + aAllocation->RelayedIP + ". Relayed Port: " + IntToStr(aAllocation->RelayedPort));

}

private void OnSTUNResponseError(TObject *Sender, const TsgcSTUN_Message *aMessage,

const TsgcSTUN_ResponseError *aError)

{

 DoLog("Error: " + IntToStr(aError->Code) + " " + aError->Reason);

}

Most common uses

Allocation
Allocate IP Address
Create Permissions

Indications
Send Indication

Channels
TURN Client Channels

TURN Relay Data

There are basically 2 ways to send data between peers:

COMPONENTS

748

1. Send Indications, which encapsulates the data in a STUN packet. Use the method SendIndication to send an
indication to other peer.

2. Use Channel Data, it's a more efficient way to send data between peers because the packet size is smaller than
indications. Use SendChannelData method to send a channel data to other peer.

When a TURN server receives a packet in a Relayed IP Address from an IP Address with an active permission, if
there is channel data bound to the peer IP Address, the TURN client will receive the data in the event OnTURN
ChannelData. But if there is no channel, the TURN client will receive the data in the event OnTURNData.

Methods

Allocate

This method sends a request to the server to allocate an IP Address and a Port which will be used to relay date be
tween the peers.

If the server can allocate successfully an IP Address and a Port, the event OnTURNAllocate event will be called. If
not, the OnSTUNRequestError event will be called.

The client saves in the Allocation property of the client, the data returned by server about the allocated IP Ad
dress.

Refresh

If there is an active allocation, the client can refresh it sending a Refresh request.

This method has a parameter called Lifetime, if the value is zero, the allocation will expire immediately. If the value
is greater of zero, it means the number of seconds to expiry.

If the result is successful, the event OnTURNRefresh will be called.

CreatePermission

This method creates a new permission fo the IP Address set as an argument of the CreatePermission method. If
the permission already exists for this IP, it will be refreshed by the server.

If the result is successful, the event OnCreatePermission will be called.

SendIndication

This method sends a data to the peer identified as PeerIP and PeerPort. This method requires there is an active
permission for this IP in the TURN server.

ChannelBind

This method sends a request to the server to create a new channel to communicate with the peer identified as
PeerIP and PeerPort.

if the result is successful, the event OnChannelBind will be called. You can access to the channel-id assigned,
reading the parameter aChannelBind of the event.

SendChannelData

This method sends data to a peer using a ChannelId. This method requires the channel exists and is active.

COMPONENTS

749

•

•
•

•

•
•
•

•
•
•

Properties

 Host: it's the IP Address or DNS name of TURN server where the client will send a binding request.

 Port: it's the listening port of TURN server, by default 3478.

 IPVersion: it's the Family Address, by default IPv4.

 Transport: it's the transport used to connect to TURN server, by default UDP.

 STUNOptions: here are defined the specific STUN options of client component

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the client.

Authentication: some STUN servers requires that requests are authenticated.

Credentials: there are 2 types of Authentication: LongTermCredentials and ShortTermCredentials.
By default the requests are not authenticated
Username: the string that identifies the user.
Password: the secret string.

 TURNOptions: here are defined the specific TURN options of client component

Allocation: here are defined the Allocation properties

Lifetime: default lifetime in seconds, by default 600 seconds.

Authentication: usually TURN servers are user protected.

Credentials: by default Long-Term credentials is enabled
Username: the string that identifies the user.
Password: the secret string.

AutoRefresh: when a new allocation is created, requires to be refreshed in order to be used by the peers.
Here you can define which methods are automatically refreshed by the TURN Client Component.

Allocations
Channels
Permissions

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the client.

 RetransmissionOptions: when messages are sent using UDP as transport, UDP doesn't includes a mechanism
to know if a message has arrived or not to other peer. This property allows to configure a mechanism to re-send
UDP messages if not arrived after a small time.

Enabled: if enabled, the message will be re-send until receives a confirmation or the maximum number of
retries has been reached.

RTO: retransmission time in milliseconds, by default 500ms. For example, assuming an RTO of 500 ms, re
quests would be sent at times 0 ms, 500 ms, 1500 ms, 3500 ms, 7500 ms, 15500 ms, and 31500 ms.

MaxRetries: Max number of retries, by default 7.

 LogFile: if enabled save stun messages to a specified log file, useful for debugging. The access to log file is not
thread safe if it's accessed from several threads.

COMPONENTS

750

Enabled: if enabled every time a message is received and sent by client it will be saved on a file.

FileName: full path to the filename.

 NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Events

The TURN client inherits from STUN Client the events: OnSTUNResponseSuccess, OnSTUNResponseError, On
STUNException and OnSTUNBeforeSend.

Additionally, includes the following events to handle all TURN messages.

OnTURNAllocate

 This event is called after a successful IP Address allocation in the TURN server.

OnTURNCreatePermission

 This event is called after creating a new permission in the TURN server.

OnTURNRefresh

 This event is called after receiving a successful refresh response from the TURN Server.

OnTURNDataIndication

 The event is called when the client receives a DATA Indication from other peer.

OnTURNChannelBind

 This event is called when the server creates a new channel. Returns the new channel-id created.

OnTURNChannelData

 The event is called when the client receives new Data from a Channel previously created.

COMPONENTS

751

TURN Client | Allocate IP Address
TURN Protocol allows to use a Relayed IP Address to exchange data between peers that are behind NATs.

To create a new Relayed IP Address on a TURN server, the client must first call the method Allocate, this method
sends a Request to the TURN server to create a new Relayed IP Address, if the TURN server can create a new
Relayed IP Address, the client will receive a successful response. The client will be able to communicate with other
peers during the time defined in the Allocation's lifetime.

TsgcTURNClient oTURN = new TsgcTURNClient(this);

oTURN->Host = "turn.sgcwebsockets.com";

oTURN->Port = 3478;

oTURN->Allocate();

private void OnTURNAllocate(TObject *Sender, const TsgcSocketConnection *aSocket,

const TsgcSTUN_Message *aMessage, const TsgcTURN_ResponseAllocation *aAllocation)

{

 DoLog("Relayed IP: " + aAllocation->RelayedIP + ". Relayed Port: " +

 IntToStr(aAllocation->RelayedPort));

}

private void OnSTUNResponseError(TObject *Sender, const TsgcSTUN_Message *aMessage,

const TsgcSTUN_ResponseError *aError)

{

 DoLog("Error: " + IntToStr(aError->Code) + " " + aError->Reason);

}

The lifetime can be updated to avoid expiration using the method Refresh. The Lifetime is the number of seconds
to expire. If the value is zero the Allocation will be deleted.

oTURN->Refresh(600);

COMPONENTS

752

TURN Client | Create Permissions
When a new Allocation is created in a TURN server, this allocation cannot process any incoming packet from other
peers if has no permissions. So, in order to allow other peers to communicate using a Relayed IP Address, first the
TURN Client must create permissions for the IP Addresses that are allowed to exchange Data.

To Create a new Permission, just call the method CreatePermission and pass as a parameter the IP Address of
the peer. If the Peer IP already exists on the TURN server, it will be refreshed, if not, it will be created. Permissions
expire after 5 minutes unless are refreshed.

The TURN client, only allows to call the method CreatePermission if exists an active allocation.

If the permission is created successfully, the event OnTURNCreatePermission is called.

oTURN->CreatePermission("80.147.23.157");

void OnTURNCreatePermission(TObject *Sender; const TsgcSocketConnection *aSocket;

 const TsgcSTUN_Message *aMessage; const TsgcTURN_ResponseCreatePermission *aCreatePermission)

{

 DoLog("#Create Permission: " + aCreatePermission->IPAddresses->Text);

}

COMPONENTS

753

TURN Client | Send Indication
TURN Protocol supports 2 mechanisms for sending and receiving data from peers, one of them is Send and Data
mechanisms.

The TURN client can use the SendIndication method to send data to the server for relaying to a peer. The TURN
client must ensure that there is a permission for the Peer IP Address where the Send Indication will be sent.

The responses to a SendIndication method, are received OnTURNDataIndication event.

oTURN->SendIndication("80.147.23.157", 5000, "random data");

void OnTURNDataIndication(TObject *Sender, const TsgcSocketConnection *aSocket,

 const TsgcSTUN_Message *aMessage, const TsgcTURN_ResponseDataIndication *aDataIndication)

{

 DoLog("#Data Indication: [" + aDataIndication->PeerIP + ":" + IntToStr(aDataIndication->PeerPort) + "] " +

 sgcGetStringFromBytes(aDataIndication.Data));

}

COMPONENTS

754

TURN Client | Channels
Channels provide a way for the TURN Client and Server to send application data using ChannelData messages,
which have less overhead than Send and Data Indications.

Before use ChannelData messages to exchange data between peers, the TURN client must create a new channel,
to do this, just call the method ChannelBind passing the Peer IP Address and Port as parameters.

If the TURN server can bind a new channel, the TURN client will receive a successful response OnTURNChannel
Bind event.

oTURN->SendIndication("80.147.23.157", 5000);

void OnTURNChannelBind(TObject *Sender, const TsgcSocketConnection *aSocket,

 const TsgcSTUN_Message *aMessage, const TsgcTURN_ResponseChannelBind *aChannelBind)

{

 DoLog("#Channel Bind: " + IntToStr(aChannelBind->Channel));

}

A channel binding lasts for 10 minutes unless refreshed. To refresh a channel just call ChannelBind method again.

When the TURN client receives a new ChannelMessage, the event OnTURNChannelData is called.

void OnTURNChannelData(TObject *Sender, const TsgcSocketConnection *aSocket,

 const TsgcTURNChannelData *aChannelData)

{

 DoLog("#Channel Data: [" + IntToStr(aChannelData->ChannelID) + "] " +

 sgcGetStringFromBytes(aChannelData->Data));

}

COMPONENTS

755

•
•
•

•
•

•
•

TURN | TsgcTURNServer
TsgcTURNServer is the server that implements the TURN protocol and allows to process requests from TURN
clients. The component inherits from TsgcSTUNServer, so all methods and properties are available on Tsgc
TURNServer.

TURN Server supports Long-Term Authentication, Allocation, Permissions, Channel Data and more.

Basic usage

Usually TURN servers runs on UDP port 3478 and require Long-Term credentials, so in order to configure a TURN
server, set the listening port (by default 3478) and start the server.

Configure the server

Port: the listening Server port, example: 3478
Define the Long-Term Credentials properties in TURNOptions.Authentication.LongTermCredentials
Handle the OnSTUNRequestAuthorization to set the password when a TURN client sends a request to
TURN Server.

Set the property Active = True to start the STUN server.

TsgcTURNServer oTURN = new TsgcTURNServer();

oTURN->Port := 3478;

oTURN->TURNOptions->Authentication->Enabled = true;

oTURN->TURNOptions->Authentication->LongTermCredentials->Enabled = true;

oTURN->TURNOptions->Authentication->LongTermCredentials->Realm = "esegece.com";

oTURN->Active = true;

void OnSTUNRequestAuthorization(TObject *Sender, const TsgcSTUN_Message *aRequest,

 const string aUsername, const string aRealm, ref string Password)

{

 if ((aUsername == "user") & (aRealm == "esegece.com"))

 {

 Password = "password";

 }

}

Most common uses

Configurations
Long-Term Credentials

Allocations
Allocations

Properties

 Active: set the property to True to Start the TURN server and set to False to Stop the Server.

 Host: it's the IP Address or DNS name of TURN server.

 Port: it's the listening port of TURN server, by default 3478.

 IPVersion: it's the Family Address, by default IPv4.

 STUNOptions: here are defined the specific options for STUN Requests

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack
ets of other protocols when the two are multiplexed on the same transport address.

COMPONENTS

756

•
•

•
•
•

•

•
•

•
•

•
•
•
•

•
•

•
•
•

Software: if enabled, sends an attribute with the name of the software being used by the server.

Authentication: here you can configure if the server requires Authentication requests to send binding re
sponses.

Enabled: set to True if the server requires Authentication requests, by default false.
LongTermCredentials: Enable if the server supports Long-Term credentials. The long-term creden
tial mechanism relies on a long-term credential, in the form of a username and password that are
shared between client and server.

Enabled: set to True if the server requires Long-Term credentials.
Realm: the string of the realm sent to client.
StaleNonce: time in seconds after the nonce is no longer valid.

BindingAttributes: when the server sends a successful response after a binding request, here you can cus
tomize which attributes will be sent to the client.

OtherAddress: if enabled and the server binds to more than one address, this attribute will be
sent with all other addresses except the default one.
ResponseOrigin: is the Local IP of the server to send the response.
SourceAddress: is the Local IP of the server to send the response.

 TURNOptions: here are defined the specific options for TURN Requests

Fingerprint: if enabled, the message includes a fingerprint that aids to identify TURN messages from pack
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the server.

Allocation: when a new allocation is created, the server takes from this property the default values.

DefaultLifeTime: value in seconds of default LifeTime.
MaxLifeTime: max value of LifeTime, if a TURN client requests a value greater of this value, the val
ue returned will be the MaxLifeTime.
MaxUserAllocations: max number of allocations.
MinPort: Minimum range port of allocations.
MaxPort: Maximum range port of allocations.
RelayIP: if defined, this will be the Relayed IP Address.

Authentication: usually TURN servers require Long-Term Credentials authentication.

Enabled: set to True if the server requires Authentication requests, by default false.
LongTermCredentials: Enable if the server supports Long-Term credentials. The long-term creden
tial mechanism relies on a long-term credential, in the form of a username and password that are
shared between client and server.

Enabled: set to True if the server requires Long-Term credentials.
Realm: the string of the realm sent to client.
StaleNonce: time in seconds after the nonce is no longer valid.

 LogFile: if enabled save stun messages to a specified log file, useful for debugging.

Enabled: if enabled every time a message is received and sent by server it will be saved on a file.

FileName: full path to the filename.

 NotifyEvents: defines which mode to notify the events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro
nize with the main thread to notify these events.

COMPONENTS

757

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Events

The TURN server inherits from STUN Server the events: OnSTUNRequestAuthorization, OnSTUNRequestSuc
cess, OnSTUNRequestError and OnSTUNException.

Additionally, includes the following events to handle all TURN messages.

 OnTURNBeforeAllocate

The event is called before create a new Allocation. It provides the IP Address and Port used to Relay Data,
you can reject if don't want to accept the Allocation.

 OnTURNCreateAllocation

The event is called after creating successfully an Allocation.

 OnTURNDeleteAllocation

The event is called after remove an already created Allocation.

 OnTURNMessageDiscarded

The event is called when a message received by server is discarded.

 OnTURNChannelDataDiscarded

The event is called when a Channel Data message is discarded.

 OnTURNBeforeRelayIndication

Event fired when the server receives an indication that must be relayed to other peer, you can use this
method to intercept the bytes sent to the peer (to capture audio/video for example).

 OnTURNBeforeRelayChannelData

Event fired when the server receives a channel data message that must be relayed to other peer, you can
use this method to intercept the bytes sent to the peer (to capture audio/video for example).

COMPONENTS

758

TURN Server | Long Term Credentials
Usually TURN Servers are configured WITH Authentication for TURN requests and without Authentication for
STUN requests.

sgcWebSockets TURN Server supports Long-Term Credentials, so you can configure TsgcTURNServer to only al
low requests with Long-Term credentials info.

To configure it, access to TURNOptions.Authorization property and enable it.
Then access to LongTermCredentials property and enabled it. By default, this type of authorization is already con
figured with a Realm string and with a default StaleNonce value of 10 minutes (= 600 seconds).

TsgcTURNServer oTURN = new TsgcTURNServer();

oTURN->STUNOptions->Authentication->Enabled = false;

oTURN->TURNOptions->Authentication->Enabled = true;

oTURN->TURNOptions->Authentication->LongTermCredentials->Enabled = true;

oTURN->TURNOptions->Authentication->LongTermCredentials->Realm = "sgcWebSockets";

oTURN->TURNOptions->Authentication->LongTermCredentials->StaleNonce = 600;

oTURN->Port = 3478;

oTURN->Active = true;

private void OnSTUNRequestAuthorization(TObject *Sender, const TsgcSTUN_Message *aRequest,

 const string aUsername, const string aRealm, ref string Password)

{

 if ((aUsername == "my-user") & (aRealm == "sgcWebSockets"))

 {

 Password = "my-password";

 }

}

COMPONENTS

759

•
•
•
•
•
•

TURN Server | Allocations
All TURN operations revolve around allocations and all TURN messages are associated with an Allocation. An allo
cation consists of:

The relayed transport address
The 5-Tuple: client's IP Address, client's IP port, server IP address, server port and transport protocol.
The authentication information.
The time-to-expiry for each relayed transport address.
A list of permissions for each relayed transport address.
A list of channels bindings for each relayed transport address.

When a TURN client sends an Allocate request, this TURN message is processed by server and tries to create a
new Relayed Transport Address. By default, if there is any available UDP port, it will create a new Relayed Ad
dress, but you can use OnTURNBeforeAllocate event to reject a new Allocation request.

void OnTURNBeforeAllocate(TObject *Sender, const TsgcSocketConnection *aSocket,

 const string aIP, Word aPort, ref bool Reject)

{

 if (your own rules) == false

 {

 Reject = false;

 }

}

If the process continues, the server creates a new allocation and the event OnTURNCreateAllocation is called.
This event provides information about the Allocation through the class TsgcTURNAllocationItem.

void OnTURNCreateAllocation(TObject *Sender, const TsgcSocketConnection *aSocket,

 const TsgcTURNAllocationItem *Allocation)

{

 DoLog("New Allocation: " + Allocation->RelayIP + ":" + IntToStr(Allocation->RelayPort));

}

When the Allocation expires or is deleted receiving a Refresh Request from client with a lifetime of zero, the event
OnTURNDeleteAllocation event is fired.

void OnTURNDeleteAllocation(TObject *Sender, const TsgcSocketConnection *aSocket,

 const TsgcTURNAllocationItem *Allocation)

{

 DoLog("Allocation Deleted: " + Allocation->RelayIP + ":" + IntToStr(Allocation->RelayPort));

}

COMPONENTS

760

•

ICE
Interactive Connectivity Establishment (ICE) Protocol is used for NAT transversal. ICE uses a combination of meth
ods including Session Traversal Utility for NAT (STUN) and Traversal Using Relay NAT (TURN). The presence of a
Network Address Translator (NAT) presents problems for Voice over IP (VoIP) and WebRTC implementations.

Components

TsgcICEClient: it's the client component that implements the ICE protocol and allows to obtain, exchange
and verify candidates.

COMPONENTS

761

•

•

•

•
•
•

TsgcICEClient
TsgcICEClient is the client that implements the ICE protocol and allows to send allocation requests to TURN
servers. The client requires the TsgcTURNClient and a TsgcWebSocketClient.

Configuration

The ICE client has the following properties

ICEOptions.CheckList.MaxCandidates: is the max number of candidates that can handle the client, by de
fault 100.
ICEOptions.GatherCandidates.STUN: by default true, will obtain the candidates using the STUN protocol
(reflexive address).
ICEOptions.GatherCandidates.TURN: by default true, will obtain the candidates using the TURN protocol
(relayed address).

The ICE client requires a TURN client to gather the candidates, so link a TsgcTURNClient to the TURN property of
TsgcICEClient before call the method GatherCandidates. You can obtain more information about how configure
the TURN client.

TsgcICEClient *oICE = new TsgcICEClient()

TsgcTURNClient *oTURN = new TsgcTURNClient();

oTURN->Host = "www.esegece.com";

oTURN->Port = 3478;

oTURN->TURNOptions->Authentication->Credentials = stauLongTermCredential;

oTURN->TURNOptions->Authentication->Username = "sgc";

oTURN->TURNOptions->Authentication->Password = "secret";

oICE->GatherCandidates();

Most common uses

Candidates
Gather Candidates
Pair Candidates

Methods

GatherCandidates

Call this method to gather the candidates from local, STUN and TURN protocols. The candidates will be received in
the event OnICECandidate.

SetLocalDescription

Use this method to set the SDP local description.

SetRemoteDescription

Use this method to set the SDP remote description received from the other peer.

ProcessCandidates

COMPONENTS

762

Once you've set received the local and remote candidates, call this method to start the process to find a valid pair
candidate. The result of every candidate pair will be received in the events OnICECandidatePairNominated and
OnICECandidatePairFailes

Events

OnICECandidate

This event is called when the client obtains a new candidate, can be local, obtained using the STUN protocol or ob
tained using the TURN protocol

OnICECandidateError

This event is called if there is any error obtaining the candidate.

OnICECandidatePairNominated

This event is called when a candidate pair has successfully connect between both peers.

OnICECandidatePairFailed

This event is called when both candidate pairs can not connect

OnICEException

This event is called when there is any unhandled exception.

OnICEReceiveBindingRequest

This event is called when the ICE client receives a STUN Binding request during the process of validating the can
didate pairs.

COMPONENTS

763

ICE | Gather Candidates
ICE starts gathering candidates, usually will obtain local IP Addresses, reflexive address using STUN protocol and
relayed address using TURN protocol.

To start the gathering call the method GatherCandidates, this will start an internal timer where first will obtain the
local IP addresses, then will connect to the STUN server to obtain the reflexive IP Address and finally will connect
to TURN server to obtain the relayed IP Address.

Every time a new candidate is obtained, the event OnICECandidate will be called asynchronously, if there is any
error while gathering the candidates, the event OnICECandidateError will be triggered.

TsgcICEClient *oICE = new TsgcICEClient()

TsgcTURNClient *oTURN = new TsgcTURNClient();

oTURN->Host = "www.esegece.com";

oTURN->Port = 3478;

oTURN->TURNOptions->Authentication->Credentials = stauLongTermCredential;

oTURN->TURNOptions->Authentication->Username = "sgc";

oTURN->TURNOptions->Authentication->Password = "secret";

oICE->GatherCandidates();

void OnICECandidate(TObject *Sender, const TsgcICE_Candidate *aCandidate)

{

 DoLog("[#Candidate] " + aCandidate->AsString);

}

COMPONENTS

764

ICE | Pair Candidates
Once the Candidates have been obtained (local and remote) and the SDP descriptions have been set, the ICE
caller client can start to process all the pair candidates to find those that can exchange data. To start this process,
call the method ProcessCandidates.

The method ProcessCandidates evaluate all pair candidates sending a STUN binding packet, if the STUN binding
packet is received as an answer from the other peer, means the connection is possible between those 2 peers, so
the pair is nominated.

When the pairing is successful, the event OnICECandidatePairNominated is triggered asynchronously. If the
pairing has an error or cannot connect after a timeout, the event OnICECandidatePairFailed is triggered.

COMPONENTS

765

•
•
•
•

•

•
•

•
•
•

•
•
•
•

•
•
•
•

TsgcRTCPeerConnection
[*Currently this component is in development]

The TsgcRTCPeerConnection is a client component that allows to connect peers using P2P through UDP. The flow
can be break into 4 steps:

Signaling
Connecting
Securing
Communicating

To implement those steps, the client make use of the following protocols:

WebSocket: this protocol is used for signaling, the clients exchange the Session Description Protocol and
the local, public and Relayed IP addresses.
UDP: this is the transport protocol, the client use UDP to send/receive messages between peers.
DTLS: similar to TLS, is an encryption specification that secures the message between peers, avoiding
third-parties to read/write messages.
STUN: protocol to obtain public ip address.
TURN: protocol to relay ip address when peers are behind NATs.
ICE: protocol to find which IP Address and Ports are accessible between peers.

Signaling

When the client starts it has no idea who is going to communicate with and what they are going to communicate
about. Signaling uses the SDP (Session Description Protocol) which contains details like:

IPs and Ports the peer is reachable
Fingerprint's Certificate used to secure the communication.
User and Password.
...

The Signaling makes use of the WebSocket protocol to exchange the data, it works through a subprotocol and it's
implemented in the TsgcWSPServer_RTCPeerConnection component on server side.
The TsgcRTCPeerConnection already creates internally a websocket client
with TsgcWSPClient_RTCPeerConnection attached.

To obtain the IPs and Ports, the client makes use of the STUN/TURN protocols to obtain this information. So a
STUN/TURN server is required too.

Links:

RTCPeerConnection WebSocket Server
RTCPeerConnection WebSocket Client
RTCPeerConnection STUN TURN
RTCPeerConnection Signaling

Connecting

Once the 2 peers now the candidates and SDPs, the client uses another standard protocol called ICE.

ICE (Interactive Connection Establishment) allows the establishment of a connection between 2 peers. The peers
can be in the same network or behind a NAT... ICE is a solution to establishing a direct connection without a central
server. If the connection can not be P2P, ICE will use TURN to relay the data using a TURN server.

Once ICE finds a valid candidate that can connect between 2 peers, then the next step is encrypt the communica
tion

COMPONENTS

766

•

•

•
•

•

Links:
RTCPeerConnection ICE

Securing

After the peers have connected, the communication must be secure. This is done using DTLS, which is a crypto
graphic protocol used to secure communication over UDP.

Once the DTLS handshake has been successfully processed, another protocol is used, SRTP (Secure Real-Time
Transport Protocol), currently SRTP is not implemented.

Links:

RTCPeerConnection DTLS

Communicating

Once the 2 peers are using a secure protocol, the communication is done using 2 protocols:

RTP: Real Time Transport Protocol: used to exchange media encrypted with SRTP.
SCTP: Stream Control Transmission Protocol, used to send and receive DataChannel messages encrypted
with dTLS.

Currently these protocols are not implemented, but you can send/receive data using DTLS over UDP.

Links:

RTCPeerConnection Data

COMPONENTS

767

RTCPeerConnection | WebSocket Server
The TsgcRTCPeerConnection client requires a WebSocket Server for signaling. The client makes use of the Web
Socket protocol to exchange the SDP of the peers and the candidates (IPs and Ports), which will allow to communi
cate between peers.

To configure a WebSocket server you can use any of the WebSocket servers availables in the sgcWebSockets li
brary and attach a TsgcWSPServer_RTCPeerConnection which is the sub-protocol used by the RTCPeerCon
nection.

TsgcWebSocketServer *oServer = new TsgcWebSocketServer();

TsgcWSPServer_RTCPeerConnection *oProtocol = new TsgcWSPServer_RTCPeerConnection();

oProtocol->Server = oServer;

oServer->Port = 8080;

oServer->Active = true;

Every time a new websocket client connects to the websocket server, the server will check if there is any other peer
listening on the same channel and will forward the data accordingly.

COMPONENTS

768

•
•
•
•

RTCConnection | WebSocket Client
The RTCPeerConnection creates internally a websocket client with a custom sub-protocol to communicate to a
websocket server. In the RTCOptions.WebSocket property you can find the values that define the websocket con
nection

Host: dns or ip address of the server, example: 127.0.0.1 or www.esegece.com.
Port: listening port of websocket server.
TLS: enable it the server is using a secure connection.
Channel: the channel name used to exchange data between peers (both peers must have the same chan
nel name and the max number of peers is 2).

COMPONENTS

769

•
•
•
•

RTCPeerConnection | STUN TURN
The TsgcRTCPeerConnection uses STUN/TURN protocol to obtain the public IP Address and the Relayed IP Ad
dress (if required). So you need a STUN/TURN Server to obtain these information. You can read more about
STUN/TURN server from the following link: TURN Server.

Once you have your STUN/TURN server running, you can configure the TURN Server properties in the
RTCOptions.ICE property of the TsgcRTCPeerConnection.

Host: ip address or dns of the TURN server. Example: 127.0.0.1 or www.esegece.com.
Port: usually is the default port 3478.
Username: username if the TURN server is using Long-term credentials (the default).
Password: password if the TURN server is using Long-term credentials (the default).

COMPONENTS

770

RTCPeerConnection | Signaling
Once the TsgcRTCPeerConnection has configure the RTCOptions property and the Servers (WebSocket and
STUN/TURN) are running, the client can start the process of gathering candidates.

The client first connects to the websocket server, if the connection is successful, it sends the local SDP. Then tries
to get the local and public IP Addresses, to get the public IP Addresses will send a binding request to the STUN
server to obtain the public IP Address and the relayed IP Address of the TURN server. Every time it gets a new
candidate, this info is passed to the websocket server which will be forwarded to the other peer.

When the RTCPeerConnection has the Local SDP, Remote SDP and the candidates it will start a process of check
ing every candidate pair to see if can connect between them. When a candidate pair successfully connects, it's a
valid candidate pair and the Securing process continues the flow.

COMPONENTS

771

RTCPeerConnection | ICE
ICE (Interactive Connectivity Establishment) is the protocol used to connect 2 peers, it determines all the possible
routes between the 2 peers and then ensures are connected. These routes are also known as Candidate Pairs,
which is a pairing of local and remote transport address. These addresses can be the local IP Address, public IP
Address or Relayed Transport Address. Each peer gathers all the addresses they want to use, exchanges them,
and then attempt to connect.

Gathering Addesses

The following events can be called when gathering Addresses

OnRTCLocalCandidate

 The event is called when a new local candidate has been found.

OnRTCRemoteCandidate

 The event is called when the websocket server sends a remote candidate to this peer.

OnRTCLocalDescription

 The event is called when the TsgcRTCPeerConnection requires the local SDP

OnRTCRemoteDescription

 The event is called when the websocket server sends the remote SDP to this peer.

Connectivity Testing

When the peer sends binding requests to the other peer to test if can connect, the following events may be called

OnRTCCandidatePairNominated

 When both peers can connect using this candidate pair, the event is called.

OnRTCCandidatePairFailed

 When the peers cannot connect using this candidate pair, this event is called.

OnRTCConnect

 This event is called when there is valid candidate pair and DTLS is not enabled.
 If DTLS is enabled, this event is called after a successful DTLS Handshake.

COMPONENTS

772

RTCPeerConnection | DTLS
Once there is a valid candidate pair (both peers can connect and exchange data between them), it's time to make
the connection secure. DTLS is a cryptographic protocol that encrypt the data so avoid inspect or modify the con
tent of the data exchanged.

DTLS requires the openSSL libraries (from openSSL 1.1+)

The configuration of the DTLS can be found in the RTCOptions.DTLSOptions property of the TsgcRTCPeerCon
nection. To enable DTLS, set the property RTCOptions.DTLS to True. Find below the main properties:

RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica
tion is
OpenSSL_Options: configuration of the openSSL libraries.

APIVersion: allows to define which OpenSSL API will be used. only openSSL API 1.1+ supports
DTLS.

oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

COMPONENTS

773

RTCPeerConnection | Data
Once the connection is successful, you can use the method WriteData to send some message to the other peer.
The connection will make use of DTLS over UDP, and if possible the connection will be P2P (or using a relayed ad
dress when P2P is not possible).

Send Data

Use the method WriteData to send any data to the other peer. You can send a string or an array of bytes.

TsgcRTCPeerConnection *oRTCPeerConnection = new TsgcRTCPeerConnection();

...

oRTCPeerConnection->WriteData("Hello from sgcWebSockets!!!");

Receive Data

Every time the TsgcRTCPeerConnection receives any data from the other peer, the event OnRTCMessage will be
called.

procedure OnRTCMessage(TObject *Sender, const TBytes aBytes)

{

 ShowMessage(TEncoding->UTF8->GetString(aBytes));

}

COMPONENTS

774

Datasnap
By default, DataSnap uses TIdHttpWebBrokerBridge as server to handle HTTP requests. But you can expand the
possibilities of your DataSnap application replacing this server for other with support for more protocols and with
much better performance, taking advantage of latest protocols like HTTP/2 which improves the server performance,
IOCP which allows to handle much more connections and more....

Servers

Server Main
Features Description

TsgcWSHTTPWebBrokerBridgeServer

Web
Socket
Protocol
HTTP 1.*
Protocol
XHR Pro
tocol
IOCP

Based on In
dy library,
supports
WebSocket
and HTTP
protocols on
the same
port. IOCP
can be en
abled too.

TsgcWSHTTP2WebBrokerBridgeServer

Web
Socket
Protocol
HTTP 1.*
Protocol
HTTP/2
Protocol
XHR Pro
tocol
IOCP

Based on In
dy library,
supports
WebSocket
and HTTP/2
protocols on
the same
port. IOCP
can be en
abled too.

TsgcWSServer_HTTPAPI_WebBrokerBridge

Web
Socket
Protocol
HTTP 1.*
Protocol
HTTP/2
Protocol
XHR Pro
tocol
IOCP

Based on
HTTP.SYS
Microsoft
HTTP API,
supports
WebSocket
and HTTP/2
protocols on
the same
port. IOCP is
used by de
fault. Recom
mended for
best perfor
mance.

COMPONENTS

775

•

TsgcWSHTTPWebBrokerBridgeServer
TsgcWSHTTPWebBrokerBridgeServer make use of TIdHttpWebBrokerBridge as server base and is useful if
you want to use a single server for DataSnap, HTTP and WebSocket connections.

TsgcWSHTTPWebBrokerBridgeServer inherits from TsgcWebSocketHTTPServer, so you can refer to this serv
er.

Follow next steps to replace TIdHttpWebBrokerBridge for TsgcWSHTTPWebBrokerBridgeServer :

1. Create a new instance of TsgcWSHTTPWebBrokerBridgeServer.

2. Replace all calls to TIdHttpWebBrokerBridge for TsgcWSHTTPWebBrokerBridgeServer.

3. To Handle WebSocket connections just refer to TsgcWebSocketHTTPServer.

Configuration

The Datasnap components are only located in Source folder, you won't find in the compiled folders because
these objects are not included in sgcWebSockets package, so you must create in runtime.
Just add the required files to your project or set your path to the Source folder of sgcWebSockets package. Files re
quired:

sgcWebSocket_Server_WebBrokerBridge

If the project makes uses of IdHTTPWebBrokerBridge change to sgcIdHTTPWebBrokerBridge (this only applies for
Enterprise Edition).

Events

FServer = new TsgcWSHTTPWebBrokerBridgeServer();

FServer->OnCommandRequest = OnCommandRequestEvent;

FServer->OnCommandGet = OnCommandGetevent;

void OnCommandRequestEvent(TIdContext *AThread, TIdHTTPRequestInfo *ARequestInfo,

TIdHTTPResponseInfo *AResponseInfo, ref bool aHandled)

{

 if (ARequestInfo->Document == "/test.html")

 {

 aHandled = true;

 }

}

void OnCommandGetevent(TIdContext *AThread, TIdHTTPRequestInfo *ARequestInfo, TIdHTTPResponseInfo

*AResponseInfo)

{

 if (ARequestInfo->Document == "/test.html"

 {

 AResponseInfo->ResponseNo = 200;

 AResponseInfo->ContentText = "hello all";

 }

}

Load Balancer

If the server is behind the TsgcWebSocketLoadBalancerServer, you may have issues with CORS, to avoid these is
sues, use the following code

void __fastcall TWebModule1::WebModuleBeforeDispatch(TObject *Sender, TWebRequest *Request, TWebResponse *Response,

{

COMPONENTS

776

 Response->SetCustomHeader("Access-Control-Allow-Origin", "*");

 if (Trim(Request->GetFieldByName("Access-Control-Request-Headers")) != "")

 {

 Response->SetCustomHeader("Access-Control-Allow-Headers", Request->GetFieldByName("Access-Control-Request-Headers"

 Handled = true;

 }

 if (FServerFunctionInvokerAction != nullptr)

 {

 FServerFunctionInvokerAction->Enabled = AllowServerFunctionInvoker;

 }

}

COMPONENTS

777

•
•

TsgcWSHTTP2WebBrokerBridgeServer
TsgcWSHTTP2WebBrokerBridgeServer use TsgcWebSocketHTTPServer with HTTP/2 protocol enabled as
server base and is useful if you want to use a single server for DataSnap, HTTP/2 and WebSocket connections.

TsgcWSHTTP2WebBrokerBridgeServer inherits from TsgcWebSocketHTTPServer, so you can refer to this
server.

Follow next steps to replace TIdHttpWebBrokerBridge for TsgcWSHTTP2WebBrokerBridgeServer :

1. Create a new instance of TsgcWSHTTP2WebBrokerBridgeServer.

2. Replace all calls to TIdHttpWebBrokerBridge for TsgcWSHTTP2WebBrokerBridgeServer.

3. To Handle WebSocket connections just refer to TsgcWebSocketHTTPServer.

Configuration

The Datasnap components are only located in Source folder, you won't find in the compiled folders because
these objects are not included in sgcWebSockets package, so you must create in runtime.
Just add the required files to your project or set your path to the Source folder of sgcWebSockets package. Files re
quired:

sgcWebSocket_Server_Base_WebBrokerBridge
sgcWebSocket_Server_WebBrokerBridge_HTTP2

If the project makes uses of IdHTTPWebBrokerBridge change to sgcIdHTTPWebBrokerBridge (this only applies for
Enterprise Edition).

Events

FServer = new TsgcWSHTTP2WebBrokerBridgeServer();

FServer->OnCommandRequest = OnCommandRequestEvent;

FServer->OnCommandGet = OnCommandGetevent;

void OnCommandRequestEvent(TIdContext *AThread, TIdHTTPRequestInfo *ARequestInfo,

TIdHTTPResponseInfo *AResponseInfo, ref bool aHandled)

{

 if (ARequestInfo->Document == "/test.html")

 {

 aHandled = true;

 }

}

void OnCommandGetevent(TIdContext *AThread, TIdHTTPRequestInfo *ARequestInfo, TIdHTTPResponseInfo

*AResponseInfo)

{

 if (ARequestInfo->Document == "/test.html"

 {

 AResponseInfo->ResponseNo = 200;

 AResponseInfo->ContentText = "hello all";

 }

}

COMPONENTS

778

•
•

TsgcWSServer_HTTPAPI_WebBrokerBridge
TsgcWSServer_HTTPAPI_WebBrokerBridge use TsgcWebSocketServer_HTTPAPI with HTTP/2 protocol en
abled as server base and is useful if you want to use a single server for DataSnap, HTTP/2 and WebSocket con
nections.

TsgcWSServer_HTTPAPI_WebBrokerBridge inherits from TsgcWebSocketServer_HTTPAPI, so you can refer
to this server.

Follow next steps to replace TIdHttpWebBrokerBridge for TsgcWSServer_HTTPAPI_WebBrokerBridge:

1. Create a new instance of TsgcWSServer_HTTPAPI_WebBrokerBridge.

2. Replace all calls to TIdHttpWebBrokerBridge for TsgcWSServer_HTTPAPI_WebBrokerBridge.

3. To Handle WebSocket connections just refer to TsgcWSServer_HTTPAPI_WebBrokerBridge.

Configuration

The Datasnap components are only located in Source folder, you won't find in the compiled folders because
these objects are not included in sgcWebSockets package, so you must create in runtime.
Just add the required files to your project or set your path to the Source folder of sgcWebSockets package. Files re
quired:

sgcWebSocket_Server_Base_WebBrokerBridge
sgcWebSocket_Server_HTTPAPI_WebBrokerBridge

If the project makes uses of IdHTTPWebBrokerBridge change to sgcIdHTTPWebBrokerBridge (this only applies for
Enterprise Edition).

Events

TsgcWSServer_HTTPAPI_WebBrokerBridge FServer = new TsgcWSServer_HTTPAPI_WebBrokerBridge();

FServer->OnCommandRequest += OnCommandRequestEvent;

FServer->OnMessage += OnWebSocketMessage;

void OnCommandRequestEvent(TsgcWSConnection_HTTPAPI *aConnection,

 const THttpServerRequest *aRequestInfo, ref THttpServerResponse *aResponseInfo, ref bool aHandled)

{

 if (ARequestInfo->Document == "/test.html")

 {

 AResponseInfo->ResponseNo = 200;

 AResponseInfo->ContentText = "... body ...";

 aHandled = true;

 }

}

void OnWebSocketMessage(TsgcWSConnection *aConnection, const string aText)

{

 aConnection->WriteData(aText);

}

OPENAPI

779

•
•
•

•
•
•
•

•
•
•
•

OpenAPI
OpenAPI 3.0

The OpenAPI Specification, previously known as the Swagger Specification, is a specification for machine-read
able interface files for describing, producing, consuming, and visualizing RESTful web services. Previously part of
the Swagger framework, it became a separate project in 2016, overseen by the OpenAPI Initiative, an open-source
collaboration project of the Linux Foundation. Swagger and some other tools can generate code, documentation,
and test cases given an interface file.

Applications implemented based on OpenAPI interface files can automatically generate documentation of methods,
parameters and models. This helps keep the documentation, client libraries, and source code in sync.

Pascal Parser

sgcOpenAPI Generator allows generation of API client libraries (SDK generation) automatically given an OpenAPI
Spec, the following OpenAPI specifications are supported:

OpenAPI 3.*
Swagger 2.* (automatically converted from 2.0 to 3.0)
Swagger 1.* (automatically converted from 1.0 to 3.0)

sgcOpenAPI allows to generate automatically the client API interface in Native Pascal Language given a JSON/
YAML OpenAPI or Swagger. Currently supports from Delphi 7 to latest Delphi version.

sgcOpenAPI Generator allows to create a documentation file from an OpenAPI / Swagger specification.

Read more about OpenAPI Parser Pascal.

OpenAPI Client

The Client Interface generated contains all the functions/methods defined in the OpenAPI specification. The con
stants and enumerations are created too.

The following Authentication methods are supported:

Basic Authentication
OAuth2 Code (interactive)
OAuth2 Credentials (non-interactive)
JWT

Read more about OpenAPI Client.

APIs

The following APIs have been compiled are supported:

Amazon AWS
Google Cloud APIs
Microsoft Azure
Other APIs

OPENAPI

780

•
•
•

•

•

OpenAPI | Parser Pascal
The sgcOpenAPI Parser reads the OpenAPI 3.0 Specification in JSON Format and creates automatically a Del
phi Client in Native Pascal Code.

The sgcOpenAPI Parser is compatible with the following specifications:

OpenAPI 3.*
Swagger 2.* (automatically converted from 2.0 to 3.0)
Swagger 1.* (automatically converted from 1.0 to 3.0)

The specification file must be in JSON or YAML format.

Importing OpenAPI Specification

The first step is import the openAPI specification. Once you've the openAPI 3.0 specification in JSON format, you
can generate the required Delphi files using our OpenAPI WebService. Follow the next steps:

Execute the sgcOpenAPI Parser and select the specification to import or the URL to download.

The specification is verified and if it's compatible with the Parser you can continue to the next steps. If the
specification makes use of an old version like swagger 2.0 it will be converted automatically. If there is any
problem while converting the file, an error message will appear.

OPENAPI

781

•
◦

◦

◦

◦

◦
◦

▪
▪
▪

▪
▪

Now you can customize the following options before parsing the document

ClassName: this is the main ClassName, by default starts with "sgcOpenAPI_" and adds the name of
the specification filename.
Namespace: this is the name of the pascal file generated, by default is the same name of the specifi
cation file with the extension ".pas".
Create Classes: if checked, it will create the classes from the specification file. Example: if a request
requires to send a JSON object, and this JSON object is specified, the parser will create a class with
the fields of the JSON object.
Enable Classes: if checked, enables the Classes Generated from the specification file to use with
JSON objects (Requires Rad Studio XE7+).
Documentation: if checked, the parser will add comments to the fields, classes and methods.
Authentication: select any authentication if exists.

None: the API doesn't make use of any authentication method.
Basic: the API makes use of BASIC authentication.
Token: is required to send a Token as an HTTP Header. This token is obtained from any other
external method.
OAuth2: the request will use OAuth2 to authenticate the HTTP Requests.
JWT: the request will use JWT to authenticate the HTTP Requests.

OPENAPI

782

•

•

Now a grid with a list of methods parsed will be shown as information. By default, the parser takes the
OperationId as a name for the methods created, but here you can use the summary as method name if the
OperationId is not defined or the value is not valid.

Finally, verify the Base URL has the correct value and here you can customize if the generated file will be
opened automatically after created and if the wizard will be closed after generate the file.

OPENAPI

783

•

Press Finish to parse the specification and generate the pascal file.

Example

I will use a simple openAPI specification used by abstractapi.com to retrieve the location of an IP Address.

Before test the demo, you must create a free account in abstractapi.com to get an API Key.

https://app.abstractapi.com/users/signup

Install the sgcOpenAPI Parser Setup, open the sgcOpenAPI.exe and import the OpenAPI specification that is locat
ed in the folder "Demos\abstractapi.com\geolocation". Once imported and stored in the same folder of the demo
with the name "geolocation.pas", open the demo project, compile and execute it. Fill the API key obtained from the
Abstractapi website and press Geolocation.

https://www.esegece.com/openapi/download

OPENAPI

784

OPENAPI

785

OpenAPI | Additional Properties
A dictionary (also known as a map, hashmap or associative array) is a set of key/value pairs. OpenAPI lets you de
fine dictionaries where the keys are strings. To define a dictionary, use type: object and use the additionalProperties
keyword to specify the type of values in key/value pairs. For example, a string-to-string dictionary like this:

{
 "en": "English",
 "fr": "French"
}

The OpenAPI Parser makes use of the JSON classes from Embarcadero, and converting a TDictionary to JSON,
instead of creating a key/value pairs, it creates all the internal objects of the TDictionary, so the output is incorrect.
The same applies when trying to convert a json string to a TDictionary object.

Convert AdditionalProperties to JSON

The OpenAPI Parser creates the AdditionalProperties classes as type of TsgcAdditionalProperties, so if you must
convert a class to json string, you must create a new class that inherits from TsgcAdditionalProperties, create all
the fields you need and then assign to the property class.

Example: given a class with 2 properties, one is an Additional properties and the json output must be

{"Property1":"value1","AdditionalProperties":{"key1":"value1", "key2":"value"}

TMyClass = class(TsgcOpenAPIClass)

private

 FProperty1: string;

 FAdditionalProperties: TsgcAdditionalProperties;

public

 property Property1: string read FProperty1 write FProperty1;

 property AdditionalProperties: TsgcAdditionalProperties read FAdditionalProperties write FAdditionalProperties;

end;

Create a new class that inherits from TsgcAdditionalProperties and create 2 properties

TCustomAdditionalProperties = class(TsgcAdditionalProperties)

private

 FKey1: string;

 FKey2: string;

public

 property Key1: string read FKey1 write FKey1;

 property Key2: string read FKey2 write FKey2;

end;

Finally Assign this class to the AdditionalProperties property:

TMyClass *oClass = new TMyClass();

oClass->Property1 = "value1";

TCustomAdditionalProperties *oAdditionalProperties = new TCustomAdditionalProperties();

oAdditionalProperties->Key1 = "value1";

oAdditionalProperties->Key2 = "value2";

oClass->AdditionalProperties = oAdditionalProperties;

OPENAPI

786

Convert JSON to AdditionalProperties

Due to the limitations of the JSON classes, the OpenAPI Generator creates an additional method to load the Addi
tionalProperties in the TsgcAdditionalProperties.Dictionary property after the JSON string is parsed. So to access
the content of the AdditionalProperties, just access to the TsgcAdditionalProperties.Dictionary property.

OPENAPI

787

1.

2.

•
◦
◦

•
◦

◦

◦
•

OpenAPI | Client
TsgcOpenAPI_Client is a non-visual component that encapsulates the main methods and properties to make
HTTP requests from a OpenAPI specification.

Every OpenAPI interface created with sgcOpenAPI Parser has 2 methods

GetOpenAPIClient: it's a singleton function that returns an instance of the main class, if not exists, it creates
automatically.
FreeOpenAPIClient: frees the main class if it's created.

Example
Use the Abstractapi to retrieve the localization of an IP Address.

GetOpenAPIClient->Retrieve_the_location_of_an_IP_address("your api", "80.258.15.2");

Authentication

Basic: uses a username/password as an HTTP header to authenticate.
UserName: name of the user.
Password: secret.

OAuth2: authenticates using OAuth2, supports 2 types of Authorization:
auth2Code: It's used to perform authentication and authorization in the majority of application types,
including single page applications, web applications, and natively installed applications. The flow en
ables apps to securely acquire access_tokens that can be used to access resources secured, as well
as refresh tokens to get additional access_tokens, and ID tokens for the signed in user.
auth2ClientCredentials: This type of grant is commonly used for server-to-server interactions that
must run in the background, without immediate interaction with a user. These types of applications
are often referred to as daemons or service accounts.
Read more about OAuth2.

JWT: authenticates using JWT. Read more about JWT.

TLSOptions

Allows to configure how connect to secure SSL/TLS servers using HTTP/1 protocol

ALPNProtocols: list of the ALPN protocols which will be sent to server.
RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica
tion is performed for the X.509 certificate.
Version: by default uses TLS 1.0, if server requires a higher TLS version, here can be selected.
IOHandler: select which library you will use to connection using TLS.

iohOpenSSL: uses OpenSSL library and is the default for Indy components. Requires to deploy
openssl libraries for win32/win64.
iohSChannel: uses Secure Channel which is a security protocol implemented by Microsoft for Win
dows, doesn't require to deploy openssl libraries. Only works in Windows 32/64 bits.

OpenSSL_Options: configuration of the openSSL libraries.
APIVersion: allows to define which OpenSSL API will be used.

oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).

OPENAPI

788

oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en
abled, except under OSX64):

oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

SChannel_Options: allows to use a certificate from Windows Certificate Store.
CertHash: is the certificate Hash. You can find the certificate Hash running a dir command in power
shell.
CipherList: here you can set which Ciphers will be used (separated by ":"). Example:
CALG_AES_256:CALG_AES_128
CertStoreName: the store name where is stored the certificate. Select one of below:

scsnMY (the default)
scsnCA
scsnRoot
scsnTrust

CertStorePath: the store path where is stored the certificate. Select one of below:
scspStoreCurrentUser (the default)
scspStoreLocalMachine

Log

If Log property is enabled it saves socket messages to a specified log file, useful for debugging.

Log: enable if you want to save the HTTP requests to a text file.
LogFileName: full path to the filename.

Properties

Other properties that can be used to customize the OpenAPI client:

EncodeBodyAsUTF8: if enabled, the JSON body is encoded as UTF8 (by default false).

OPENAPI

789

1.
2.

•
•

•

•
◦

•
◦

•
•
•
•
•
•
•
•

OpenAPI | Amazon AWS
The sgcOpenAPI Amazon AWS Client (TsgcOpenAPI_Amazon_Client) has it's own OpenAPI Client which inher
its from TsgcOpenAPI_Client.

This component has a property called AmazonOptions that includes all required configurations to connect to Ama
zon AWS Servers.

AmazonOptions

In AmazonOptions you can define the required AccessKey and SecretKey (which must be generated previously
from your Amazon Account), to authenticate against the Amazon AWS Servers.

An access key grants programmatic access to your resources. This means that you must guard the access key as
carefully as the AWS account root user sign-in credentials.

It's a best practice to do the following:

Create an IAM user, and then define that user's permissions as narrowly as possible.
Create the access key under that IAM user.

Once you've the credentials, set in the following properties:

AmazonOptions.AccessKey
AmazonOptions.SecretKey

The AmazonOptions.JSON property allows to define if the responses are in JSON or XML.

IAM roles, users in AWS IAM Identity Center (successor to AWS Single Sign-On), and federated users have tempo
rary security credentials. Temporary security credentials expire after a defined period of time or when the user ends
their session. You can set the token for temporary credentials in the property:

AmazonOptions.SessionToken

Most common uses

Configuration
Amazon AWS Credentials

APIs
Amazon AWS S3

sgcOpenAPI AWS SDK

Find below a list of the currently available APIs.

Access Analyzer
Alexa For Business
Amazon API Gateway
Amazon AppConfig
Amazon Appflow
Amazon AppIntegrations Service
Amazon AppStream
Amazon Athena

OPENAPI

790

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Amazon Augmented AI Runtime
Amazon Chime
Amazon Chime SDK Identity
Amazon Chime SDK Messaging
Amazon CloudDirectory
Amazon CloudFront
Amazon CloudHSM
Amazon CloudSearch
Amazon CloudSearch Domain
Amazon CloudWatch
Amazon CloudWatch Application Insights
Amazon CloudWatch Events
Amazon CloudWatch Logs
Amazon CodeGuru Profiler
Amazon CodeGuru Reviewer
Amazon Cognito Identity
Amazon Cognito Identity Provider
Amazon Cognito Sync
Amazon Comprehend
Amazon Connect Contact Lens
Amazon Connect Customer Profiles
Amazon Connect Participant Service
Amazon Connect Service
Amazon Data Lifecycle Manager
Amazon Detective
Amazon DevOps Guru
Amazon DocumentDB with MongoDB compatibility
Amazon DynamoDB
Amazon DynamoDB Accelerator (DAX)
Amazon DynamoDB Streams
Amazon EC2 Container Registry
Amazon EC2 Container Service
Amazon Elastic Inference
Amazon Elastic Block Store
Amazon Elastic Compute Cloud
Amazon Elastic Container Registry Public
Amazon Elastic File System
Amazon Elastic Kubernetes Service
Amazon Elastic Transcoder
Amazon ElastiCache
Amazon Elasticsearch Service
Amazon EMR
Amazon EMR Containers
Amazon EventBridge
Amazon Forecast Query Service
Amazon Forecast Service
Amazon Fraud Detector
Amazon FSx
Amazon GameLift
Amazon Glacier
Amazon GuardDuty
Amazon HealthLake
Amazon Honeycode
Amazon Import/Export Snowball
Amazon Inspector
Amazon Interactive Video Service
Amazon Kinesis
Amazon Kinesis Analytics
Amazon Kinesis Firehose
Amazon Kinesis Video Signaling Channels
Amazon Kinesis Video Streams
Amazon Kinesis Video Streams Archived Media
Amazon Kinesis Video Streams Media
Amazon Lex Model Building Service
Amazon Lex Model Building V2

OPENAPI

791

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Amazon Lex Runtime Service
Amazon Lex Runtime V2
Amazon Lightsail
Amazon Location Service
Amazon Lookout for Equipment
Amazon Lookout for Metrics
Amazon Lookout for Vision
Amazon Machine Learning
Amazon Macie
Amazon Macie 2
Amazon Managed Blockchain
Amazon Mechanical Turk
Amazon MemoryDB
Amazon Mobile Analytics
Amazon Neptune
Amazon OpenSearch Service
Amazon Personalize
Amazon Personalize Events
Amazon Personalize Runtime
Amazon Pinpoint
Amazon Pinpoint Email Service
Amazon Pinpoint SMS and Voice Service
Amazon Polly
Amazon Prometheus Service
Amazon QLDB
Amazon QLDB Session
Amazon QuickSight
Amazon Redshift
Amazon Rekognition
Amazon Relational Database Service
Amazon Route 53
Amazon Route 53 Domains
Amazon Route 53 Resolver
Amazon S3 on Outposts
Amazon Sagemaker Edge Manager
Amazon SageMaker Feature Store Runtime
Amazon SageMaker Runtime
Amazon SageMaker Service
Amazon Simple Email Service
Amazon Simple Notification Service
Amazon Simple Queue Service
Amazon Simple Storage Service
Amazon Simple Systems Manager (SSM)
Amazon Simple Workflow Service
Amazon SimpleDB
Amazon Textract
Amazon Timestream Query
Amazon Timestream Write
Amazon Transcribe Service
Amazon Translate
Amazon WorkDocs
Amazon WorkLink
Amazon WorkMail
Amazon WorkMail Message Flow
Amazon WorkSpaces
AmazonApiGatewayManagementApi
AmazonApiGatewayV2
AmazonMQ
AmazonMWAA
AmazonNimbleStudio
AmplifyBackend
Application Auto Scaling
Application Migration Service
Auto Scaling
AWS Amplify

OPENAPI

792

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

AWS App Mesh
AWS App Runner
AWS Application Cost Profiler
AWS Application Discovery Service
AWS AppSync
AWS Audit Manager
AWS Auto Scaling Plans
AWS Backup
AWS Batch
AWS Budgets
AWS Certificate Manager
AWS Certificate Manager Private Certificate Authority
AWS Cloud Map
AWS Cloud9
AWS CloudFormation
AWS CloudHSM V2
AWS CloudTrail
AWS CodeBuild
AWS CodeCommit
AWS CodeDeploy
AWS CodePipeline
AWS CodeStar
AWS CodeStar connections
AWS CodeStar Notifications
AWS Comprehend Medical
AWS Compute Optimizer
AWS Config
AWS Cost and Usage Report Service
AWS Cost Explorer Service
AWS Data Exchange
AWS Data Pipeline
AWS Database Migration Service
AWS DataSync
AWS Device Farm
AWS Direct Connect
AWS Directory Service
AWS EC2 Instance Connect
AWS Elastic Beanstalk
AWS Elemental MediaConvert
AWS Elemental MediaLive
AWS Elemental MediaPackage
AWS Elemental MediaPackage VOD
AWS Elemental MediaStore
AWS Elemental MediaStore Data Plane
AWS Fault Injection Simulator
AWS Global Accelerator
AWS Glue
AWS Glue DataBrew
AWS Greengrass
AWS Ground Station
AWS Health APIs and Notifications
AWS Identity and Access Management
AWS Import/Export
AWS IoT
AWS IoT 1-Click Devices Service
AWS IoT 1-Click Projects Service
AWS IoT Analytics
AWS IoT Core Device Advisor
AWS IoT Data Plane
AWS IoT Events
AWS IoT Events Data
AWS IoT Fleet Hub
AWS IoT Greengrass V2
AWS IoT Jobs Data Plane
AWS IoT Secure Tunneling

OPENAPI

793

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

AWS IoT SiteWise
AWS IoT Things Graph
AWS IoT Wireless
AWS Key Management Service
AWS Lake Formation
AWS Lambda
AWS License Manager
AWS Marketplace Catalog Service
AWS Marketplace Commerce Analytics
AWS Marketplace Entitlement Service
AWS MediaConnect
AWS MediaTailor
AWS Migration Hub
AWS Migration Hub Config
AWS Mobile
AWS Network Firewall
AWS Network Manager
AWS OpsWorks
AWS OpsWorks CM
AWS Organizations
AWS Outposts
AWS Performance Insights
AWS Price List Service
AWS Proton
AWS RDS DataService
AWS Resource Access Manager
AWS Resource Groups
AWS Resource Groups Tagging API
AWS RoboMaker
AWS Route53 Recovery Control Config
AWS Route53 Recovery Readiness
AWS S3 Control
AWS Savings Plans
AWS Secrets Manager
AWS Security Token Service
AWS SecurityHub
AWS Server Migration Service
AWS Service Catalog
AWS Service Catalog App Registry
AWS Shield
AWS Signer
AWS Single Sign-On
AWS Single Sign-On Admin
AWS Snow Device Management
AWS SSO Identity Store
AWS SSO OIDC
AWS Step Functions
AWS Storage Gateway
AWS Support
AWS Systems Manager Incident Manager
AWS Systems Manager Incident Manager Contacts
AWS Transfer Family
AWS WAF
AWS WAF Regional
AWS WAFV2
AWS Well-Architected Tool
AWS X-Ray
AWSKendraFrontendService
AWSMarketplace Metering
AWSServerlessApplicationRepository
Braket
CodeArtifact
EC2 Image Builder
Elastic Load Balancing
FinSpace Public API

OPENAPI

794

•
•
•
•
•
•
•
•
•

FinSpace User Environment Management service
Firewall Management Service
Managed Streaming for Kafka
Managed Streaming for Kafka Connect
Redshift Data API Service
Route53 Recovery Cluster
Schemas
Service Quotas
Synthetics

OPENAPI

795

•

•

•

•

1.
2.

3.
4.

•

•

•
•

1.
2.
3.

OpenAPI Amazon AWS | Credentials
AWS requires different types of security credentials depending on how you access AWS. For example, you need a
user name and password to sign in to the AWS Management Console and you need access keys to make pro
grammatic calls to AWS.

Considerations

Be sure to save the following in a secure location: the email address associated with your AWS account, the
AWS account ID, the root user password, and your account access keys. If you forget or lose your root user
password, you must have access to the email address associated with your account in order to reset it. If
you forget or lose your access keys, you must sign into your account to create new ones.
We strongly recommend that you create an IAM user with administrator permissions to use for everyday
AWS tasks and lock away the password and access keys for the root user. Use the root user only for the
tasks that are restricted to the root user.
Security credentials are account-specific. If you have access to multiple AWS accounts, you have separate
credentials for each account.
Do not provide your AWS credentials to a third party.

Programmatic access

You must provide your AWS access keys to make programmatic calls to AWS.

When you create your access keys, you create the access key ID (for example, AKIAIOSFODNN7EXAMPLE) and
secret access key (for example, wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY) as a set. The secret access
key is available for download only when you create it. If you don't download your secret access key or if you lose it,
you must create a new one.

You can assign up to two access keys per user (root user or IAM user). Having two access keys is useful when you
want to rotate them. When you disable an access key, you can't use it, but it counts toward your limit of two access
keys. After you delete an access key, it's gone forever and can't be restored, but it can be replaced with a new ac
cess key.

To manage access keys when signed in as the root user

Sign in to the AWS Management Console as the root user.
In the navigation bar on the upper right, choose your account name or number and then choose My Securi
ty Credentials.
Expand the Access keys (access key ID and secret access key) section.
Do one of the following:

To create an access key, choose Create New Access Key. If you already have two access keys, this
button is disabled and you must delete an access key before you can create a new one. When
prompted, choose either Show Access Key or Download Key File. This is your only opportunity to
save your secret access key. After you've saved your secret access key in a secure location,
chose Close.
To deactivate an access key, choose Make Inactive. When prompted for confirmation, choose Deac
tivate. A deactivated access key still counts toward your limit of two access keys.
To activate an access key, choose Make Active.
To delete an access key when you no longer need it, copy the access key ID and then choose Delete.
Before you can delete the access key, you must choose Deactivate. We recommend that you verify
that the access key is no longer in use before you permanently delete it. To confirm deletion, paste
the access key ID in the text input field and then choose Delete.

To manage access keys when signed in as an IAM user

Sign in to the AWS Management Console as an IAM user.
In the navigation bar on the upper right, choose your user name and then choose My Security Credentials.
Do one of the following:

OPENAPI

796

•

•

•

•

To create an access key, choose Create access key. If you already have two access keys, this but
ton is disabled and you must delete an access key before you can create a new one. When prompt
ed, choose either Show secret access key or Download .csv file. This is your only opportunity to
save your secret access key. After you've saved your secret access key in a secure location,
chose Close.
To deactivate an access key, choose Make inactive. When prompted for confirmation, choose Deac
tivate. A deactivated access key still counts toward your limit of two access keys.
To activate an access key, choose Make active. When prompted for confirmation, choose Make ac
tive.
To delete an access key when you no longer need it, copy the access key ID and then choose Delete.
This deactivates the access key. We recommend that you verify that the access key is no longer in
use before you permanently delete it. To confirm deletion, paste the access key ID in the text input
field and then choose Delete.

sgcOpenAPI Configuration

Once you have your own AWS Access Keys, you must configure in the OpenAPI Amazon Client before you do any
Request to the Amazon AWS Servers.

GetOpenAPIClient->AmazonOptions->AccessKey = "AKIAIOSFODNN7EXAMPLE";

GetOpenAPIClient->AmazonOptions->SecretKey = "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY";

OPENAPI

797

OpenAPI Amazon AWS | S3
Amazon Simple Storage Service (Amazon S3) is an object storage service that offers industry-leading scalability,
data availability, security, and performance. Customers of all sizes and industries can use Amazon S3 to store and
protect any amount of data for a range of use cases, such as data lakes, websites, mobile applications, backup and
restore, archive, enterprise applications, IoT devices, and big data analytics. Amazon S3 provides management
features so that you can optimize, organize, and configure access to your data to meet your specific business, or
ganizational, and compliance requirements.

ListBuckets

GetOpenAPIClient->AmazonOptions->AccessKey = "AKIAIOSFODNN7EXAMPLE";

GetOpenAPIClient->AmazonOptions->SecretKey = "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY";

GetOpenAPIClient->ListBuckets();

GetObject

GetOpenAPIClient->AmazonOptions->AccessKey = "AKIAIOSFODNN7EXAMPLE";

GetOpenAPIClient->AmazonOptions->SecretKey = "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY";

GetOpenAPIClient->GetObject("bucket_name");

PutObject

GetOpenAPIClient->AmazonOptions->AccessKey = "AKIAIOSFODNN7EXAMPLE";

GetOpenAPIClient->AmazonOptions->SecretKey = "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY";

GetOpenAPIClient->PutObject("bucket_name", "MyFile.txt", "payload");

OPENAPI

798

1.
2.

•
•

◦
◦
◦
◦

▪

▪
▪

•
◦
◦

•
◦
◦

•
•
•
•
•
•
•
•
•
•
•
•
•

OpenAPI | Google Cloud
The sgcOpenAPI Google Client (TsgcOpenAPI_Google_Client) has it's own OpenAPI Client which inherits
from TsgcOpenAPI_Client.

This component has a property called GoogleOptions that includes all required configurations to connect to
Google Cloud Servers.

GoogleOptions

The OpenAPI Google client allows to authenticate using the following methods:

OAuth2 Code: is interactive, which means requires the intervention of the user.
JWT (service accounts): is non-interactive, so can run as a service for example.

The authentication is configured in the property GoogleOptions.Authentication, allows the following values:

oagaOAuth2: interactive.
oagaJWT: non-interactive. You can import the settings from a JSON file, using the method LoadSettings
FromFile. This method will fill the following properties automatically:

ClientEmail
PrivateKeyId
PrivateKey
ServiceAccountOptions: when running the client using a service account, the following properties
are required:

TokenURI: by default the value is "https://oauth2.googleapis.com/token", but the value is up
dated when using the method LoadSettingsFromFile.
Subject: this is the email account when using Domain-Wide delegation
Scopes: a list of the scopes.

Most common uses

Configuration
Google Cloud OAuth2
Google Cloud Service Accounts

APIs
Google Cloud PubSub
Google Cloud Calendar

sgcOpenAPI AWS SDK

Find below a list of the currently available APIs.

Abusive Experience Report API
Accelerated Mobile Pages (AMP) URL API
Access Approval API
Access Context Manager API
Ad Exchange Buyer API
Ad Exchange Buyer API II
Ad Experience Report API
Admin SDK API
AdMob API
AdSense Host API
AdSense Management API
AI Platform Training & Prediction API
Analytics Reporting API

OPENAPI

799

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Android Device Provisioning Partner API
Android Management API
API Discovery Service
API Gateway API
API Keys API
Apigee API
App Engine Admin API
Apps Script API
Area120 Tables API
Artifact Registry API
Assured Workloads API
Authorized Buyers Marketplace API
Backup for GKE API
Bare Metal Solution API
BigQuery API
BigQuery Connection API
BigQuery Data Transfer API
BigQuery Reservation API
Binary Authorization API
Blogger API v3
Books API
Calendar API
Campaign Manager 360 API
Certificate Authority API
Certificate Manager API
Chrome Management API
Chrome Policy API
Chrome UX Report API
Chrome Verified Access API
Cloud Asset API
Cloud AutoML API
Cloud Bigtable Admin API
Cloud Billing API
Cloud Billing Budget API
Cloud Build API
Cloud Channel API
Cloud Composer API
Cloud Data Fusion API
Cloud Data Loss Prevention (DLP) API
Cloud Dataplex API
Cloud Dataproc API
Cloud Datastore API
Cloud Debugger API
Cloud Deployment Manager V2 API
Cloud DNS API
Cloud Document AI API
Cloud Domains API
Cloud Filestore API
Cloud Firestore API
Cloud Functions API
Cloud Healthcare API
Cloud Identity API
Cloud Identity-Aware Proxy API
Cloud IDS API
Cloud IoT API
Cloud Key Management Service (KMS) API
Cloud Life Sciences API
Cloud Logging API
Cloud Memorystore for Memcached API
Cloud Monitoring API
Cloud Natural Language API
Cloud OS Login API
Cloud Private Catalog
Cloud Private Catalog Producer
Cloud Pub/Sub API

OPENAPI

800

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Cloud Resource Manager API
Cloud Run Admin API
Cloud Runtime Configuration API
Cloud Scheduler API
Cloud Search API
Cloud Shell API
Cloud Source Repositories API
Cloud Spanner API
Cloud Speech-to-Text API
Cloud SQL Admin API
Cloud Storage for Firebase API
Cloud Storage JSON API
Cloud Talent Solution API
Cloud Tasks API
Cloud Testing API
Cloud Text-to-Speech API
Cloud Tool Results API
Cloud TPU API
Cloud Trace API
Cloud Translation API
Cloud Video Intelligence API
Cloud Vision API
Compute Engine API
Connectors API
Contact Center AI Insights API
Container Analysis API
Content API for Shopping
Custom Search API
Data Labeling API
Data pipelines API
Database Migration API
Dataflow API
Dataproc Metastore API
Datastream API
Dialogflow API
Digital Asset Links API
Display & Video 360 API
Domains RDAP API
DoubleClick Bid Manager API
Drive Activity API
Drive API
Enterprise License Manager API
Error Reporting API
Essential Contacts API
Eventarc API
Fact Check Tools API
Firebase App Check API
Firebase Cloud Messaging API
Firebase Cloud Messaging Data API
Firebase Dynamic Links API
Firebase Hosting API
Firebase Management API
Firebase ML API
Firebase Realtime Database Management API
Firebase Rules API
Fitness API
Game Services API
Genomics API
GKE Hub API
Gmail API
Gmail Postmaster Tools API
Google Analytics Admin API
Google Analytics API
Google Analytics Data API
Google Chat API

OPENAPI

801

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Google Civic Information API
Google Classroom API
Google Cloud Data Catalog API
Google Cloud Deploy API
Google Cloud Memorystore for Redis API
Google Cloud Support API
Google Docs API
Google Forms API
Google Identity Toolkit API
Google Keep API
Google Mirror
Google My Business API
Google OAuth2 API
Google Pay Passes API
Google Play Android Developer API
Google Play Custom App Publishing API
Google Play Developer Reporting API
Google Play EMM API
Google Play Game Management
Google Play Game Services
Google Play Game Services Publishing API
Google Play Integrity API
Google Search Console API
Google Sheets API
Google Site Verification API
Google Slides API
Google Vault API
Google Workspace Alert Center API
Google Workspace Reseller API
Google+ API
Groups Migration API
Groups Settings API
HomeGraph API
IAM Service Account Credentials API
Idea Hub API
Identity and Access Management (IAM) API
Indexing API
Knowledge Graph Search API
Kubernetes Engine API
Library Agent API
Local Services API
Managed Service for Microsoft Active Directory API
Manufacturer Center API
My Business Account Management API
My Business Business Calls API
My Business Business Information API
My Business Lodging API
My Business Notifications API
My Business Place Actions API
My Business Q&A API
My Business Verifications API
Network Connectivity API
Network Management API
Network Security API
Network Services API
Notebooks API
On-Demand Scanning API
Organization Policy API
OS Config API
PageSpeed Insights API
Payments Reseller Subscription API
People API
Perspective Comment Analyzer API
Playable Locations API
Policy Analyzer API

OPENAPI

802

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Policy Simulator API
Policy Troubleshooter API
Poly API
Proximity Beacon API
Pub/Sub Lite API
Real-time Bidding API
reCAPTCHA Enterprise API
Recommendations AI (Beta)
Recommender API
Remote Build Execution API
Replica Pool
Resource Settings API
Retail API
Safe Browsing API
SAS Portal API
SAS Portal API (Testing)
Search Ads 360 API
Search Console API
Secret Manager API
Security Command Center API
Security Token Service API
Semantic Tile API
Service Broker
Service Consumer Management API
Service Control API
Service Directory API
Service Management API
Service Networking API
Service Usage API
Smart Device Management API
Stackdriver Profiler API
Storage Transfer API
Street View Publish API
Tag Manager API
Tasks API
Traffic Director API
Transcoder API
Version History API
VM Migration API
Web Fonts Developer API
Web Risk API
Web Security Scanner API
Workflow Executions API
Workflows API
YouTube Analytics API
YouTube Data API v3
YouTube Reporting API

OPENAPI

803

OpenAPI Google Cloud | OAuth2
In order to use the OpenAPI Google Cloud components and Authenticate using OAuth2, first you must obtain the
OAuth2 Key from Google Cloud.
Find below the steps to get Google OAuth2 Keys and how configure in our PubSub sample application.

First login to your Google Cloud Account and use an existing project or create a new one.
After that, go to Credentials menu and press the button CREATE CREDENTIALS, select the option OAuth Client
ID.

Select your application type and set a description name

If successful, you will get your Client Id and Client Secret.

OPENAPI

804

Don't share your OAuth2 data with anyone!

Now copy to the OpenAPI Google Cloud sample

OPENAPI

805

Read more about OAuth2 Configuration.

Once you are authenticated, you can re-authenticate calling first the method ClearOAuth2Token (clear all internal
OAuth2 Tokens) and then call any OpenAPI requests, a new web-browser will be shown to re-authenticate against
google servers.

OPENAPI

806

OpenAPI Google Cloud | Service Accounts
In order to use the OpenAPI Google Cloud components and Authenticate using Service Accounts, first you
must obtain the Private Key Certificate from Google Cloud.

Find below the steps to get Google Private Key Certificate and how configure in our sample application.

First login to your Google Cloud Account and use an existing project or create a new one.

Select CREATE SERVICE ACCOUNT and a new page will be shown where you must set the service account
name and description

Then select at least one Role, I select PubSub Admin to allow the client publish and subscribe topics, but you can
select other role with less privileges

OPENAPI

807

Press CONTINUE and finally you can grant access to other users

Press DONE when you finish and a new record will be shown

OPENAPI

808

The next step is create a new Key, so select the option Create Key in actions column. Select JSON to download the
configuration in JSON format and a new Key will be created

Finally you only need to fill the data provided by google in the OpenAPI PubSub client. You can use LoadSettings
FromFile to load the configuration JSON file.

OPENAPI

809

•

•
•
•

•

•

•
•

Domain-Wide Delegation

If you have a Google Workspace account, an administrator of the organization can authorize an application to ac
cess user data on behalf of users in the Google Workspace domain. For example, an application that uses the
Google Calendar API to add events to the calendars of all users in a Google Workspace domain would use a ser
vice account to access the Google Calendar API on behalf of users. Authorizing a service account to access data
on behalf of users in a domain is sometimes referred to as "delegating domain-wide authority" to a service account.

To delegate domain-wide authority to a service account, a super administrator of the Google Workspace domain
must complete the following steps:

From your Google Workspace domain's Admin console, go to Main menu menu > Security > Access and
data control > API Controls.
In the Domain wide delegation pane, select Manage Domain Wide Delegation.
Click Add new.
In the Client ID field, enter the service account's Client ID. You can find your service account's client ID in
the Service accounts page.
In the OAuth scopes (comma-delimited) field, enter the list of scopes that your application should be
granted access to. For example, if your application needs domain-wide full access to the Google Drive API
and the Google Calendar API, enter: https://www.googleapis.com/auth/drive, https://www.googleapis.com/
auth/calendar.
Click Authorize.

Once you've linked and authorized the workspace account, configure the property
GoogleOptions.ServiceAccountOptions from the OpenAPI client:

Subject: is the workspace email account linked to the service account. Example: youremail@domain.com
Scopes: list of scopes. Example: https://www.googleapis.com/auth/calendar

OPENAPI

810

• TokenURI: by default is https://oauth2.googleapis.com/token.

OPENAPI

811

OpenAPI Google Cloud | PubSub
Pub/Sub allows services to communicate asynchronously, with latencies on the order of 100 milliseconds.

Pub/Sub is used for streaming analytics and data integration pipelines to ingest and distribute data. It is equally ef
fective as a messaging- oriented middleware for service integration or as a queue to parallelize tasks.

List Projects by Topic (OAuth2)

GetOpenAPIClient->GoogleOptions->Authentication = oagaOAuth2;

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->AuthURL = "https://accounts.google.com/o/oauth2/auth"

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->TokenURL = "https://accounts.google.com/o/oauth2/token"

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientId = "google client id";

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientSecret = "google client secret";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->IP = "127.0.0.1";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->Port = 8080;

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->Scope->Text = "https://www.googleapis.com/auth/cloud-platform"

GetOpenAPIClient->ListV1TopicsByProject("projects/pubsub-270909");

List Projects by Topic (Service Accounts)

GetOpenAPIClient->GoogleOptions->Authentication = oagaJWT;

GetOpenAPIClient->LoadSettingsFromFile("google.json");

GetOpenAPIClient->ListV1TopicsByProject("projects/pubsub-270909");

OPENAPI

812

OpenAPI Google Cloud Calendar
The Calendar API lets you integrate your app with Google Calendar, creating new ways for you to engage your
users.

List Events By Calendar (OAuth2)

GetOpenAPIClient->GoogleOptions->Authentication = oagaOAuth2;

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->AuthURL = "https://accounts.google.com/o/oauth2/auth"

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->TokenURL = "https://accounts.google.com/o/oauth2/token"

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientId = "google client id";

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientSecret = "google client secret";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->IP = "127.0.0.1";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->Port = 8080;

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->Scope->Text = "https://www.googleapis.com/auth/calendar"

GetOpenAPIClient->ListCalendarsEventsByCalendarId("email@mydomain.com", true, "json", 0, "");

List Events By Calendar (Service Account)

GetOpenAPIClient->GoogleOptions->Authentication = oagaJWT;

GetOpenAPIClient->LoadSettingsFromFile("google.json");

GetOpenAPIClient->Authentication->ServiceAccountOptions->Subject = "email@mydomain.com";

GetOpenAPIClient->Authentication->ServiceAccountOptions->Scopes->Text := "https://www.googleapis.com/auth/calendar"

GetOpenAPIClient->ListCalendarsEventsByCalendarId("email@mydomain.com", true, "json", 0, "");

Insert Calendar Event

GetOpenAPIClient->InsertCalendarsEventsByCalendarId("email@mydomain.com", "{\"summary\":\"Test Event\",\"description\":\"Message Description\",\"location\":\"Location\",\"start\":{\"dateTime\":\"2022-10-19T14:15:11.000Z\"},\"end\":{\"dateTime\":\"2022-10-19T15:15:11.000Z\"},\"endTimeUnspecified\":false,\"attendeesOmitted\":false,\"reminders\":{\"useDefault\":false}}"

OPENAPI

813

1.
2.

•
•

•

•
◦
◦
◦
◦

•
◦

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

OpenAPI | Microsoft
The sgcOpenAPI Microsoft Client (TsgcOpenAPI_Microsoft_Client) has it's own OpenAPI Client which inherits
from TsgcOpenAPI_Client.

This component has a property called MicrosoftOptions that includes all required configurations to connect to Mi
crosoft Servers.

MicrosoftOptions

The OpenAPI Microsoft client allows to authenticate using the following methods:

OAuth2 Code: is interactive, which means requires the intervention of the user.
OAuth2 Credentials: is non-interactive, so can run as a service for example.

The authentication is configured in the property MicrosoftOptions.Authentication, allows the following values:

oamaOAuth2Code: interactive.
oamaOAuth2Credentials: non-interactive.

Other properties required by Microsoft are the following:

TenantId: it's a value that identifies your account, you can find in your Microsoft/Azure account.

Most common uses

Configuration
Microsoft Get Tenant
Microsoft Register Application
Microsoft OAuth2 Code
Microsoft OAuth2 Credentials

APIs
Microsoft Graph

sgcOpenAPI Microsoft APIs

Find below a list of the currently available APIs.

AutoSuggest Client
Computer Vision Client
Custom Image Search Client
Custom Search Client
Custom Vision Prediction Client
Custom Vision Training Client
Entity Search Client
Image Search Client
Local Search Client
News Search Client
Partial Graph API
Spell Check Client
Video Search Client
Visual Search Client
Web Search Client

OPENAPI

814

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

sgcOpenAPI Azure APIs

Find below a list of the currently available APIs.

API Client
ACE Provisioning ManagementPartner
ADHybridHealthService
AdvisorManagementClient
Anomaly Detector Client
Anomaly Finder Client
ApiManagementClient
AppConfigurationManagementClient
Application Insights Data Plane
ApplicationClient
ApplicationInsightsManagementClient
AppPlatformManagementClient
AppServiceCertificateOrders API Client
AppServiceEnvironments API Client
AppServicePlans API Client
Artifact
AttestationClient
AuthorizationManagementClient
AutomationManagement
AutomationManagementClient
Azure Action Groups
Azure Activity Log Alerts
Azure Addons Resource Provider
Azure Alerts Management Service Resource Provider
Azure Bot Service
Azure CDN WebApplicationFirewallManagement
Azure Data Catalog Resource Provider
Azure Data Lake Storage
Azure Data Migration Service Resource Provider
Azure Dedicated HSM Resource Provider
Azure DevOps
Azure Enterprise Knowledge Graph Service
Azure IoT Central
Azure Location Based Services Resource Provider
Azure Log Analytics
Azure Log Analytics - Operations Management
Azure Log Analytics Query Packs
Azure Machine Learning Datastore Management Client
Azure Machine Learning Model Management Service
Azure Machine Learning Workspaces
Azure Maps Resource Provider
Azure Media Services
Azure Metrics
Azure Migrate Hub
Azure Migrate V2
Azure ML Commitment Plans Management Client
Azure ML Web Services Management Client
Azure Monitor Private Link Scopes
Azure Reservation
Azure Resource Graph
Azure Resource Graph Query
Azure SQL Database
Azure SQL Database API spec
Azure SQL Database Backup
Azure SQL Database Backup Long Term Retention Policy
Azure SQL Database Datamasking Policies and Rules
Azure SQL Database disaster recovery configurations
Azure SQL Database Import/Export spec
Azure SQL Database replication links
Azure SQL Server API spec
Azure SQL Server Backup Long Term Retention Vault

OPENAPI

815

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Azure Stack Azure Bridge Client
azureactivedirectory
AzureAnalysisServices
AzureBridgeAdminClient
AzureDataManagementClient
AzureDeploymentManager
AzureDigitalTwinsManagementClient
AzureStack Azure Bridge Client
BackupManagementClient
BatchAI
BatchManagement
BatchService
BillingManagementClient
BlockchainManagementClient
BlueprintClient
CdnManagementClient
CertificateRegistrationProvider API Client
Certificates API Client
CognitiveServicesManagementClient
CommerceManagementClient
Compute Admin Client
ComputeDiskAdminManagementClient
ComputeManagementClient
ComputeManagementConvenienceClient
Computer Vision
ConsumptionManagementClient
ContainerInstanceManagementClient
ContainerRegistryManagementClient
ContainerServiceClient
Content Moderator Client
Cosmos DB
CostManagementClient
Customer Lockbox
CustomerInsightsManagementClient
customproviders
Database Threat Detection Policy APIs
DataBoxEdgeManagementClient
DataBoxManagementClient
DatabricksClient
DataFactoryManagementClient
DataLakeAnalyticsAccountManagementClient
DataLakeAnalyticsCatalogManagementClient
DataLakeAnalyticsJobManagementClient
DataLakeStoreAccountManagementClient
DataLakeStoreFileSystemManagementClient
DataShareManagementClient
DeletedWebApps API Client
DeploymentAdminClient
DeploymentScriptsClient
DeviceServices
DevSpacesManagement
DevTestLabsClient
Diagnostics API Client
DiskResourceProviderClient
DnsManagementClient
Domain Services Resource Provider
DomainRegistrationProvider API Client
Domains API Client
Dynamics Telemetry
Engagement.ManagementClient
EngagementFabric
EventGridManagementClient
EventHub2018PreviewManagementClient
EventHubManagementClient
Execution Service

OPENAPI

816

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

ExpressRouteCrossConnection REST APIs
FabricAdminClient
Face Client
FeatureClient
Form Recognizer Client
FrontDoorManagementClient
GalleryManagementClient
Guest Diagnostic Settings
Guest Diagnostic Settings Association
GuestConfiguration
HanaManagementClient
HDInsightJobManagementClient
HDInsightManagementClient
HealthcareApisClient
HybridComputeManagementClient
HybridDataManagementClient
HyperDrive
InfrastructureInsightsManagementClient
Ink Recognizer Client
InstanceMetadataClient
IntuneResourceManagementClient
iotDpsClient
iotHubClient
IoTSpacesClient
KeyVaultClient
KeyVaultManagementClient
KustoManagementClient
LogicAppsManagementClient
LogicManagementClient
LUIS Authoring Client
LUIS Programmatic
Machine Learning Compute Management Client
Machine Learning Workspaces Management Client
MaintenanceManagementClient
ManagedLabsClient
ManagedNetworkManagementClient
ManagedServiceIdentityClient
ManagedServicesClient
Management Groups
ManagementLinkClient
ManagementLockClient
MariaDBManagementClient
Marketplace RP Service
MarketplaceOrdering.Agreements
MediaServicesManagementClient
Microsoft Insights
Microsoft NetApp
Microsoft Storage Sync
Microsoft.ResourceHealth
Microsoft.Support
MicrosoftSerialConsoleClient
Mixed Reality
ML Team Account Management Client
MonitorManagementClient
MySQLManagementClient
NetworkAdminManagementClient
NetworkExperiments
NetworkManagementClient
NotificationHubsManagementClient
PeeringManagementClient
Personalizer Client
PolicyClient
PolicyEventsClient
PolicyMetadataClient
PolicyStatesClient

OPENAPI

817

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

PolicyTrackedResourcesClient
portal
PostgreSQLManagementClient
Power BI Embedded Management Client
PowerBIDedicated
PrivateDnsManagementClient
Provider API Client
QnAMaker Client
QnAMaker Runtime Client
Recommendations API Client
RecoveryServicesBackupClient
RecoveryServicesClient
RedisManagementClient
Relay
RemediationsClient
ResourceHealthMetadata API Client
ResourceManagementClient
Run History APIs
RunCommandsClient
SchedulerManagementClient
SeaBreezeManagementClient
SearchIndexClient
SearchManagementClient
SearchServiceClient
Security Center
Security Insights
ServerManagement
Service Fabric Client APIs
Service Map
ServiceBusManagementClient
ServiceFabricManagementClient
SharedImageGalleryServiceClient
SignalRManagementClient
SiteRecoveryManagementClient
Software Plan RP
SqlManagementClient
SqlVirtualMachineManagementClient
Storage Cache Mgmt Client
StorageImportExport
StorageManagementClient
StorSimple8000SeriesManagementClient
StorSimpleManagementClient
StreamAnalyticsManagementClient
SubscriptionClient
SubscriptionDefinitionsClient
SubscriptionsManagementClient
Text Analytics Client
TimeSeriesInsightsClient
TopLevelDomains API Client
TrafficManagerManagementClient
Update Management
UpdateAdminClient
UsageManagementClient
VirtualMachineImageTemplate
VirtualWANAsAServiceManagementClient
Visual Studio Projects Resource Provider Client
Visual Studio Resource Provider Client
VM Insights Onboarding
VMwareCloudSimple
WebApplicationFirewallManagement
WebApps API Client
WebSite Management Client
windowsesu
WorkbookClient
Workload Monitor

OPENAPI

818

1.
2.

•
•

•

OpenAPI Microsoft | Tenant
To build apps that use the Microsoft identity platform for identity and access management, you need access to an
Azure Active Directory (Azure AD) tenant. It's in the Azure AD tenant that you register and manage your apps, con
figure their access to data in Microsoft 365 and other web APIs, and enable features like Conditional Access.

A tenant represents an organization. It's a dedicated instance of Azure AD that an organization or app developer re
ceives at the beginning of a relationship with Microsoft. That relationship could start with signing up for Azure, Mi
crosoft Intune, or Microsoft 365, for example.

Each Azure AD tenant is distinct and separate from other Azure AD tenants. It has its own representation of work
and school identities, consumer identities (if it's an Azure AD B2C tenant), and app registrations. An app registra
tion inside your tenant can allow authentications only from accounts within your tenant or all tenants.

Use an existing Azure AD tenant

To check the tenant:

Sign in to the Azure Portal. Use the account you'll use to manage your application.
Check the upper-right corner. If you have a tenant, you'll automatically be signed in. You see the tenant
name directly under your account name.

If you don't have a tenant associated with your account, you'll see a GUID under your account name. You won't be
able to do actions like registering apps until you create an Azure AD tenant.

Create a new Azure AD tenant

You'll provide the following information to create your new tenant:

Organization name
Initial domain - Initial domain <domainname>.onmicrosoft.com can't be edited or deleted. You can add a cus
tomized domain name later.
Country or region

OPENAPI

819

1.
2.

3.
4.
5.

6.
7.

OpenAPI Microsoft | Register Application
Registering your application establishes a trust relationship between your app and the Microsoft identity platform.
The trust is unidirectional: your app trusts the Microsoft identity platform, and not the other way around.

Follow these steps to create the app registration:

Sign in to the Azure Portal.
If you have access to multiple tenants, use the Directories + subscriptions filter in the top menu to switch
to the tenant in which you want to register the application.
Search for and select Azure Active Directory.
Under Manage, select App registrations > New registration.
Enter a display Name for your application. Users of your application might see the display name when they
use the app, for example during sign-in. You can change the display name at any time and multiple app reg
istrations can share the same name. The app registration's automatically generated Application (client) ID,
not its display name, uniquely identifies your app within the identity platform.
Specify who can use the application, sometimes called its sign-in audience.
Select Register to complete the initial app registration

OPENAPI

820

Add a redirect URI

A redirect URI is the location where the Microsoft identity platform redirects a user's client and sends security to
kens after authentication.

In a production web application, for example, the redirect URI is often a public endpoint where your app is running,
like https://contoso.com/auth-response. During development, it's common to also add the endpoint where you run
your app locally, like https://127.0.0.1/auth-response or http://localhost/auth-response.

This RedirectURI will be used later to configure the sgcOpenAPI Microsoft Client.

Add credentials

Credentials are used by confidential client applications that access a web API. Examples of confidential clients are
web apps, other web APIs, or service-type and daemon-type applications. Credentials allow your application to au
thenticate as itself, requiring no interaction from a user at runtime.

You can add both certificates and client secrets (a string) as credentials to your confidential client app registration.

Add a client secret

Sometimes called an application password, a client secret is a string value your app can use in place of a certificate
to identity itself.

OPENAPI

821

1.
2.
3.
4.

◦

◦
5.
6.

Client secrets are considered less secure than certificate credentials. Application developers sometimes use client
secrets during local app development because of their ease of use. However, you should use certificate credentials
for any of your applications that are running in production.

In the Azure portal, in App registrations, select your application.
Select Certificates & secrets > Client secrets > New client secret.
Add a description for your client secret.
Select an expiration for the secret or specify a custom lifetime.

Client secret lifetime is limited to two years (24 months) or less. You can't specify a custom lifetime
longer than 24 months.
Microsoft recommends that you set an expiration value of less than 12 months.

Select Add.
Record the secret's value for use in your client application code. This secret value is never displayed
again after you leave this page.

OPENAPI

822

OpenAPI Microsoft | OAuth2 Code
Using OAuth2 Code Grant Flow requires interaction with the user to login and get the required privileges.

Once you have the Tenant Id and the Credentials, you can configure the OAuth2 properties for Code Grant.

To configure the OpenAPI Client for OAuth2 Code Grant, configure the property MicrosoftOptions.Authentication
with the following value:

GetOpenAPIClient->MicrosoftOptions->Authentication = oamaOAuth2Code;

Then you can configure the OAuth2 parameters

GetOpenAPIClient->MicrosoftOptions->Authentication = oamaOAuth2Code;

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->AuthURL = "https://login.microsoftonline.com/tenant_id/oauth2/v2.0/authorize"

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->TokenURL = "https://login.microsoftonline.com/tenant_id/oauth2/v2.0/token"

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientId = "90945b8d-f6b7-4b97-b2bd-21c3c90b5f3b";

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientSecret = "client_secret";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->IP = "127.0.0.1";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->Port = 8080;

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSL = True;

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->Port = 8080;

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->CertFile = "sgc.pem";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->KeyFile = "sgc.pem";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->Password = "";

OPENAPI

823

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->RedirectURL = "https://localhost:8080";

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->Scope->Text = "

openid

";

The Tenant ID must be configured for the Authentication and Token URLs, just replace the correct Tenant Id in the
url.

Microsoft only allows the URL localhost if you are listening in the Local IP, so set the redirect URL with localhost
as dns name instead of configure with the IP address.

The scope value depends of the API, check the Microsoft / Azure documentation for every API.

The first time a request is made, it shows the web-browser asking the user to login to his Microsoft account. If the
user already login previously, it will make the HTTP request directly.

OPENAPI

824

OpenAPI Microsoft | OAuth2 Credentials
Using OAuth2 Code Grant Flow doesn't requires interaction with the user, so is suitable for services, daemons... or
any application that must run without user interaction.

Once you have the Tenant Id and the Credentials, you can configure the OAuth2 properties for Code Grant.

To configure the OpenAPI Client for OAuth2 Code Grant, configure the property MicrosoftOptions.Authentication
with the following value:

GetOpenAPIClient->MicrosoftOptions->Authentication = oamaOAuth2Credentials;

GetOpenAPIClient->MicrosoftOptions->Authentication = oamaOAuth2Credentials;

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->AuthURL = "https://login.microsoftonline.com/tenant_id/oauth2/v2.0/authorize"

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->TokenURL = "https://login.microsoftonline.com/tenant_id/oauth2/v2.0/token"

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientId = "90945b8d-f6b7-4b97-b2bd-21c3c90b5f3b";

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientSecret = "client_secret";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->IP = "127.0.0.1";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->Port = 8080;

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSL = True;

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->Port = 8080;

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->CertFile = "sgc.pem";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->KeyFile = "sgc.pem";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->Password = "";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->RedirectURL = "https://localhost:8080";

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->Scope->Text = "

OPENAPI

825

https://graph.microsoft.com/.default

";

The Tenant ID must be configured for the Authentication and Token URLs, just replace the correct Tenant Id in the
url.

Microsoft only allows the URL localhost if you are listening in the Local IP, so set the redirect URL with localhost
as dns name instead of configure with the IP address.

The scope value depends of the API, check the Microsoft / Azure documentation for every API.

OAuth2 credentials doesn't require any user interaction, so no browser will be opened the first HTTP request call.

OPENAPI

826

•

•

•
•

OpenAPI Microsoft | Graph
Microsoft Graph exposes REST APIs and client libraries to access data on the following Microsoft cloud services:

Microsoft 365 core services: Bookings, Calendar, Delve, Excel, Microsoft 365 compliance eDiscovery, Mi
crosoft Search, OneDrive, OneNote, Outlook/Exchange, People (Outlook contacts), Planner, SharePoint,
Teams, To Do, Workplace Analytics
Enterprise Mobility + Security services: Advanced Threat Analytics, Advanced Threat Protection, Azure Ac
tive Directory, Identity Manager, and Intune
Windows services: activities, devices, notifications, Universal Print
Dynamics 365 Business Central

Get Current User

GetOpenAPIClient->MicrosoftOptions->Authentication = oamaOAuth2Code;

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->AuthURL = "https://login.microsoftonline.com/tenant_id/oauth2/v2.0/authorize"

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->TokenURL = "https://login.microsoftonline.com/tenant_id/oauth2/v2.0/token"

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientId = "90945b8d-f6b7-4b97-b2bd-21c3c90b5f3b";

GetOpenAPIClient->Authentication->OAuth2->OAuth2Options->ClientSecret = "client_secret";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->IP = "127.0.0.1";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->Port = 8080;

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSL = True;

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->Port = 8080;

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->CertFile = "sgc.pem";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->KeyFile = "sgc.pem";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->SSLOptions->Password = "";

GetOpenAPIClient->Authentication->OAuth2->LocalServerOptions->RedirectURL = "https://localhost:8080";

GetOpenAPIClient->Authentication->OAuth2->AuthorizationServerOptions->Scope->Text = "

openid

";

GetOpenAPIClient->meuserGetUser();

OPENAPI

827

APIs
The following APIs have been generated using the eSeGeCe sgcOpenAPI Generator and provided for free to any
user. The source code of the interface is provided with the trial, so you can see what you can expect if you pur
chase a license of any of the private apis like Google, Amazon or Microsoft.

API Description

Geolocation The Abstract IP Geolocation API takes an IP address and translates it into a location, as well as many other details,
such as an address, timezone, and more.

OPENAPI

828

•
•

•

•

•

OpenAPI | AbstractApi Geolocation
What is the IP Geolocation API?

The Abstract IP Geolocation API takes an IP address and translates it into a location, as well as many other details,
such as an address, timezone, and more.

What are some use cases for the IP Geolocation API?

There are many powerful use cases for IP geolocation API’s and data. These include but are not limited to:

Automatically redirect users to relevant sites or sub sites based on their location
Automatically detect and displaying a user’s location, country, or timezone without requiring them to explicitly
make this customization
Customize the content or experience of a website or app based on the user’s location. E.g., showing a
user’s local weather, tax and VAT rates, currency, news, public holidays, etc.
Filter out users based on their location, e.g., if you’re unable to offer your services to users in a particular
country.
Requiring that a user accepts certain terms as required by local regulations, such as GDPR cookie banners
for European Union citizens

Where get an API Key?

Just register in abstractapi.com and you will get an api key for free

https://www.abstractapi.com/api/ip-geolocation-api

Sample Code

The following code returns the info about the IP Address provided

ShowMessage(GetOpenAPIClient->Retrieve_the_location_of_an_IP_address("asdfkjlkj32i3j2liwj3es", "88.5.12.4"));

DEMOS

829

•
•

•

•

•
•

Demos | Server Chat
This demo shows how build a Server Chat using TsgcWebSocketHTTPServer and WebSockets as communication
protocol.
Every time a new peer sends a message, the server reads the message and broadcast the message to all connect
ed clients.

Start Server

Before start the server, you must configure it to set the listening port, if use a secure connection or not...

First I create a new instance of TsgcWebSocketHTTPServer.
If Server will use secure connections, it needs a PEM certificate, just set where is located this certificate and
the listening port for SSL You can configure the TLS version and the OpenSSL API (if needed)

// ... ssl

switch (cboOpenSSLAPI->ItemIndex)

{

 case 0:

 server->SSLOptions->OpenSSL_Options.APIVersion = TwsOpenSSLAPI->oslAPI_1_0;

 break;

 case 1:

 server->SSLOptions->OpenSSL_Options->APIVersion = TwsOpenSSLAPI->oslAPI_1_1;

 break;

}

switch (cboTLSVersion->ItemIndex)

{

 case 0:

 server->SSLOptions->Version = TwsTLSVersions->tlsUndefined;

 break;

 case 1:

 server->SSLOptions->Version = TwsTLSVersions->tls1_0;

 break;

 case 2:

 server->SSLOptions->Version = TwsTLSVersions->tls1_1;

 break;

 case 3:

 server->SSLOptions->Version = TwsTLSVersions->tls1_2;

 break;

 case 4:

 server->SSLOptions->Version = TwsTLSVersions->tls1_3;

 break;

 default:

 break;

}

By default, if you start the server, it will listening on ALL IPs of listening port, so it's recommended use the
binding property to only listen on 1 specific IP.

With WSServer->Bindings->Add do

{

 Port = StrToInt(txtDefaultPort->Text);

 IP = txtHost->Text;

}

Once configured all options, call Server.Active = true to start the server.

Events Configuration

Use OnConnect and OnDisconnect events to know when a client connects to server.
Messages sent from client to server are received OnMessage event, so use this event handler to broad
cast the message received to all clients

DEMOS

830

private void OnMessageEvent(TsgcWSConnection *Connection, string Text)

{

 server->Broadcast(Text);

}

Dispatch HTTP Requests

WebSocket HTTP Server allows to handle WebSocket and HTTP Protocols on the same listening port, so a web-
browser can request a web page to access your server. OnCommandGet is the event used to read the HTTP Re
quest and send the HTTP Responses.

Use ARequestInfo parameter to read the HTTP Request and AResponseInfo to write the HTTP Response.

Basically, use the ARequestInfo.Document to read which document is requesting the client and send a response
using the following properties: ResponseNo, ContentType and ContentText.

Example: a client request document '/jquery.js'

private void OnCommandGetEvent(TsgcWSConnection *Connection, TsgcWSHTTPRequestInfo *RequestInfo, ref TsgcWSHTTPResponseInfo *ResponseInfo)

{

 if (RequestInfo->Document == "/jquery.js")

 {

 ResponseInfo->ContentType = "text/javascript";

 ResponseInfo->ContentText = pageJQuery.Content;

 ResponseInfo->ResponseNo = 200;

 }

}

DEMOS

831

•
•
•

•

•

•

Client Chat
This demo shows how build a client chat, using TsgcWebSocketClient, which connects to a WebSocket Server,
sends a message and this message is received by all connected clients.

Connect to Server

First create a new instance of TsgcWebSocketClient.
Then configure the server Host and Port.
If client uses a secure connection, configure the TLSOptions property of the component.

 if (chkTLS->Checked)

 {

 WSClient->Port = StrToInt(txtSSLPort->Text)

 }

 else

 {

 WSClient->Port = StrToInt(txtDefaultPort->Text);

 }

 WSClient->Host = txtHost->Text;

 case cboOpenSSLAPI->ItemIndex of

 {

 0: WSClient->TLSOptions->OpenSSL_Options->APIVersion = oslAPI_1_0;

 1: WSClient->TLSOptions->OpenSSL_Options->APIVersion = oslAPI_1_1;

 };

 case cboTLSVersion->ItemIndex of

 {

 0: WSClient->TLSOptions->Version = tlsUndefined;

 1: WSClient->TLSOptions->Version = tls1_0;

 2: WSClient->TLSOptions->Version = tls1_1;

 3: WSClient->TLSOptions->Version = tls1_2;

 4: WSClient->TLSOptions->Version = tls1_3;

 }

 WSClient->TLS = chkTLS->Checked;

Once all options can be configured, set Client.Active = true to connect to server.

Send Message To Server

To send a message to server, use WriteData method, send any Text message and server will send as a re
sponse the same message.

WSClient->WriteData(txtName->Text + ": " + txtMessage->Text);

Receive Messages from Server

Every time a new Text message is received by client, OnMessage event is fired.

private void OnMessageEvent(TsgcWSConnection *Connection, string Text)

{

 DoLog(Text);

}

DEMOS

832

•
•
•

Demos | Client
This demo shows how build a websocket client, using TsgcWebSocketClient.

Connect to Server

First create a new instance of TsgcWebSocketClient.
Then configure the server Host and Port.
By default the client will connect using WebSocket protocol. But you can configure the client to connect us
ing plain TCP protocol. Just set Specifications.RFC6455 = false, and the client will use plain TCP protocol
instead of WebSocket protocol. You can read more about TCP Connections.

WSClient->Host = txtHost->Text;

WSClient->Port = StrToInt(txtPort->Text);

WSClient->Options->Parameters = txtParameters->Text;

WSClient->TLS = chkTLS->Checked;

WSClient->Specifications->RFC6455 = chkOverWebSocket->Checked;

WSClient->Proxy->Enabled = chkProxy->Checked;

WSClient->Proxy->Username = txtProxyUsername->Text;

WSClient->Proxy->Password = txtProxyPassword->Text;

WSClient->Proxy->Host = txtProxyHost->Text;

if txtProxyPort->Text "" then

WSClient->Proxy->Port = StrToInt(txtProxyPort->Text);

WSClient->Extensions->PerMessage_Deflate->Enabled := chkCompressed->Checked;

// ... active

WSClient->Active = True;

Client Events

Use the following events to control the client flow: when connects, disconnects, receives a message, an error is de
tected...

private void OnExceptionEvent(TsgcWSConnection *Connection, Exception E)

{

 DoLog("#exception: " + E->Message);

}

private void OnConnectEvent(TsgcWSConnection *Connection)

{

 DoLog("#connected: " + Connection->IP);

}

private void OnMessageEvent(TsgcWSConnection *Connection, string Text)

{

 DoLog(Text);

}

private void OnDisconnectEvent(TsgcWSConnection *Connection, int CloseCode)

{

 DoLog("Disconnected (" + IntToStr(CloseCode) + "): " + Connection->IP);

}

private void OnErrorEvent(TsgcWSConnection *Connection, string Error)

{

 DoLog("#error: " + Connection->IP + " - " + Error);

}

DEMOS

833

•
•
•

Demos | Client MQTT
This demo shows how connect to a MQTT broker server. Requires a TsgcWebSocketClient to handle WebSocket /
TCP protocols.

Configuration

First create a new TsgcWebSocketClient instance, check the Client Demo.
Then, create a new instance of TsgcWSPClient_MQTT.
After that, you must assign the MQTT Protocol to WebSocket client and configure the connection options in
WebSocket client.

if (mqtt == null)

{

 mqtt = new TsgcWSPClient_MQTT();

 mqtt->OnMQTTBeforeConnect += OnMQTTBeforeConnectEvent;

 mqtt->OnMQTTConnect += OnMQTTConnectEvent;

 mqtt->OnMQTTDisconnect += OnMQTTDisconnectEvent;

 mqtt->OnMQTTSubscribe += OnMQTTSubscribeEvent;

 mqtt->OnMQTTUnSubscribe += OnMQTTUnSubscribeEvent;

 mqtt->OnMQTTPing += OnMQTTPingEvent;

 mqtt->OnMQTTPubAck += OnMQTTPubAckEvent;

 mqtt->OnMQTTPubComp += OnMQTTPubCompEvent;

 mqtt->OnMQTTPublish += OnMQTTPublishEvent;

 mqtt->OnMQTTPubRec += OnMQTTPubRecEvent;

 mqtt->Client = client;

}

mqtt->Client = client;

txtParameters->Text = "/";

chkTLS->Checked = false;

mqtt->Authentication->Enabled = false;

mqtt->Authentication->UserName = "";

mqtt->Authentication->Password = "";

mqtt->MQTTVersion = TwsMQTTVersion->mqtt311;

mqtt->HeartBeat->Interval = 5;

mqtt->HeartBeat->Enabled = true;

switch (Index)

{

 case 0: // esegece.com

 txtHost->Text = "www.esegece.com";

 txtPort->Text = "15675";

 txtParameters->Text = "/ws";

 mqtt->Authentication->Enabled = true;

 mqtt->Authentication->UserName = "sgc";

 mqtt->Authentication->Password = "sgc";

 chkOverWebSocket->Checked = true;

 break;

 case 1: // test.mosquitto.org

 txtHost->Text = "test.mosquitto.org";

 txtPort->Text = "1883";

 chkTLS->Checked = false;

 chkOverWebSocket->Checked = false;

 break;

 case 2: // mqtt.fluux.io

 txtHost->Text = "mqtt.fluux.io";

 txtPort->Text = "1883";

 chkTLS->Checked = false;

 chkOverWebSocket->Checked = false;

 mqtt->MQTTVersion = TwsMQTTVersion->mqtt5;

 break;

 case 3: // broker.hivemq.com

 txtHost->Text = "broker.mqttdashboard.com";

 txtPort->Text = "8000";

 txtParameters->Text = "/mqtt";

 chkTLS->Checked = false;

 chkOverWebSocket->Checked = true;

 mqtt->MQTTVersion = TwsMQTTVersion->mqtt5;

 break;

}

DEMOS

834

MQTT Events

The connection flow is controlled by MQTT Client component, so you must handle the MQTT events to know when
it's connected to broker, when a new message is published, when is disconnected...

private void OnMQTTConnectEvent(TsgcWSConnection *Connection, bool Session, int ReasonCode, string ReasonName, TsgcWSMQTTCONNACKProperties *ConnectProperties)

{

 DoLog("#MQTT Connect");

 chkTLS->Enabled = false;

 chkCompressed->Enabled = false;

 if (FMQTTSubscribeTopic != "")

 {

 mqtt->Subscribe(FMQTTSubscribeTopic);

 FMQTTSubscribeTopic = "";

 }

}

private void OnMQTTPublishEvent(TsgcWSConnection *Connection, string Topic, string Text, TsgcWSMQTTPublishProperties *PublishProperties)

{

 DoLog(Topic + ": " + Text);

}

private void OnMQTTSubscribeEvent(TsgcWSConnection *Connection, int PacketIdentifier, TsgcWSSUBACKS *Codes, TsgcWSMQTTSUBACKProperties *SubscribeProperties)

{

 DoLog("#Subscribe: " + IntToStr(PacketIdentifier));

}

private void OnMQTTDisconnectEvent(TsgcWSConnection *Connection, int ReasonCode, string ReasonName, TsgcWSMQTTDISCONNECTProperties *DisconnectProperties)

{

 DoLog("#disconnected");

 chkTLS->Enabled = true;

 chkCompressed->Enabled = true;

}

DEMOS

835

•
•
•

Demos | Client SocketIO
This demo shows how connect to a Socket.IO Server. Requires a TsgcWebSocketClient to handle WebSocket /
TCP protocols.

Configuration

First create a new TsgcWebSocketClient instance, check the Client Demo.
Then, create a new instance of TsgcWSAPI_SocketIO.
After that, you must assign the Socket.IO API to WebSocket client and configure the connection options in
WebSocket client.

if (socketio == null)

{

 socketio = new TsgcWSAPI_SocketIO();

 socketio->Client = client;

}

socketio->Client = client;

txtParameters->Text = "/";

chkTLS->Checked = true;

chkOverWebSocket->Checked = true;

Send Messages

Socket.IO uses TsgcWebSocketClient to send messages to server, so just call WriteData and pass as a parame
ter the JSON message to socket.io server

client->WriteData("42[\"new message\", \"" + txtSocketIOMessage.Text + "\"]");

Receive Messages

The messages received as the flow of connection is handled by TsgcWebSocketClient, so use this component to
read the messages sent from server and to know if connection is active or not.

private void OnMessageEvent(TsgcWSConnection *Connection, string Text)

{

 DoLog(Text);

}

DEMOS

836

•
•

•

Demos | Server Monitor
This demo show how update 3 HTML Monitors using WebSocket as protocol. Server has an internal timer that up
dates randomly the values of the gauges and updates the value using a websocket message. This message is read
by javascript client and updates the value of the Gauge.

Configuration

First create a new TsgcWebSocketServer instance, check the Server Chat Demo.
Then Create a new Timer and every 500 milliseconds update the values of: memory, network or cpu. Send
the update to all clients connected.
In Javascript client, read the message sent by server and update the value of the gauge.

<pre><code>

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>Server Monitor Demo</title>

 <script src="http://127.0.0.1:5413/sgcWebSockets.js"></script>

 <script src="http://127.0.0.1:5413/esegece.com.js"></script>

 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.1.0/jquery.mobile-1.1.0.min.css" />

 <script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>

 <script src="http://code.jquery.com/mobile/1.1.0/jquery.mobile-1.1.0.min.js"></script>

 <script type='text/javascript' src='https://www.google.com/jsapi'></script>

 <style>

 #status {

 padding: 5px;

 color: #fff;

 background: #ccc;

 }

 #status.fail {

 background: #c00;

 }

 #status.offline {

 background: #c00;

 }

 #status.online {

 background: #0c0;

 }

 </style>

 <script type='text/javascript'>

 var vMemory;

 var vCpu;

 var vNetwork;

 var chart;

 var data;

 var options;

 var ws;

 vMemory=30;

 vCpu=55;

 vNetwork=68;

 google.load('visualization', '1', {packages:['gauge']});

 google.setOnLoadCallback(drawChart);

 function drawChart() {

 data = google.visualization.arrayToDataTable([

 ['Label', 'Value'],

 ['Memory', vMemory],

 ['CPU', vCpu],

 ['Network', vNetwork]

]);

 options = {

 width: 400, height: 120,

 redFrom: 90, redTo: 100,

 yellowFrom:75, yellowTo: 90,

 minorTicks: 5

 };

 chart = new google.visualization.Gauge(document.getElementById('chart_div'));

 chart.draw(data, options);

 }

 function updateChart() {

DEMOS

837

 data = google.visualization.arrayToDataTable([

 ['Label', 'Value'],

 ['Memory', vMemory],

 ['CPU', vCpu],

 ['Network', vNetwork]

]);

 chart.draw(data, options);

 }

 function subscribe(Channel)

 {

 if (document.getElementById(Channel).checked) {

 ws.subscribe(Channel);

 } else {

 ws.unsubscribe(Channel);

 }

 }

 function wsmonitor()

 {

 if ("WebSocket" in window)

 {

 ws = new sgcws("ws://127.0.0.1:5413");

 ws.on('open', function(evt){

 document.getElementById('status').innerHTML = "Socket Open";

 document.getElementById('status').className = "online";

 ws.subscribe("memory");

 ws.subscribe("cpu");

 ws.subscribe("network");

 }

);

 ws.on('close', function(evt){

 document.getElementById('status').innerHTML = "Socket Closed";

 document.getElementById('status').className = "offline";

 }

);

 ws.on('sgcevent', function(evt){

 if (evt.channel == "memory") {

 vMemory = parseInt(evt.message);

 } else if (evt.channel == "cpu") {

 vCpu = parseInt(evt.message);

 } else if (evt.channel == "network") {

 vNetwork = parseInt(evt.message);

 }

 updateChart();

 }

);

 ws.on('error', function(evt){

 document.getElementById('status').innerHTML = "Socket Error";

 document.getElementById('status').className = "fail";

 }

);

 }

 }

</script>

</head>

<body>

<div data-role="page" id="wsdemo_monitor">

 <div data-role="header" data-theme="b">

 <h1>Server Monitor</h1>

 <a href="#home" data-icon="home" data-iconpos="notext" data-direction="reverse" class="ui-btn-left jqm-home"

 </div><!-- /header -->

 <div data-role="content">

 <h2>Press Start to Get Monitor Data</h2>

 <p id="status" classname="success"></p>

 <h4>Select which data you want to receive: Memory - CPU - Network</h4>

 Start

 <div id='chart_div'></div>

 <div data-role="fieldcontain">

 <fieldset data-role="controlgroup" data-type="horizontal">

 <input type="checkbox" name="memory" id="memory" class="custom" checked="True" onclick

 <label for="memory">Memory</label>

 <input type="checkbox" name="cpu" id="cpu" class="custom" checked="True" onclick=

 <label for="cpu">CPU</label>

 <input type="checkbox" name="network" id="network" class="custom" checked="True"

 <label for="network">Network</label>

 </fieldset>

 </div>

 </div><!-- /content -->

 <div data-role="footer" class="footer-docs" data-theme="c">

 <p>© 2020 eSeGeCe.com</p>

 </div>

</div><!-- /page -->

</body>

</html>

</code></pre>

DEMOS

838

DEMOS

839

•
•

•

Demos | Server Snapshots
This demo show how send images from server to client and how all clients receive the same image using broad
cast method of server component.

Configuration

First create a new TsgcWebSocketHTTPServer instance, check the Server Chat Demo.
Enable compression to send less bytes when message is transmitted to clients

Server.Extensions.PerMessage_Deflate.Enabled = true

Then every 5 seconds the server broadcast an image stream to all connected clients

private void DoBroadcastStream()

begin

 TBitmap *oBitmap = new TBitmap();

 try

 {

 // load bitmmap

 if (WSServer->Active)

 {

 TMemoryStream oStream = new TMemoryStream();

 Try

 {

 oBitmap->SaveToStream(oStream);

 oStream->Seek(0, soFromBeginning);

 WSServer->Broadcast(oStream);

 }

 __finally

 {

 FreeAndNil(oStream);

 }

 }

 }

 __finally

 {

 oBitmap->FreeImage;

 FreeAndNil(oBitmap);

 }

}

DEMOS

840

•
•
•

•

Demos | Client Snapshots
This demo shows how read binary websocket messages, using TsgcWebSocketClient, which connects to a Web
Socket Server, and receives a stream which is an image that is shown to user.

Connect to Server

First create a new instance of TsgcWebSocketClient.
Then configure the server Host and Port.
Enable compression to receive less bytes when message is transmitted from server.

Client.Extensions.PerMessage_Deflate.Enabled = true

The image sent by server arrives as a stream, so use OnBinary event to read images.

private void OnClientBinary(Connection: TsgcWSConnection; const Data: TMemoryStream);

{

 TBitmap *oBitmap = new TBitmap();

 try

 {

 oBitmap->LoadFromStream(Data);

 Image1->Picture->Assign(oBitmap);

 memoLog->Lines->Add(

 '#image uncompressed size: ' + IntToStr(Data.Size) +

 '. Total received: ' + IntToStr(Connection.RecBytes));

 }

 __finally

 {

 FreeAndNil(oBitmap);

 }

}

DEMOS

841

•
•

•

Demos | Upload File
This demo shows how upload a file from web browser to a server using websocket protocol.

Configuration

First create a new TsgcWebSocketServer instance, check the Server Chat Demo.
The file will arrive to server as a binary stream, so you must handle OnBinary event to read the file.

private void OnServerBinary(TsgcWSConnection *Connection; const TMemoryStream *Data)

{

 if FFileName == "" then

 FFileName = FormatDateTime("yyyymmddhhnnsszz", Now) + ".dat";

 TFileStream *oFile = new TFileStream(FFileName, fmCreate);

 try

 {

 oFile->CopyFrom(Data, Data->Size);

 }

 __finally

 {

 oFile->Free;

 }

 memoLog->Lines->Add("Received File: " + FFileName);

end;

If you want to know the name of the file, you can send a text message before the file is sent with the name of
the file

void OnServerMessage(TsgcWSConnection *Connection; const string Text)

{

 if (LeftStr(Text, Length(CS_UPLOAD_FILE)) == CS_UPLOAD_FILE)

 FFileName = MidStr(Text, Length(CS_UPLOAD_FILE) + 1, Length(Text))

 else

 memoLog->Lines->Add("Message Received (" + Connection.Guid + "): " + Text);

}

The javascript code to send a file using websockets is shown below:

<script type='text/javascript'>

var ws;

function DoOpen()

{

 if ("WebSocket" in window)

 {

 ws = new sgcWebSocket("ws://127.0.0.1:5418");

 ws.on('open', function(evt){

 ws.binaryType = "arraybuffer";

 document.getElementById('status').innerHTML = "Socket Open";

 document.getElementById('status').className = "online";

 }

);

 ws.on('close', function(evt){

 document.getElementById('status').innerHTML = "Socket Closed";

 document.getElementById('status').className = "offline";

 }

);

 ws.on('error', function(evt){

 document.getElementById('status').innerHTML = "Socket Error";

 document.getElementById('status').className = "fail";

 }

);

 }

}

function DoClose()

{

 ws.close();

}

function DoUploadFile() {

DEMOS

842

 var file = document.getElementById('filename').files[0];

 var reader = new FileReader();

 var rawData = new ArrayBuffer();

 reader.loadend = function() {

 }

 reader.onload = function(e) {

 ws.send("uploadfile:" + file.name);

 rawData = e.target.result;

 ws.send(rawData);

 document.getElementById('status').innerHTML = "File Uploaded";

 document.getElementById('status').className = "online";

 }

 reader.readAsArrayBuffer(file);

 }

</script>

DEMOS

843

•

•

Demos | Server Authentication
This demo show how use Server Authentication, if you want to know more about the different types of authentica
tion, read the following article about Authentication.

Authentication

First create a new instance of TsgcWebSocketServer. Enable Authentication property,
server.Authentication.Enabled = true;
Then, check in OnAuthentication event handler if the username and password are correct. If they are cor
rect, set the Authenticated property to true, otherwise set to false.

private void OnAuthenticationEvent(TsgcWSConnection *Connection, string User, string Password, ref bool Authenticated)

{

 if ((User == "user") && (Password == "1234"))

 {

 Authenticated = true;

 }

}

DEMOS

844

•
•

Demos | KendoUI_Grid
This demo show how KendoUI Grid works using WebSockets as protocol and a Web Browser as a client. Basically
is a javascript grid that is updated when any of the clients makes any change, these changes are updated using
websocket protocol to all connected clients, so all clients can see in real-time the same data, including all changes
made by clients.

Configuration

First create a new TsgcWebSocketHTTPServer instance, check the Server Chat Demo.
Then you must handle OnCommandGet to send the required files requested by web browser clients.

void OnCommandGet(TIdContext *AContext; TIdHTTPRequestInfo *ARequestInfo; TIdHTTPResponseInfo *AResponseInfo)

{

 if (ARequestInfo->Document == "/jquery.mobile.css")

 {

 AResponseInfo->ContentText = pageJQueryMobileCSS->Content;

 AResponseInfo->ContentType = "text/css";

 AResponseInfo->ResponseNo = 200;

 }

 else if (ARequestInfo.Document == "/jquery.js")

 {

 AResponseInfo->ContentText = pageJQuery->Content;

 AResponseInfo->ContentType = "text/javascript";

 AResponseInfo->ResponseNo = 200;

 end

 else if (ARequestInfo.Document == "/jquery.mobile.js")

 {

 AResponseInfo->ContentText = pageJQueryMobile->Content;

 AResponseInfo->ContentType = "text/javascript";

 AResponseInfo->ResponseNo = 200;

 end

 else

 {

 if (AContext->Connection->Socket->Binding->Port == WSServer->SSLOptions->Port)

 FRequestSSL = True

 else

 FRequestSSL = False;

 AResponseInfo->ContentText = pageKendoUI_Grid->Content;

 AResponseInfo->ContentType = "text/html";

 AResponseInfo->ResponseNo = 200;

 }

end;

WebSockets Updates

When a client updates a grid record, this change is transmitted to all connected clients using websocket protocol.
Use OnMessage event to get notified about grid changes. The messages are in JSON format so you only must
read the JSON text, decode it and send a response to the other peer.

void OnServerMessage(TsgcWSConnection *Connection; const string Text)

{

 TsgcJSON *oJSON := new TsgcJSON();

 try

 oJSON->Read(Text);

 // ... read

 if oJSON->Node["type"]->Value == "read" then

 {

 oArray = oJSON->AddArray("data");

 for (int i = 0; i <20; i++)

 {

 With (JSONObject->AddObject(IntToStr(i))->JSONObject) do

 {

 AddPair("ContactID", i);

 AddPair("ContactName", ContactName[i]);

DEMOS

845

 AddPair("ContactTitle", ContactTitle[i]);

 AddPair("CompanyName", CompanyName[i]);

 AddPair("Country", Country[i]);

 }

 }

 Connection->WriteData(oJSON->Text);

 }

 // ... update

 else if oJSON->Node["type"]->Value == "update" then

 {

 WSServer->Broadcast(StringReplace(Text, "\"type\":\"update\"", "\"type\":\"push-update\"", []), "", "",

 Connection->Guid);

 Connection->WriteData(Text);

 }

 // ... destroy

 else if oJSON->Node["type"]->Value == "destroy" then

 {

 WSServer->Broadcast(StringReplace(Text, "\"type\":\"destroy\"", "\"type":"push-destroy\"", []), "", "",

 Connection->Guid);

 Connection->WriteData(Text);

 }

 // ... create

 else if oJSON->Node["type"]->Value == "create" then

 {

 vText := StringReplace(Text, "null", formatDateTime("yyyymmddhhnnsszzz", Now), []);

 WSServer->Broadcast(StringReplace(vText, "\"type\":\"create\"", "\"type\":\"push-create\"", []), "", "",

 Connection->Guid);

 Connection->WriteData(vText);

 }

 __finally

 {

 oJSON->Free();

 }

}

DEMOS

846

Demos | ServerSentEvents
This demo show how Server Sent Events works in WebSocket Server. sgcWebSockets allows that the server can
handle more than one protocol on the same listening port.

You can read more about Server Sent Events.

This demo shows how the Server will send every second the time to all connected clients using Server Sent
Events.

Once the server is started, broadcasts to all connected clients a message with the Server Time, so every time the
client receives this message, it shows to user.

private void Timer1Timer(TObject *sender)

{

 server->Broadcast("data: " + "Server Time: " + FormatDateTime("hh:nn:ss", Now));

}

The javascript code to handle the websocket connection is shown below:

socket = new sgcWebSocket('sse', '', 'sse');

socket.on('open', function(evt){

 document.getElementById('status').innerHTML = "Socket Open";

 document.getElementById('status').className = "online";

 }

);

socket.on('close', function(evt){

 document.getElementById('status').innerHTML = "Socket Closed";

 document.getElementById('status').className = "offline";

 }

);

socket.on('message', function(evt){

 document.getElementById('log').innerHTML = evt.message;

 }

);

socket.on('error', function(evt){

 document.getElementById('status').innerHTML = "Socket Error";

 document.getElementById('status').className = "fail";

 }

);

DEMOS

847

•
•
•

Demos | Server WebRTC
This demo shows how build a Video Conference Server using TsgcWebSocketHTTPServer and WebRTC as
javascript library.

The demo uses WebSocket protocol to signal WebRTC and uses public STUN/TURN servers, for production sites,
you need to use your own STUN/TURN servers. Registered users can download Coturn for windows, which is al
ready compiled and with all the required libraries to run in your servers.

The client must be a web browser with support for WebRTC connections.

Configuration

First create a new TsgcWebSocketHTTPServer instance, check the Server Chat Demo.
Then, create a new instance of TsgcWSPServer_WebRTC.
After that, you must assign the WebRTC Protocol to WebSocket Server and configure the server host and
port.

WSServer->Port = StrToInt(txtDefaultPort->Text);

// ... bindings

With WSServer->Bindings->Add do

{

 Port = StrToInt(txtDefaultPort->Text);

 IP = txtHost>Text;

}

// ... active

WSServer->Active = true;

The demo requires an index HTML page which is used to dispatch the WebRTC front page, this page is provided
with the demo.

Run in WebBrowser

Once configured the server, start it and select one of the web-browsers available. It will open a new Web-Browser
session asking to start a new session. If successful you will see your video and if you open the same url in another
web-browser, you will see both peers connected.

The demo runs by default without SSL, this is only valid for localhost connections. For production sites, use SSL
connections. Check Server Chat Demo to configure SSL in server side.

DEMOS

848

•
•
•

•
•
•

Demos | Server AppRTC
This demo shows how build a Video Conference Server using TsgcWebSocketHTTPServer and AppRTC as
javascript library.

The demo uses WebSocket protocol to signal WebRTC and uses public STUN/TURN servers, for production sites,
you need to use your own STUN/TURN servers. Registered users can download Coturn for windows, which is al
ready compiled and with all the required libraries to run in your servers.

The client must be a web browser with support for WebRTC connections.

Configuration

First create a new TsgcWebSocketHTTPServer instance, check the Server Chat Demo.
Then, create a new instance of TsgcWSPServer_AppRTC.
After that, you must assign the AppRTC Protocol to WebSocket Server and configure the server host and
port. WebRTC requires secure connections, so you will need to use a PEM certificate and configure the SS
LOptions property of the component.

WSServer->Port = StrToInt(txtDefaultPort->Text);

// ... bindings

With WSServer->Bindings->Add do

{

 Port = StrToInt(txtDefaultPort->Text);

 IP = txtHost>Text;

}

// ... properties

WSPAppRTC->AppRTC->RoomLink = "https://" + txtHost->Text + ":" + txtDefaultPort->Text + "/r/";

WSPAppRTC->AppRTC->WebSocketURL = "wss://" + txtHost->Text + ":" + txtDefaultPort->Text;

// ... active

WSServer->Active = true;

AppRTC.RommLink is the url where the web-browser will be redirected to login to a room
AppRTC.WebSocketURL is the url of the websocket connection
The IceServers can be configured in the AppRTC Server protocol.

The demo requires an index HTML page which is used to dispatch the AppRTC front page, this page is provided
with the demo.

Run in WebBrowser

Once configured the server, start it and select one of the web-browsers available. It will open a new Web-Browser
session asking to join a new room. Join this room and if successful you will see a link which must be used from an
other web-browser to start a new video-conference.

DEMOS

849

DEMOS

850

•
•

•

Demos | Telegram Client
This demo shows how connect to Telegram, receive all contacts, send Text messages, send Images... and much
more

Configuration

First create a new instance of TsgcTDLib_Telegram.
Then, before you try to connect to telegram, you must pass some parameters to client component like API
Hash, API Id... Once you must set all required parameters, set property Active = true to start a connection.

telegram->Telegram->API->ApiHash = txtApiHash->Text;

telegram->Telegram->API->ApiId = txtApiId->Text;

telegram->Telegram->PhoneNumber = "";

telegram->Telegram->BotToken = "";

if (chkLoginBot->Checked)

{

 telegram->Telegram->BotToken = txtBotToken->Text;

}

else

{

 telegram->Telegram->PhoneNumber = txtPhoneNumber->Text;

}

telegram->Active = true;

When client tries to connect to Telegram, usually a code is required, so you must handle OnTelegramAu
thenticationCode and return the Code parameter with the value provided by your Telegram account.

private void OnAuthenticationCodeEvent(TObject *Sender, ref string Code)

{

 Code = InputBox("Telegram", "Introduce Telegram Code");

}

Send Telegram Messages

To send a telegram message (text, files, images...) always requires first set the ChaId where you want to send the
message and then the parameter that can be a text message, a filename...

// send text message

sgcTelegram->SendTextMessage("456413", "Hello From sgcWebSockets!!!");

// send file message

sgcTelegram->SendDocumentMessage("383784", "c:\yourfile.txt");

Receive Telegram Messages

Messages received by Telegram client, are handled on specific event Handlers. There is an event when a next Text
Message is received, when a new Document is received, photo...

private void OnMessageTextEvent(TObject *Sender, TsgcTelegramMessageText *MessageText)

{

 DoLogMessage(MessageText->ChatId, MessageText->SenderUserId->ToString(), MessageText->Text);

}

DEMOS

851

private void OnMessageDocumentEvent(TsgcTDLib_Telegram *Sender, TsgcTelegramMessageDocument *MessageDocument)

{

 DoLogMessage(MessageDocument->ChatId, MessageDocument->SenderUserId->ToString(), MessageDocument->FileName);

}

THIRD-PARTIES

852

•
•
•

Coturn
Coturn

From sgcWebSockets 4.5.2 ENTERPRISE Edition, you can build your own STUN/TURN server using Delphi/
CBuilder.

It's a free open source implementation of TURN and STUN Servers.
The TURN Server is a VoIP media traffic NAT traversal server and gateway. It can be used as a general-purpose
network traffic TURN server and gateway, too.

The supported project target platforms are:

Linux
Mac OS X
Windows (Cygwin): compiled binaries are available for registered users.

Windows Configuration

First you must download compiled binaries from your account, there are 2 available versions: win32 and win64. Se
lect the desired platform and uncompress binaries in a folder. The following files will be created:

1. Some cygwin libraries required to run application, you must deploy these libraries with coturn server.
2. Some console applications:

2.1 turnserver.exe: is the main console application to run a TURN/STUN server
2.2 Other applications: are used to configure or testing purposes.

3. Turnserver.conf: is the configuration file for coturn server.

turnserver.conf

This is the configuration file for coturn server, if you open you will se a default configuration.

https://github.com/coturn/coturn

THIRD-PARTIES

853

Simple Configuration

Your server has the following public IP 80.15.44.123 and listens on port 80. The credentials for connecting are:
username = demo, password = secret
Set the following configuration:

listening-ip=80.15.44.123
listening-port=80
realm=yourrealm.com
user=demo:secret

Configuration with TLS enabled

Server has the following public IP 80.15.44.123 and listens on port 80 and 443 (TLS connections). The credentials
for connecting are: username = demo, password = secret. Your certificate name (must be in PEM format) is
certificate.crt and private key is private.key.
Set the following configuration:

listening-ip=80.15.44.123
listening-port=80
realm=yourrealm.com
tls-listening-port=443
cert=certificate.crt
pkey=private.key
user=demo:secret

There are more configurations available, just open turnserver.conf and read the documented sections.

Run coturn

Once configured, you can run server just executing turnserver.exe, a new console application will be opened and a
log file will be created. You can increase the verbose of console application (get more detailed messages) if you en
able "verbose" in turnserver.conf file.

REFERENCE

854

WebSockets
WebSocket is a web technology providing for bi-directional, full-duplex communications channels, over a single
Transmission Control Protocol (TCP) socket.

The WebSocket API is being standardized by the W3C, and the WebSocket protocol has been standardized by the
IETF as RFC 6455.
WebSocket is designed to be implemented in web browsers and web servers, but it can be used by any client or
server application. The WebSocket protocol makes possible more interaction between a browser and a web site,
facilitating live content and the creation of real-time games. This is made possible by providing a standardized way
for the server to send content to the browser without being solicited by the client, and allowing for messages to be
passed back and forth while keeping the connection open. In this way a two-way (bi-direction) ongoing conversa
tion can take place between a browser and the server. A similar effect has been done in non-standardized ways us
ing stop-gap technologies such as comet.

In addition, the communications are done over the regular TCP port number 80, which is of benefit for those envi
ronments which block non-standard Internet connections using a firewall. WebSocket protocol is currently support
ed in several browsers including Firefox, Google Chrome, Internet Explorer and Safari. WebSocket also requires
web applications on the server to be able to support it.

More Information
Browser Support

http://en.wikipedia.org/wiki/WebSocket
http://caniuse.com/websockets

REFERENCE

855

HTTP/2
HTTP/2 will make our applications faster, simpler, and more robust — a rare combination — by allowing us to undo
many of the HTTP/1.1 workarounds previously done within our applications and address these concerns within
the transport layer itself. Even better, it also opens up a number of entirely new opportunities to optimize our ap
plications and improve performance!

The primary goals for HTTP/2 are to reduce latency by enabling full request and response multiplexing, minimize
protocol overhead via efficient compression of HTTP header fields, and add support for request prioritization and
server push. To implement these requirements, there is a large supporting cast of other protocol enhancements,
such as new flow control, error handling, and upgrade mechanisms, but these are the most important features
that every web developer should understand and leverage in their applications.

HTTP/2 does not modify the application semantics of HTTP in any way. All the core concepts, such as HTTP
methods, status codes, URIs, and header fields, remain in place. Instead, HTTP/2 modifies how the data is format
ted (framed) and transported between the client and server, both of which manage the entire process, and hides
all the complexity from our applications within the new framing layer. As a result, all existing applications can be
delivered without modification.

More information

https://developers.google.com/web/fundamentals/performance/http2

REFERENCE

856

JSON
JSON or JavaScript Object Notation, is a text-based open standard designed for human-readable data inter
change. It is derived from the JavaScript scripting language for representing simple data structures and associative
arrays, called objects. Despite its relationship to JavaScript, it is language-independent, with parsers available for
many languages.

The JSON format is often used for serializing and transmitting structured data over a network connection. It is used
primarily to transmit data between a server and web application, serving as an alternative to XML.

More Information

http://en.wikipedia.org/wiki/JSON

REFERENCE

857

•
•
•

JSON-RPC 2.0
JSON-RPC is a stateless, light-weight remote procedure call (RPC) protocol. Primarily this specification defines
several data structures and the rules around their processing. It is transport agnostic in that the concepts can be
used within the same process, over sockets, over http, or in many various message passing environments. It uses
JSON (RFC 4627) as data format.

Example: client call method subtract with 2 params (42 and 23). Server sends a result of 19.

Client To Server --> {"jsonrpc": "2.0", "method": "subtract", "params": [42, 23], "id": 1}

Server To Client<-- {"jsonrpc": "2.0", "result": 19, "id": 1}

Parsers

sgcWebSockets provides a built-in JSON component, but you can use your own JSON parser. Just implement fol
lowing interfaces located at sgcJSON.pas:

IsgcJSON
IsgcObjectJSON

There are 3 implementations of theses interfaces

sgcJSON.pas: default JSON parser provided.
sgcJSON_System.pas: uses JSON parser provided with latest versions of delphi.
sgcJSON_XSuperObject.pas: uses JSON library written by Onur YILDIZ, you can download sources
from: https://github.com/onryldz/x-superobject

To use your own JSON parser or use some of the JSON parsers provided, just call SetJSONClass in your initial
ization method. For example: if you want use XSuperObject JSON parser, just call:

 SetJSONClass(TsgcXSOJSON)

If you don't call this method, sgcJSON will be used by default.

More information

http://www.jsonrpc.org/specification

REFERENCE

858

WAMP
The WebSocket Application Messaging Protocol (WAMP) is an open WebSocket subprotocol that provides two
asynchronous messaging patterns: RPC and PubSub.

The WebSocket Protocol is already built into modern browsers and provides bidirectional, low-latency message-
based communication. However, as such, WebSocket it is quite low-level and only provides raw messaging.

Modern Web applications often have a need for higher level messaging patterns such as Publish & Subscribe and
Remote Procedure Calls.

This is where The WebSocket Application Messaging Protocol (WAMP) enters. WAMP adds the higher level mes
saging patterns of RPC and PubSub to WebSocket - within one protocol.

Technically, WAMP is an officially registered WebSocket subprotocol (runs on top of WebSocket) that uses JSON
as message serialization format.

More Information

http://www.wamp.ws

REFERENCE

859

WebRTC
WebRTC is a free, open project that enables web browsers with Real-Time Communications (RTC) capabilities via
simple Javascript APIs. The WebRTC components have been optimized to best serve this purpose. The WebRTC
initiative is a project supported by Google, Mozilla and Opera.

WebRTC offers web application developers the ability to write rich, real-time multimedia applications (think video
chat) on the web, without requiring plugins, downloads or installs. Its purpose is to help build a strong RTC platform
that works across multiple web browsers, across multiple platforms.

More Information

http://www.webrtc.org

REFERENCE

860

MQTT
MQTT (MQ Telemetry Transport or Message Queue Telemetry Transport) is an ISO standard (ISO/IEC PRF 20922)
publish-subscribe-based "lightweight" messaging protocol for use on top of the TCP/IP protocol. It is designed for
connections with remote locations where a "small code footprint" is required or the network bandwidth is limited.
The publish-subscribe messaging pattern requires a message broker. The broker is responsible for distributing
messages to interested clients based on the topic of a message. Andy Stanford-Clark and Arlen Nipper of Cirrus
Link Solutions authored the first version of the protocol in 1999.

The specification does not specify the meaning of "small code footprint" or the meaning of "limited network band
width". Thus, the protocol's availability for use depends on the context. In 2013, IBM submitted MQTT v3.1 to the
OASIS specification body with a charter that ensured only minor changes to the specification could be
accepted.MQTT-SN is a variation of the main protocol aimed at embedded devices on non-TCP/IP networks, such
as ZigBee.
Historically, the "MQ" in "MQTT" came from IBM's MQ Series message queuing product line. However, queuing it
self is not required to be supported as a standard feature in all situations.

Specification
More Info

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://en.wikipedia.org/wiki/MQTT

REFERENCE

861

Server-Sent Events
Server-sent events (SSE) is a technology for where a browser gets automatic updates from a server via HTTP con
nection. The Server-Sent Events EventSource API is standardized as part of HTML5 by the W3C.

A server-sent event is when a web page automatically gets updates from a server. This was also possible before,
but the web page would have to ask if any updates were available. With server-sent events, the updates come au
tomatically.

Examples: Facebook/Twitter updates, stock price updates, news feeds, sport results, etc.

More information
Browser Support

http://en.wikipedia.org/wiki/Server-sent_events
http://caniuse.com/eventsource

REFERENCE

862

OAuth2
OAuth 2 is an authorization framework that enables applications to obtain limited access to user accounts on an
HTTP service, such as Facebook, and GitHub. It works by delegating user authentication to the service that hosts
the user account, and authorizing third-party applications to access the user account. OAuth 2 provides authoriza
tion flows for web and desktop applications, and mobile devices.

Read more
Specification

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://tools.ietf.org/html/rfc6749

REFERENCE

863

JWT
JSON Web Token is an Internet proposed standard for creating data with optional signature and/or optional encryp
tion whose payload holds JSON that asserts some number of claims. The tokens are signed either using a private
secret or a public/private key. For example, a server could generate a token that has the claim "logged in as admin"
and provide that to a client. The client could then use that token to prove that it is logged in as admin.

The tokens can be signed by one party's private key (usually the server's) so that party can subsequently verify the
token is legitimate. If the other party, by some suitable and trustworthy means, is in possession of the correspond
ing public key, they too are able to verify the token's legitimacy. The tokens are designed to be compact, URL-safe,
and usable especially in a web-browser single-sign-on (SSO) context. JWT claims can typically be used to pass
identity of authenticated users between an identity provider and a service provider, or any other type of claims as
required by business processes.

Read more
Specification

https://en.wikipedia.org/wiki/JSON_Web_Token
https://tools.ietf.org/html/rfc7519

REFERENCE

864

STUN
Session Traversal Utilities for NAT (STUN) is a standardized set of methods, including a network protocol, for tra
versal of network address translator (NAT) gateways in applications of real-time voice, video, messaging, and other
interactive communications.

STUN is a tool used by other protocols, such as Interactive Connectivity Establishment (ICE), the Session Initiation
Protocol (SIP), and WebRTC. It provides a tool for hosts to discover the presence of a network address translator,
and to discover the mapped, usually public, Internet Protocol (IP) address and port number that the NAT has allo
cated for the application's User Datagram Protocol (UDP) flows to remote hosts. The protocol requires assistance
from a third-party network server (STUN server) located on the opposing (public) side of the NAT, usually the public
Internet.

Read more
Specification

https://en.wikipedia.org/wiki/STUN
https://tools.ietf.org/html/rfc8489

REFERENCE

865

AMQP
The Advanced Message Queuing Protocol (AMQP) is an open standard application layer protocol for message-ori
ented middleware. The defining features of AMQP are message orientation, queuing, routing (including point-to-
point and publish-and-subscribe), reliability and security.

AMQP mandates the behavior of the messaging provider and client to the extent that implementations from differ
ent vendors are interoperable, in the same way as SMTP, HTTP, FTP, etc. have created interoperable systems.
Previous standardizations of middleware have happened at the API level (e.g. JMS) and were focused on stan
dardizing programmer interaction with different middleware implementations, rather than on providing interoperabili
ty between multiple implementations. Unlike JMS, which defines an API and a set of behaviors that a messaging
implementation must provide, AMQP is a wire-level protocol. A wire-level protocol is a description of the format of
the data that is sent across the network as a stream of bytes. Consequently, any tool that can create and interpret
messages that conform to this data format can interoperate with any other compliant tool irrespective of implemen
tation language.

AMQP is a binary, application layer protocol, designed to efficiently support a wide variety of messaging applica
tions and communication patterns. It provides flow controlled, message-oriented communication with message-de
livery guarantees such as at-most-once (where each message is delivered once or never), at-least-once (where
each message is certain to be delivered, but may do so multiple times) and exactly-once (where the message will
always certainly arrive and do so only once), and authentication and/or encryption based on SASL and/or TLS. It
assumes an underlying reliable transport layer protocol such as Transmission Control Protocol (TCP).

The AMQP specification is defined in several layers: (i) a type system, (ii) a symmetric, asynchronous protocol for
the transfer of messages from one process to another, (iii) a standard, extensible message format and (iv) a set of
standardised but extensible 'messaging capabilities.'

Specification
More Info

https://www.amqp.org/specification/0-9-1/amqp-org-download
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol

REFERENCE

866

TURN
Traversal Using Relays around NAT (TURN) is a protocol that assists in traversal of network address translators
(NAT) or firewalls for multimedia applications. It may be used with the Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP). It is most useful for clients on networks masqueraded by symmetric NAT devices.
TURN does not aid in running servers on well known ports in the private network through a NAT; it supports the
connection of a user behind a NAT to only a single peer, as in telephony, for example.

Read more
Specification

https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT
https://datatracker.ietf.org/doc/html/rfc8656

LICENSE

867

License
eSeGeCe Components End-User License Agreement
eSeGeCe Components ("eSeGeCe") End-User License Agreement ("EULA") is a legal agreement between you (ei
ther an individual or a single entity) and the Author of eSeGeCe for all the eSeGeCe components which may in
clude associated software components, media, printed materials, and "online" or electronic documentation ("eS
eGeCe components"). By installing, copying, or otherwise using the eSeGeCe components, you agree to be bound
by the terms of this EULA. This license agreement represents the entire agreement concerning the program be
tween you and the Author of eSeGeCe, (referred to as "LICENSER"), and it supersedes any prior proposal, repre
sentation, or understanding between the parties. If you do not agree to the terms of this EULA, do not install or use
the eSeGeCe components.
The eSeGeCe components are protected by copyright laws and international copyright treaties, as well as other in
tellectual property laws and treaties. The eSeGeCe components are licensed, not sold.
If you want SOURCE CODE you need to pay the registration fee. You must NOT give the license keys and/or the
full editions of eSeGeCe (including the DCU editions and Source editions) to any third individuals and/or entities.
And you also must NOT use the license keys and/or the full editions of eSeGeCe from any third individuals' and/or
entities'.
1. GRANT OF LICENSE
The eSeGeCe components are licensed as follows:
(a) Installation and Use.
LICENSER grants you the right to install and use copies of the eSeGeCe components on your computer running a
validly licensed copy of the operating system for which the eSeGeCe components were designed [e.g., Windows
2000, Windows 2003, Windows XP, Windows ME, Windows Vista, Windows 7, Windows 8, Windows 10].
(b) Royalty Free.
You may create commercial applications based on the eSeGeCe components and distribute them with your exe
cutables, no royalties required.
(c) Modifications (Source editions only).
You may make modifications, enhancements, derivative works and/or extensions to the licensed SOURCE CODE
provided to you under the terms set forth in this license agreement.
(d) Backup Copies.
You may also make copies of the eSeGeCe components as may be necessary for backup and archival purposes.
2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS
(a) Maintenance of Copyright Notices.
You must not remove or alter any copyright notices on any and all copies of the eSeGeCe components.
(b) Distribution.
You may not distribute registered copies of the eSeGeCe components to third parties. Evaluation editions available
for download from the eSeGeCe official websites may be freely distributed.
You may create components/ActiveX controls/libraries which include the eSeGeCe components for your applica
tions but you must NOT distribute or publish them to third parties.
(c) Prohibition on Distribution of SOURCE CODE (Source editions only).
You must NOT distribute or publish the SOURCE CODE, or any modification, enhancement, derivative works and/
or extensions, in SOURCE CODE form to third parties.
You must NOT make any part of the SOURCE CODE be distributed, published, disclosed or otherwise made avail
able to third parties.
(d) Prohibition on Reverse Engineering, Decompilation, and Disassembly.
You may not reverse engineer, decompile, or disassemble the eSeGeCe components, except and only to the extent
that such activity is expressly permitted by applicable law notwithstanding this limitation.
(e) Rental.
You may not rent, lease, or lend the eSeGeCe components.
(f) Support Services.
LICENSER may provide you with support services related to the eSeGeCe components ("Support Services"). Any
supplemental software code provided to you as part of the Support Services shall be considered part of the eS
eGeCe components and subject to the terms and conditions of this EULA.
eSeGeCe is licensed to be used by only one developer at a time. And the technical support will be provided to only
one certain developer.
(g) Compliance with Applicable Laws.
You must comply with all applicable laws regarding use of the eSeGeCe components.
3. TERMINATION
Without prejudice to any other rights, LICENSER may terminate this EULA if you fail to comply with the terms and
conditions of this EULA. In such event, you must destroy all copies of the eSeGeCe components in your posses
sion.

LICENSE

868

4. COPYRIGHT
All title, including but not limited to copyrights, in and to the eSeGeCe components and any copies thereof are
owned by LICENSER or its suppliers. All title and intellectual property rights in and to the content which may be ac
cessed through use of the eSeGeCe components are the property of the respective content owner and may be pro
tected by applicable copyright or other intellectual property laws and treaties. This EULA grants you no rights to use
such content. All rights not expressly granted are reserved by LICENSER.
5. NO WARRANTIES
LICENSER expressly disclaims any warranty for the eSeGeCe components. The eSeGeCe components are pro
vided "As Is" without any express or implied warranty of any kind, including but not limited to any warranties of mer
chantability, non-infringement, or fitness of a particular purpose. LICENSER does not warrant or assume responsi
bility for the accuracy or completeness of any information, text, graphics, links or other items contained within the
eSeGeCe components. LICENSER makes no warranties respecting any harm that may be caused by the transmis
sion of a computer virus, worm, time bomb, logic bomb, or other such computer program. LICENSER further ex
pressly disclaims any warranty or representation to Authorized Users or to any third party.
6. LIMITATION OF LIABILITY
In no event shall LICENSER be liable for any damages (including, without limitation, lost profits, business interrup
tion, or lost information) rising out of "Authorized Users" use of or inability to use the eSeGeCe components, even if
LICENSER has been advised of the possibility of such damages. In no event will LICENSER be liable for loss of
data or for indirect, special, incidental, consequential (including lost profit), or other damages based in contract, tort
or otherwise. LICENSER shall have no liability with respect to the content of the eSeGeCe components or any part
thereof, including but not limited to errors or omissions contained therein, libel, infringements of rights of publicity,
privacy, trademark rights, business interruption, personal injury, and loss of privacy, moral rights or the disclosure of
confidential information.

LICENSE

869

Index

Add Telegram Proxy 571
ALPN 115
Amazon SQS 697
AMQP 865
AMQP Channels 254
AMQP Consume Messages 262
AMQP Exchanges 256
AMQP Get Messages 264
AMQP Publish Messages 261
AMQP Queues 258
API 3Commas 501
API Binance 364, 378, 383
API Binance Futures 378, 383
API Binance Futures Trade 383
API Bitfinex 471
API Bitmex 464
API Blockchain 516
API Cex 518
API Coinbase 386
API Coinbase Pro 386
API Discord 529
API FTX 444
API Kraken 407, 409, 415, 418, 420, 423, 424,
431, 437, 439
API Kraken Futures 423, 424, 431, 437, 439
API Kraken Futures REST Private 439
API Kraken Futures REST Public 437
API Kraken REST Private 420
API Kraken REST Public 418
API Pusher 457
API SignalR 404
API SignalRCore 398
API SocketIO 384
API Telegram 556
APIs 362, 364, 370, 373, 378, 383, 384, 386,
391, 394, 398, 404, 407, 409, 415, 418, 420,
423, 424, 431, 437, 439, 444, 452, 455, 457,
464, 471, 501, 516, 518, 529, 556
APNs 654, 655, 656

Certificate-Based Connection 656
Token-Based Connection 655

Apple Push Notifications 652
Authentication 96, 156, 180
Binance Connect 370
Binance Get Market Data 372
Binance Private Requests Time 376
Binance Private REST API 373
Binance Subscribe 371
Binance Trade Spot 374
Binary Message 153
Bindings 105, 170
Bot 567
Broadcast 104
Build 66, 67, 69, 70
Build Android Application 69
Build iOS Application 70
Build OSX Application 67
Certificate-Based Connection 656

APNs 656
Certificates OpenSSL 147
Certificates SChannel 148
Channels 104, 254, 371, 392, 453, 754
Client 138, 140, 141, 151, 152, 153, 156, 158,
159, 160, 161, 186, 237, 239, 240, 252, 253,
349, 643, 644, 646, 647, 739, 740, 741, 751,
752, 753, 754, 831, 832, 833, 835, 840, 850
Client AMQP Connect 252
Client AMQP Disconnect 253
Client Authentication 156, 647
Client Chat 831
Client Close Connection 140, 643
Client Exceptions 158
Client Keep Connection Active 644
Client Keep Connection Open 141
Client MQTT Connect 237
Client MQTT Sessions 239
Client MQTT Version 240
Client Open Connection 138
Client Pending Requests 646
Client Proxies 161
Client Register Protocol 160
Client Send Binary Message 152

LICENSE

870

Client Send Text 151, 153
Client Send Text Message 151
Client Snapshots 840
Client SocketIO 835
Client WebSocket HandShake 159
Clients 239, 252, 349, 644, 646, 831, 833

Send Files 349
Coinbase Pro Connect 391
Coinbase Pro Get Market Data 393
Coinbase Pro Place Orders 396
Coinbase Pro Private Requests Time 395
Coinbase Pro Private REST API 394
Coinbase Pro SandBox Account 397
Coinbase Pro Subscribe 392
Compression 108
Configure Install 49
Connect Mosquitto 238
Connect Secure Server 146
Connect TCP Server 143
Connect WebSocket Server 137
Connections TIME_WAIT 144
Coturn 852
CryptoHopper 574
Custom Objects 110
Custom Sub 95
Datasnap 774
Deflate-Frame 587
Dropped Disconnections 142
Editions 22
Error 199
Extensions 585
Fast Performance Server 72
Files 106, 128, 192, 348, 349, 350, 640, 841
Fired 214
Flash 109
Flow 64

Threading 64
Forward HTTP Requests 116
Found 567
Fragmented Messages 130
FTX Connect 452
FTX Get market Data 454
FTX Place Orders 456
FTX Private REST API 455
FTX Subscribe 453
Generate 653

Remote Notification APNs 653
Google Calendar 721, 727, 728, 729
Google Calendar RefreshToken 729
Google Calendar Sync Calendars 727
Google Calendar Sync Events 728
Google Cloud Pub 712
Google OAuth2 Keys 702
Google Service Accounts 708
HeartBeat 100
HTTP 62, 103, 116, 191, 192, 199, 200, 210,
630, 638
HTTP Dispatch Files 192
HTTP/2 193, 194, 196, 639, 640, 641, 642,
645, 648, 855
HTTP/2 Alternate Service 196
HTTP/2 Download File 640
HTTP/2 Headers 642
HTTP/2 Partial Responses 641
HTTP/2 Reason Disconnection 645
HTTP/2 Server Push 194, 639
HTTP1 658
HTTP2 631
HTTPAPI 208, 210, 211, 214
HTTPAPI Custom Headers 211
HTTPAPI Disable HTTP 210
HTTPAPI OnDisconnect 214
In HTML 677
Indy 89
Install Errors 45
Install Package 38
Installation 24
Introduction 18
IOCP 113
IoT 617, 625
IoT Azure MQTT Client 625
JSON 856
JWT 690, 863
KendoUI_Grid 844
License 867
LoadBalancing 127
Logs 102
Memory Manager 75
Method 638
MQTT 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 625, 833, 860
MQTT Clear Retained Messages 247

LICENSE

871

MQTT Publish 241, 244, 246
MQTT Publish Message 244
MQTT Publish Subscribe 241
MQTT Receive Messages 245
MQTT Subscribe 243
MQTT Topics 242
Notification Requests 654

Sending 654
OAuth2 648, 661, 673, 677, 678, 679, 680,
681, 682, 702, 862
OAuth2 Customize Sign 677
OAuth2 None Authenticate URLs 682
OAuth2 Recover Access Tokens 680
OAuth2 Register Apps 679
OpenSSL 78, 80, 82, 84, 85, 147
OpenSSL Android 84
OpenSSL iOS 85
OpenSSL OSX 82
OpenSSL Windows 80
Overview 58
PerMessage-Deflate 586
Post Big Files 106
Protocol AMQP 248
Protocol AppRTC 296
Protocol Dataset 331, 337, 340, 341
Protocol Dataset Javascript 337
Protocol Dataset Notify Updates 341
Protocol Dataset Replicate Table 340
Protocol Default 320, 327
Protocol Default Javascript 327
Protocol Files 342
Protocol MQTT 229
Protocol Presence 351, 359
Protocol Presence Javascript 359
Protocol STOMP 288
Protocol WAMP 301, 306
Protocol WAMP Javascript 306
Protocol WAMP2 314
Protocol WebRTC 298, 300
Protocol WebRTC Javascript 300
Protocols 95, 160, 224, 226, 229, 248, 288,
296, 298, 300, 301, 306, 314, 320, 327, 331,
337, 340, 341, 342, 351, 359
Protocols Javascript 226
Proxy 129, 161, 571
Quality 117

Service 117
Quality Of Service 117
Queues 119, 258
QuickStart HTTP 62
QuickStart WebSockets 60
RCON 573
Receive Binary Messages 155, 185
Receive Text Messages 154, 184
Register 572
Register Telegram User 572
Remote Notification APNs 653

Generate 653
Request HTTP 638
Response Body 199
RTCMultiConnection 579
SChannel Get Connection Info 150
Secure Connections 98
Self-Signed Certificates 209
Send Big Files 350
Send Files 348, 349

Clients 349
Server 348

Send Files To Clients 349
Send Files To Server 348
Send Telegram Message Bold 566
Send Telegram Message With Buttons 564,
565
Send Telegram Message With Inline Buttons
564
Sending 654

Notification Requests 654
Server 169, 170, 171, 172, 173, 176, 177, 178,
180, 182, 183, 184, 185, 186, 191, 193, 200,
208, 238, 348, 639, 673, 678, 681, 744, 745,
758, 759, 829, 836, 839, 843, 847, 848

Send Files 348
Server AppRTC 848
Server Authentication 180, 681, 843
Server Bindings 170
Server Chat 829
Server Close Connection 178
Server Endpoints 678
Server Example 673
Server Keep Active 172
Server Keep Connections Alive 176
Server Monitor 836

LICENSE

872

Server Plain TCP 177
Server Read Headers 186
Server Requests 191
Server Send Binary Message 183
Server Send Text Message 182
Server Sessions 200
Server Snapshots 839
Server SSL 173, 208
Server Start 169
Server Startup Shutdown 171
Server-Sent Events 125, 861
ServerSentEvents 846
Service 117, 196, 708

Quality 117
STUN 735, 739, 740, 741, 744, 745, 864
STUN Client Attributes 741
STUN Client Long Term Credentials 740
STUN Client UDP Retransmissions 739
STUN Server Alternate Server 745
STUN Server Long Term Credentials 744
Sub 712
SubProtocol 123
TCP Connections 122
Telegram Chat 567
Telegram Client 850
Telegram Get SuperGroup Members 570
Threading 64

Flow 64
Throttle 124
Token-Based Connection 655

APNs 655
Transactions 121
TsgcHTTP_JWT_Client 692
TsgcHTTP_JWT_Server 695
TsgcHTTP_OAuth2_Client 662
TsgcHTTP_OAuth2_Server 670
TsgcHTTP2Client 632
TsgcHTTP2ConnectionClient 649
TsgcHTTP2RequestProperty 650
TsgcHTTP2ResponseProperty 651
TsgcIWWebSocketClient 220
TsgcIWWSPClient_Dataset 336
TsgcIWWSPClient_sgc 326
TsgcSTUNClient 736
TsgcSTUNServer 742
TsgcTURNClient 747

TsgcTURNServer 755
TsgcUDPClient 731
TsgcUDPServer 733
TsgcWebSocketClient_WinHTTP 215
TsgcWebSocketHTTPServer 187
TsgcWebSocketHTTPServer_Sessions 200
TsgcWebSocketLoadBalancerServer 217
TsgcWebSocketProxyServer 219
TsgcWebSocketServer 162
TsgcWebSocketServer_HTTPAPI 202
TsgcWSHTTP2WebBrokerBridgeServer 777
TsgcWSHTTPWebBrokerBridgeServer 775
TsgcWSMessageFile 347
TsgcWSPClient_AMQP 249
TsgcWSPClient_Dataset 334
TsgcWSPClient_Files 345
TsgcWSPClient_MQTT 231
TsgcWSPClient_Presence 356
TsgcWSPClient_sgc 324
TsgcWSPClient_STOMP 289
TsgcWSPClient_STOMP_ActiveMQ 293
TsgcWSPClient_STOMP_RabbitMQ 291
TsgcWSPClient_WAMP 304
TsgcWSPClient_WAMP2 315
TsgcWSPresenceMessage 355
TsgcWSPServer_AppRTC 297
TsgcWSPServer_Dataset 332
TsgcWSPServer_Files 343
TsgcWSPServer_Presence 352
TsgcWSPServer_sgc 322
TsgcWSPServer_WAMP 302
TsgcWSPServer_WebRTC 299
TsgcWSServer_HTTPAPI_WebBrokerBridge
778
TURN 746, 751, 752, 753, 754, 758, 759, 866
TURN Client Allocate IP Address 751
TURN Client Create Permissions 752
TURN Client Send Indication 753
TURN Server Allocations 759
TURN Server Long Term Credentials 758
Upload File 841
Using DLL 93
Wait Response 246
WAMP 309, 310, 311, 312, 858
WAMP Publishers 310
WAMP RPC Progress Results 312

LICENSE

873

WAMP Simple RPC 311
WAMP Subscribers 309
WatchDog 101
Web Browser Test 94
WebRTC 847, 859
WebSocket Events 91
WebSocket Parameters Connection 92

WebSocket Redirections 145
WebSockets 60, 91, 92, 137, 145, 159, 370,
371, 391, 392, 409, 415, 424, 431, 452, 453,
854
WebSockets Private 415, 431
WebSockets Public 409, 424

Copyright © 2012-2024 eSeGeCe Software
info@esegece.com
www.esegece.com

https:#nogo

	sgcWebSockets 2024.4
	Contents
	Introduction
	Versions Support
	Delphi supported IDE
	CBuilder supported IDE
	FreePascal supported IDE
	Trial Version
	Indy Package

	Installation
	Delphi / CBuilder / Lazarus
	Install Setup
	Trial Setup
	Customers Setup
	Install Errors
	Install Command Line Parameters
	IDE Expert

	Install Package Manually
	Install Errors
	Intraweb package not found
	Indy Package not found
	c00000005 ACCESS_VIOLATION in CBuilder
	Unable to find package import: sgcWebSocketsCXXX.bpi in CBuilder Win64
	Ambiguous reference System.ZLib.hpp and IdZLib.hpp CBuilder
	Ambiguous reference System.ZLib.hpp and sgcIdZLib.hpp CBuilder
	
	Undefined reference to vTable for Sgcwebsocket... on CBuilder and Android
	Checksum changed under Lazarus
	Cannot find X used by Y, incompatible ppu

	Configure Install
	Indy
	Intraweb

	Install sgcIndy Package
	Setup Installation
	Install Errors
	Manual installation

	Configure ZLib
	QuickStart
	WebSockets Components
	HTTP Components
	Threading Flow
	How Build Applications
	Fast Performance Server
	Memory Manager
	OpenSSL
	Indy
	Linux (Lazarus)

	QuickStart | WebSockets
	WebSocket Server
	WebSocket Client
	Web Browser Client
	How To Use
	Linux Compiler
	Linux (Lazarus)

	QuickStart | HTTP
	HTTP/2 Server
	
	HTTP/1 Client
	
	HTTP/2 Client

	QuickStart | Threading Flow
	QuickStart | Build
	CBuilder DEBUG

	Build | OSX Application
	Build | Android Application
	Build | iOS Application
	Fast Performance Servers
	Servers based on Indy Library
	Indy Server Windows
	Indy Server Linux
	Server Based on HTTP.SYS

	Memory Manager
	Configuration
	Benchmark Indy WebSocket Server
	Benchmark HTTP.SYS Server
	Comments about Benchmarks

	OpenSSL
	openSSL Configurations
	Self-Signed Certificates
	Common Errors

	OpenSSL | Windows
	API 1.0
	API 1.1
	API 3.*

	OpenSSL | OSX
	API 1.0
	API 1.1
	API 3.0
	Errors

	OpenSSL | Android
	API 1.0
	API 1.1
	API 3.0

	OpenSSL | iOS
	API 1.1
	API 3.0

	OpenSSL Own CA Certificates
	Indy
	sgcIndy package
	How to use a Single sgcIndy package

	WebSocket Events
	WebSocket Parameters Connection
	Using inside a DLL
	WebBrowser Test
	Custom Sub-Protocols
	Authentication
	Secure Connections
	OnSSLGetHandler
	OnSSLAfterCreateHandler

	HeartBeat
	WatchDog
	Server
	Client

	Logs
	HTTP
	Broadcast and Channels
	Bindings
	Post Big Files
	Events

	Compression
	Flash
	Custom Objects
	Groups
	Adding and removing users
	Sending Messages to a Group
	Events

	IOCP
	EPOLL
	ALPN
	Client
	Server

	Forward HTTP Requests
	Other Options

	Quality Of Service
	Level 0
	Level 1
	Level 2

	Queues
	Level 0
	Level 1
	Level 2

	Transactions
	TCP Connections
	SubProtocol
	Throttle
	Server-sent Events (Push Notifications)
	LoadBalancing
	Files
	Proxy
	Fragmented Messages
	TsgcWebSocketClient
	Most common uses
	Methods
	Properties

	TsgcWebSocketClient | Connect WebSocket Server
	URL Property
	Host, Port and Parameters

	TsgcWebSocketClient | Client Open Connection
	Active Property
	Start/Stop methods
	Connect/Disconnect methods

	TsgcWebSocketClient | Client Close Connection
	CleanDisconnect
	Disconnect
	Close

	TsgcWebSocketClient |Client Keep Connection Open
	HeartBeat
	
	WatchDog

	TsgcWebSocketClient | Dropped Disconnections
	Disconnection reasons
	Detect Half-Open Disconnections
	You can try to detect disconnections using the following methods
	Second Connection
	Ping other peer
	Enable KeepAlive at TCP Socket level

	TsgcWebSocketClient | Connect TCP Server
	TsgcWebSocketClient can connect to WebSocket servers but can connect to plain TCP Servers too.
	URL Property
	Host, Port and Parameters

	TsgcWebSocketClient | Connections TIME_WAIT
	TsgcWebSocketClient | WebSocket Redirections
	Example

	TsgcWebSocketClient | Connect Secure Server
	TsgcWebSocketClient can connect to WebSocket servers using secure and none-secure connections.
	TLSOptions

	TsgcWebSocketClient | Certificates OpenSSL
	TsgcWebSocketClient | Certificates SChannel
	PFX Certificate
	Hash Certificate

	TsgcWebSocketClient | SChannel Get Connection Info
	TsgcWebSocketClient | Client Send Text Message
	Send a Text Message

	TsgcWebSocketClient | Client Send Binary Message
	Send a Binary Message

	TsgcWebSocketClient | Client Send a Text and Binary Message
	TsgcWebSocketClient | Receive Text Messages
	TsgcWebSocketClient | Receive Binary Messages
	TsgcWebSocketClient | Client Authentication
	Authorization Basic
	
	Authorization Token
	
	Authorization Session
	
	Authorization URL

	TsgcWebSocketClient | Client Exceptions
	OnError
	OnException

	TsgcWebSocketClient | WebSocket HandShake
	WebSocket protocol uses an HTTP HandShake to upgrade from HTTP Protocol to WebSocket protocol. This handshake is handled internally by TsgcWebSocket Client component, but you can add your custom HTTP headers if server requires some custom HTTP Headers info.

	TsgcWebSocketClient | Client Register Protocol
	TsgcWebSocketClient | Client Proxies
	TsgcWebSocketServer
	Most common uses
	Methods
	Properties

	TsgcWebSocketServer | Start Server
	Active Property
	Start / Stop methods

	TsgcWebSocketServer | Server Bindings
	TsgcWebSocketServer | Server Startup Shutdown
	OnStartup
	OnShutdown

	TsgcWebSocketServer | Server Keep Active
	WatchDog

	TsgcWebSocketServer | Server SSL
	Simple SSL Configuration
	SSL and None SSL

	TsgcWebSocketServer | Server Verify Certificate
	TsgcWebSocketServer | Server Keep Connections Alive
	HeartBeat

	TsgcWebSocketServer | Server Plain TCP
	TsgcWebSocketServer | Server Close Connection
	Disconnect
	Close
	DisconnectAll

	TsgcWebSocketServer | Client Connections
	TsgcWebSocketServer | Server Authentication
	OnAuthentication
	OnUnknownAuthentication

	TsgcWebSocketServer | Server Send Text Message
	Send a Text Message
	
	Send a message to ALL connected clients

	TsgcWebSocketServer | Server Send Binary Message
	Send a Text Message
	
	Send a message to ALL connected clients

	TsgcWebSocketServer | Server Receive Text Message
	TsgcWebSocketServer | Server Receive Binary Message
	TsgcWebSocketServer | Server Read Headers from Client
	TsgcWebSocketHTTPServer
	Most common uses
	Methods
	
	Properties

	TsgcWebSocketHTTPServer | HTTP Server Requests
	TsgcWebSocketHTTPServer | HTTP Dispatch Files
	TsgcWebSocketHTTPServer | HTTP/2 Server
	TsgcWebSocketHTTPServer | HTTP/2 Server Push
	Configure Server Push

	TsgcWebSocketHTTPServer | HTTP/2 Alternate Service
	TsgcWebSocketHTTPServer | HTTP/2 Server Threads
	HTTP 1.1
	HTTP 2.0
	TsgcWebSocketHTTPServer

	TsgcWebSocketHTTPServer | 404 Error without Response Body
	TsgcWebSocketHTTPServer | Sessions
	Configuration
	Create Session

	TsgcWebSocketServer_HTTPAPI
	URL Reservation
	Most common uses
	Properties
	Methods

	HTTPAPI | URL Reservation
	NETSH Commands
	TsgcWebSocketServer_HTTPAPI

	TsgcWebSocketServer_HTTPAPI | HTTPAPI Server SSL
	Certificate Hash

	TsgcWebSocketServer_HTTPAPI | Self-Signed Certificates
	TsgcWebSocketServer_HTTPAPI | Disable HTTP/2
	TsgcWebSocketServer_HTTPAPI | Custom Headers
	TsgcWebSocketServer_HTTPAPI | Send Text Response
	TsgcWebSocketServer_HTTPAPI | Send File Response
	TsgcWebSocketServer_HTTPAPI | OnDisconnect not fired
	TsgcWebSocketClient_WinHTTP
	Methods
	Properties

	TsgcWebSocketLoadBalancerServer
	Load Balancer Configuration
	Backup Server Configuration
	Events

	TsgcWebSocketProxyServer
	TsgcIWWebSocketClient
	Methods
	Properties

	TsgcWSConnection
	Methods
	Properties

	Protocols
	Javascript Reference

	Protocols Javascript
	Open Connection
	Open Connection With Authentication
	Send Message
	Show Alert with Message Received
	Binary Message Received
	Binary (Header + Image) Message Received
	
	Show Alert OnConnect, OnDisconnect and OnError Events
	Close Connection
	Get Connection Status

	Protocol MQTT
	Features
	Components
	Most common uses

	TsgcWSPClient_MQTT
	Methods
	Events
	Properties

	TsgcWSPClient_MQTT | Client MQTT Connect
	Basic Usage
	Client Identifier
	Authentication

	TsgcWSPClient_MQTT | Connect MQTT Mosquitto
	MOSQUITTO MQTT WebSockets
	MOSQUITTO MQTT WebSockets TLS
	MOSQUITTO MQTT Plain TCP
	MOSQUITTO MQTT Plain TCP TLS

	TsgcWSPClient_MQTT | Client MQTT Sessions
	Clean Start
	Session

	TsgcWSPClient_MQTT | Client MQTT Version
	TsgcWSPClient_MQTT | MQTT Publish Subscribe
	Subscribe Topic
	Publish Message

	TsgcWSPClient_MQTT | MQTT Topics
	Topics
	WildCards
	Single Level: +
	Multi Level: #

	TsgcWSPClient_MQTT | MQTT Subscribe
	Subscribe QoS = At Least Once
	Subscribe MQTT 5.0

	TsgcWSPClient_MQTT | MQTT Publish Message
	Publish a simple message
	Publish QoS = At Least Once
	Publish Retained message

	TsgcWSPClient_MQTT | MQTT Receive Messages
	Read published Messages

	TsgcWSPClient_MQTT | Publish and Wait Response
	TsgcWSPClient_MQTT | MQTT Clear Retained Messages
	Protocol AMQP 0.9.1
	Features
	Components
	Most common uses

	TsgcWSPClient_AMQP
	Connection
	Channels
	Exchanges
	Queues
	Binding Queues
	Send Messages
	Receive Messages

	Connection | Client AMQP Connect
	Basic Usage
	Authentication

	Connection | Client AMQP Disconnect
	Sending a Close Reason
	Closing Socket Connection

	Commands | AMQP Channels
	Open Channel
	Close Channel
	Channel Flow

	Commands | AMQP Exchanges
	Declare Exchange
	Delete Exchange

	Commands | AMQP Queues
	Declare Queue
	Delete Queue
	Bind Queue
	UnBind Queue
	Purge Queue

	Commands | AMQP Publish Messages
	Publish Messages
	Publish Confirmations

	AMQP Consume Messages
	Consume
	Cancel Consume

	Commands | AMQP Get Messages
	Get Message

	Commands | AMQP QoS
	Set QoS

	Commands | AMQP Transactions
	Start Transaction
	Commit Transaction
	Rollback Transaction

	Protocol AMQP 1.0.0
	Components
	Most common uses

	TsgcWSPClient_AMQP1
	Configuration
	Connection
	Sessions
	Links
	Sender Links
	Receiver Links

	Sending Messages
	Receiving Messages

	Connection | Client AMQP1 Connect
	Basic Usage
	Authentication
	

	Connection | Client AMQP1 Disconnect
	Sending a Close Reason
	Closing Socket Connection

	Connection | Idle Timeout
	Connection | Connection State
	Connection | AMQP1 Authentication
	SASL Authentication

	Commands | AMQP1 Sessions
	Open Session
	Close Session

	Commands | AMQP1 Links
	Commands | AMQP1 Sender Links
	Create Sender Link
	Sending Messages
	Sending Messages Mixed Mode
	Close Sender Link

	Commands | AMQP1 Receiver Links
	Create Receiver Link
	Sync Messages
	Close Receiver Link

	AMQP1 | Send Message
	Send Message
	Await Send Message
	Events

	AMQP1 | Read Message
	Protocol STOMP
	Components

	TsgcWSPClient_STOMP
	Methods
	Events
	Properties

	TsgcWSPClient_STOMP_RabbitMQ
	Destinations
	Methods
	Events
	Properties

	TsgcWSPClient_STOMP_ActiveMQ
	Destinations
	Publish Options
	Methods
	Events
	Properties

	Protocol AppRTC
	Components

	TsgcWSPServer_AppRTC
	Parameters

	Protocol WebRTC
	Components
	Parameters
	Browser Test

	TsgcWSPServer_WebRTC
	Properties

	Protocol WebRTC Javascript
	Open Connection
	Open WebRTC Channel
	Close WebRTC channel

	Protocol WAMP
	Components
	Most Common Uses
	Browser Test

	TsgcWSPServer_WAMP
	Methods
	
	Events

	TsgcWSPClient_WAMP
	Methods
	
	Events

	Protocol WAMP Javascript
	Open Connection
	Send New Prefix
	Request RPC (Remote Procedure Call)
	Subscribe to a TopicURI
	UnSubscribe to a TopicURI
	Publish message
	Show Alert with Message Received
	Show Alert OnCallResult or OnCallError
	Show Alert OnEvent
	Show Alert OnConnect, OnDisconnect and OnError Events
	Close Connection
	Get Connection Status

	WAMP | Subscribers
	WAMP | Publishers
	WAMP | Simple RPC
	WAMP | RPC Progress Results
	Protocol WAMP 2
	Components

	TsgcWSPClient_WAMP2
	Session Methods
	Publish/Subscribe Methods
	RPC Methods
	Events

	Protocol Default
	Features
	Components
	Browser Test

	TsgcWSPServer_sgc
	Methods
	Properties
	Events

	TsgcWSPClient_sgc
	Methods
	Events
	Properties

	TsgcIWWSPClient_sgc
	Methods

	Protocol Default Javascript
	Open Connection
	Send Message
	Show Alert with Message Received
	Publish Message to test channel
	Show Alert with Event Message Received
	Call RPC
	Handle RPC Response
	Call Notify
	Send Messages in a Transaction
	Show Alert OnSubscribe or OnUnSubscribe to a channel
	Show Alert OnConnect, OnDisconnect and OnError Events
	Get Session
	Close Connection
	Get Connection Status
	Set QoS
	Set Queue Level

	Protocol Dataset
	Most common uses
	Components
	
	Browser Test

	TsgcWSPServer_Dataset
	Properties
	Methods
	Events

	TsgcWSPClient_Dataset
	Methods
	Events
	Properties

	TsgcIWWSPClient_Dataset
	Methods

	Protocol Dataset Javascript
	Open Connection
	Send Message
	Show Alert with Message Received
	Show Alert with Dataset Received
	Show Alert OnSubscribe or OnUnSubscribe to a channel
	Show Alert OnConnect, OnDisconnect and OnError Events
	Subscribe All Dataset Changes
	UnSubscribe All Dataset Changes
	Handle Dataset Changes
	Close Connection
	Get Connection Status

	Protocol Dataset | Replicate Table
	Configure Dataset Server
	Configure Dataset Client

	Protocol Dataset | Notify Updates
	Configure Dataset Server
	Configure Dataset Client

	Protocol Files
	Features
	Components
	Classes
	Most common uses

	TsgcWSPServer_Files
	Methods
	Properties
	Events

	TsgcWSPClient_Files
	Methods
	Properties
	Events

	TsgcWSMessageFile
	Properties

	Protocol Files | How Send Files To Server
	Protocol Files | How Send Files To Clients
	Protocol Files | How Send Big Files
	Protocol Presence
	Features
	Components
	Classes

	TsgcWSPServer_Presence
	Methods
	Properties
	Methods
	Events

	TsgcWSPresenceMessage
	TsgcWSPClient_Presence
	Properties
	Methods

	Protocol Presence Javascript
	Open Connection
	New Member after connection
	Subscribe to Topic 1 channel
	Unsubscribe from Topic 1 channel
	Publish Message to Topic 1 channel
	Receive Message
	Get All Members Connected
	Show Alert when Members subscribe/unsubscribe
	Show Alert OnConnect, OnDisconnect and OnError Events
	Close Connection

	WebSocket APIs
	Client APIs
	Other Client APIs
	Server APIs

	API Binance
	Properties
	Most common uses
	WebSocket Stream API
	
	User Data Stream API
	REST API
	Events

	Binance | Connect WebSocket API
	Binance | Subscribe WebSocket Channel
	Binance | Get Market Data
	Binance | Private REST API
	Binance | Trade Spot
	Configuration
	Place an Order

	Binance | Private Requests Time
	Binance | Withdraw
	API Binance Futures
	Futures Contracts
	WebSocket Stream API
	User Data Stream API
	REST API
	Events

	API Binance Futures | Trade
	Configuration
	Place an Order

	API SocketIO
	Messages Types
	Properties
	Methods
	Events
	OnHTTPRequest
	OnAfterConnect
	OnHTTPConnectionSSL

	API Coinbase Pro
	APIs supported
	Most common uses
	WebSockets API
	REST API
	Private Endpoints

	Coinbase Pro | Connect WebSocket API
	Coinbase Pro | Subscribe WebSocket Channel
	Coinbase Pro | Get Market Data
	Coinbase Pro | Private REST API
	Coinbase Pro | Private Requests Time
	Coinbase Pro | Place Orders
	Market Order
	Limit Order

	Coinbase Pro SandBox Account
	API SignalRCore
	Hubs
	Connection
	SignalRCore Protocol
	SignalRCore Encoding
	Authorization
	Communication between Client an Server
	Invocations
	Non-Blocking Invocations
	Streaming Invocations
	Invocations
	Cancel Invocation
	Client Results
	Close Connection
	Ping
	MessagePack

	API SignalR
	Hubs Messages
	Authorization
	OnSignalRConnect
	OnSignalRDisconnect
	OnSignalRError
	OnSignalRMessage
	OnSignalRBinary
	OnSignalRResult
	OnSignalRKeepAlive

	API Kraken
	Overview
	Configuration
	APIs supported
	Kraken Examples
	How Connect to Public WebSocket Server
	How Connect to Private WebSocket Server
	How Get Ticker from REST API
	How Get Account Balance from REST API

	API Kraken | WebSockets Public API
	Connection
	General Considerations
	Supported Pairs
	Methods
	Ping
	Ticker
	OHLC
	Trade
	Book
	Spread
	Other Methods

	Events

	API Kraken | WebSockets Private API
	Connection
	Authentication
	Methods
	OwnTrades
	Open Orders
	Add Order
	Cancel Order

	API Kraken | REST Public API
	Connection
	Configuration
	Events
	Methods
	GetServerTime
	GetAssets
	GetAssetPairs
	GetTicker
	GetOHLC
	GetOrderBook
	GetTrades
	GetSpread

	API Kraken | REST Private API
	Connection
	Authentication
	
	Methods
	GetAccountBalance
	GetTradeBalance
	GetOpenOrders
	GetClosedOrders
	QueryOrders
	GetTradesHistory
	QueryTrades
	GetOpenPositions
	GetLedgers
	QueryLedgers
	GetTradeVolume
	AddExport
	ExportStatus
	RetrieveExport
	RemoveExport
	Add Order

	CancelOrder

	API Kraken Futures
	Overview
	Configuration
	APIs supported

	API Kraken Futures | WebSockets Public API
	Connection
	Methods
	Ticker
	
	Trade
	Book
	Ticker Lite
	HeartBeat

	Events

	API Kraken Futures | WebSockets Private API
	Connection
	Authentication
	Methods
	Open Orders Verbose
	Open Positions
	Account Log
	Fills
	Open Orders
	Account Balance And Margins
	Notifications

	API Kraken Futures | REST Public API
	Connection
	Configuration
	Events
	Methods
	GetFeeSchedules
	Order Book
	Tickers
	Instruments
	History
	

	API Kraken Futures | REST Private API
	Connection
	Authentication
	
	Methods
	EditOrderByOrderId
	EditOrderByCliOrderId
	SendMarketOrder
	SendLimitOrder
	SendStopOrder
	SendTakeProfitOrder
	SendOrder
	CancelOrderByOrderId
	CancelOrderByCliOrderId
	GetFills
	Transfer
	GetOpenPositions
	GetNotifications
	GetAccounts
	CancelAllOrders
	CancelAllOrdersAfter
	GetOpenOrders
	GetHistoricalOrders
	GetHistoricalTriggers
	GetHistoricalExecutions
	WithdrawalToSpotWallet
	GetFeeScheduleVolumes
	GetAccountLogCSV
	

	API FTX
	APIs supported
	Properties
	Most common uses
	WebSockets API
	REST API
	Public Endpoints
	Private Endpoints

	FTX | Connect WebSocket API
	FTX | Subscribe WebSocket Channel
	FTX | Get market Data
	FTX | Private REST API
	FTX | Place Orders
	Market Order
	Limit Order

	API Pusher
	Channels
	Public Channels
	Private Channels
	Presence Channels
	Cache Channels

	Publish Messages
	REST API
	Custom Authentication

	API Bitmex
	Properties
	Most common uses
	WebSocket API
	REST API

	Bitmex | Connect WebSocket API
	Bitmex | Subscribe WebSocket Channel
	Bitmex | How Place Orders
	Order Types
	Execution Instructions
	Pegged Orders
	Trailing Stop Pegged Orders
	Trailing Stops
	Tracking Your Orders

	API Bitfinex
	Subscribe Public Channels
	SubscribeTicker

	SubscribeTrades
	SubscribeOrderBook
	SubscribeRawOrderBook
	SubscribeCandles
	Subscribe Authenticated Channels

	API Kucoin
	Properties
	Most common uses
	WebSocket Feed
	Public Channels
	Private Channels

	REST API
	Events

	Kucoin | Connect WebSocket API
	Kucoin | Subscribe WebSocket Channel
	Kucoin | Get Market Data
	Kucoin | Private REST API
	Kucoin | Trade Spot
	Configuration
	Place an Order
	Parameters
	LIMIT ORDER PARAMETERS
	MARKET ORDER PARAMETERS

	Kucoin | Private Requests Time
	API Kucoin Futures
	Properties
	Most common uses
	WebSocket Feed
	Public Channels
	Private Channels

	REST API
	Events

	Kucon | Futures Connect WebSocket API
	Kucoin | Futures Subscribe WebSocket Channel
	Kucoin | Futures Get Market Data
	Kucoin | Futures Private REST API
	Kucoin | Futures Trade
	Configuration
	Place an Order
	Parameters
	LIMIT ORDER PARAMETERS
	MARKET ORDER PARAMETERS

	When you send an order, there are 2 possibilities:

	Kucoin | Futures Private Requests Time
	API 3Commas
	APIs supported
	WebSockets API
	REST API
	Test Connectivity
	Account
	Smart Trades

	Events

	API OKX
	APIs supported
	Properties
	Connection
	Public Channels
	Private Channels
	Trading

	API XTB
	APIs supported
	Properties
	Connection
	
	Connection Commands
	
	Streaming Commands
	Retrieving Trading Data
	GetIbsHistory

	API Bybit
	APIs supported
	Properties
	Connection
	Events
	
	WebSocket API
	REST API
	

	API Blockchain
	API Cex
	Message encoding
	Authentication
	Connectivity
	Public Channels
	Private Channels

	API Cex Plus
	APIs supported
	WebSockets API

	API Discord
	Authorization
	Intents
	
	HeartBeat
	Connection Ready
	Connection Resume
	Dispatch Events
	HTTP Requests

	WhatsApp Cloud API
	Features
	Most common uses
	Get Started
	Events

	WhatsApp Create App
	WhatsApp Phone Number Id
	WhatsApp Token
	WhatsApp Webhook
	Create Endpoint

	WhatsApp Security
	WhatsApp Send Messages
	Text Messages
	Image Messages
	Document Messages
	Audio Messages
	
	Video Messages
	Sticker Messages
	Location Messages
	Contact Messages

	WhatsApp Send Interactive Messages
	Interactive Message Specifications
	When You Should Use It
	Interactive List
	
	Reply Buttons

	WhatsApp Send Template Messages
	Template Message Parameters
	Template Message Uploaded Image

	WhatsApp Receive Messages and Status Notifications
	Received Messages
	Sent Messages

	WhatsApp Send Files
	Image Messages
	Document Messages
	Audio Messages
	
	Video Messages
	Sticker Messages
	

	WhatsApp Download Media
	API Telegram
	Configuration
	Creating your Telegram Application
	Authorization
	Authorization Status
	Connection Status
	Methods
	Events
	Properties
	Full Code Sample

	Telegram | Send Telegram Message With Inline Buttons
	Telegram | Send Bot Message With Buttons
	Telegram | Send Telegram Message Bold
	Markdown Syntax

	Telegram | Chat not found as Bot
	Telegram | Sponsored Messages
	Displaying sponsored messages
	Get Sponsored Messages

	Telegram | Send Telegram Invoice Message
	Telegram | Get SuperGroup Members
	Telegram | Add Telegram Proxy
	Add Proxy
	Remove Proxy

	Telegram | Register Telegram User
	RCON
	Configuration
	Connect
	Send Commands

	CryptoHopper
	Configuration
	Methods
	
	How Update Cryptohopper Config
	How Configure Webhook

	RTCMultiConnection
	Configuration
	Applications

	WebPush
	Components

	TsgcWSAPIServer_WebPush
	Configuration
	Properties
	Methods
	Events

	TsgcWebPush_Client
	Extensions
	Extensions | PerMessage-Deflate
	Max Window Bits
	No Context Take Over
	MemLevel

	Extensions | Deflate-Frame
	OpenAI
	OpenAI API
	Most common uses
	Configuration
	Models
	Completions
	Chat
	Edits
	Images
	Embeddings
	Audio
	Files
	Fine-Tunes
	Moderations

	OpenAI | Moderation
	Simple Example
	Advanced Example

	OpenAI | Chat
	Simple Example
	Advanced Example

	OpenAI | Edit
	Simple Example
	Advanced Example

	OpenAI | Audio
	Create Transcription
	Create Translation

	OpenAI | Moderation
	Simple Example
	Advanced Example

	OpenAI Applications
	Overview
	Components

	OpenAI Audio
	Components

	TsgcAudioRecorderMCI
	Properties

	TsgcAudioPlayerMCI
	TsgcTextToSpeechSystem
	TsgcTextToSpeechGoogle
	Properties

	TsgcTextToSpeechAmazon
	Properties

	TsgcAIOpenAIChatBot
	Properties
	Events
	Code Example

	TsgcAIOpenAITranslator
	Properties
	Events
	Code Example

	TsgcAIOpenAIEmbeddings
	Properties
	Databases
	How to use

	TsgcAIDatabaseVectorFile
	Configuration

	TsgcAIDatabaseVectorPinecone
	Configuration

	Embeddings | Create Vectors
	Embeddings | ChatBot
	Pinecone
	Configuration
	Index Operations
	Collection Operations
	Vector Operations
	Example UPSERT
	Example QUERY

	IoT
	IoT Amazon MQTT Client
	What Is AWS IoT?
	Message broker
	MQTT Client
	Certificates Authentication
	SignatureV4 Authentication
	Custom Authentication
	Authorization
	Other properties
	Implementation
	Connect to AWS IoT
	Topics
	Reserved Topics
	Persistent Sessions
	Temporary Credentials
	Unauthenticated
	Authenticated

	IoT Azure MQTT Client
	What is Azure IoT Hub?
	Message broker
	MQTT Client
	Connect to Azure IoT Hub
	Device To Cloud
	Cloud To Device
	Upload Files
	Device Provisioning Service
	Azure IoT Explorer

	HTTP
	Components

	HTTP/2
	HTTP 1.1 Limitations
	Main features
	Components
	APIs

	TsgcHTTP2Client
	Most common uses
	Methods
	Properties
	Events

	TsgcHTTP2Client | Request HTTP/2 Method
	Asynchronous Mode
	Blocking Mode

	Requests | HTTP/2 Server Push
	TsgcHTTP2Client | HTTP/2 Download File
	TsgcHTTP2Client | HTTP/2 Partial Responses
	TsgcHTTP2Client | HTTP/2 Headers
	TsgcHTTP2Client | Client Close Connection
	Active property
	Disconnect
	Close

	TsgcHTTP2Client | Client Keep Connection Active
	HeartBeat
	WatchDog

	TsgcHTTP2Client | HTTP/2 Reason Disconnection
	TsgcHTTP2Client | Client Pending Requests
	TsgcHTTP2Client | Client Authentication
	Basic Authentication
	Bearer Token
	Bearer value from Third-party
	
	OAuth2

	TsgcHTTP2Client | HTTP/2 and OAuth2
	How connect to GMail Google API

	TsgcHTTP2ConnectionClient
	Methods

	TsgcHTTP2RequestProperty
	Properties

	TsgcHTTP2ResponseProperty
	Properties

	HTTP2 | Apple Push Notifications
	What's required to Send Notifications
	

	APN | Generate a Remote Notification APNs
	JSON Payload Samples

	APN | Sending Notification Requests to APNs
	How Connect to APNs
	Sample Code

	APNs Trusted | Token-Based Connection to APNs
	Configure JWT Client

	Certificate-Based Connection to APNs
	OpenSSL
	SChannel
	Errors

	HTTP/1
	TLSOptions
	Log
	Authentication
	Examples

	HTTP | OAuth2
	Components

	OAuth2 | TsgcHTTP_OAuth2_Client
	OnBeforeAuthorizeCode
	OnAfterAuthorizeCode
	OnErrorAuthorizeCode
	OnBeforeAccessToken
	OnAfterAccessToken
	OnErrorAccessToken
	OnBeforeRefreshToken
	OnAfterRefreshToken
	OnErrorRefreshToken
	OnHTTPResponse
	OAuth2 Code Example
	Using TWebBrowser

	OAuth2 | TsgcHTTP_OAuth2_Client_Google
	Configuration
	Example

	TsgcHTTP_OAuth2_Client_Microsoft
	Configuration
	Example

	OAuth2 | TsgcHTTP_OAuth2_Server
	EndPoints
	Configuration
	Register App
	Delete App
	AddToken
	RemoveToken

	Most common uses
	Connections
	
	Events
	OnOAuth2BeforeRequest

	OnOAuth2BeforeDispatchPage
	OnOAuth2Authentication
	OnOAuth2AfterAccessToken
	OnOAuth2AfterRefreshToken
	OnOAuth2AfterValidateAccessToken
	OnOAuth2Unauthorized

	OAuth2 | Server Example
	OAuth2 | Customize Sign-In HTML
	OAuth2 | Server Endpoints
	OAuth2 | Register Apps
	OAuth2 | Recover Access Tokens
	OAuth2 | Server Authentication
	OAuth2 | None Authenticate URLs
	OAuth2 | TsgcHTTP_OAuth2_Server_Provider
	Register OAuth2 Provider
	Properties
	Most common uses

	OAuth2 Provider | Azure AD
	OAuth2 Provider | Private Endpoints
	OAuth2 Provider | Authentication
	OAuth2 Provider | Requests
	HTTP | JWT
	Algorithms supported
	Components

	JWT | TsgcHTTP_JWT_Client
	Configuration
	OpenSSL Options
	Custom Headers
	WebSocket Client and JWT
	
	HTTP Clients and JWT
	Expiration
	Create JWT Signature

	JWT | TsgcHTTP_JWT_Server
	Configuration
	Events

	Amazon AWS | SQS
	What is Amazon SQS?
	Benefits
	WorkFlow
	Getting Started with Amazon SQS
	
	SQS Client
	Events

	Google Cloud | Google OAuth2 Keys
	Google Cloud | Google Service Accounts
	Google Cloud | Pub/Sub
	What is Google Cloud Pub/Sub?
	Features
	Publisher-subscriber relationships
	Common use cases
	Authorization
	Most common uses
	Google Pub/Sub Client
	Projects.Snapshots
	Projects.Subscriptions
	Projects.Topics
	Projects.Topics.Subscriptions

	Most common methods
	How create a new Topic
	Publish a message
	Publish a Message with Attributes
	How Create a new Subscription
	How Read messages from Subscription

	Google Cloud | Calendar
	API Resources
	Main Features
	Configuration
	Most common uses
	Synchronize Calendars
	Synchronize Events
	Google Calendar API Calls

	Google Calendar | Load Calendars
	Google Calendar | Sync Events
	Google Calendar | RefreshToken
	Using RefreshToken

	Google Calendar | Service Account
	TsgcUDPClient
	Properties

	TsgcUDPServer
	Properties

	STUN
	Components

	STUN | TsgcSTUNClient
	Basic usage
	
	Most common uses
	
	Methods
	
	Properties
	Events

	STUN Client | UDP Retransmissions
	STUN Client | Long Term Credentials
	STUN Client | Attributes
	STUN | TsgcSTUNServer
	Basic usage
	Most common uses
	
	Properties
	Events

	STUN Server | Long-Term Credentials
	STUN Server | Alternate Server
	TURN
	How WebRTC sessions connect
	Components

	TURN | TsgcTURNClient
	Basic usage
	Most common uses
	
	TURN Relay Data
	
	Methods
	Properties
	Events

	TURN Client | Allocate IP Address
	TURN Client | Create Permissions
	TURN Client | Send Indication
	TURN Client | Channels
	TURN | TsgcTURNServer
	Basic usage
	Most common uses
	Properties
	Events

	TURN Server | Long Term Credentials
	TURN Server | Allocations
	ICE
	Components

	TsgcICEClient
	Configuration
	Most common uses
	Methods
	Events

	ICE | Gather Candidates
	ICE | Pair Candidates
	TsgcRTCPeerConnection
	Signaling
	Connecting
	Securing
	Communicating

	RTCPeerConnection | WebSocket Server
	RTCConnection | WebSocket Client
	RTCPeerConnection | STUN TURN
	RTCPeerConnection | Signaling
	RTCPeerConnection | ICE
	Gathering Addesses
	Connectivity Testing

	RTCPeerConnection | DTLS
	RTCPeerConnection | Data
	Send Data
	Receive Data

	Datasnap
	Servers

	TsgcWSHTTPWebBrokerBridgeServer
	Configuration
	Events
	Load Balancer

	TsgcWSHTTP2WebBrokerBridgeServer
	Configuration
	Events

	TsgcWSServer_HTTPAPI_WebBrokerBridge
	Configuration
	Events

	OpenAPI
	Pascal Parser
	OpenAPI Client
	APIs

	OpenAPI | Parser Pascal
	Importing OpenAPI Specification
	Example

	OpenAPI | Additional Properties
	Convert AdditionalProperties to JSON
	Convert JSON to AdditionalProperties

	OpenAPI | Client
	Authentication
	TLSOptions
	Log
	Properties

	OpenAPI | Amazon AWS
	AmazonOptions
	Most common uses
	
	sgcOpenAPI AWS SDK

	OpenAPI Amazon AWS | Credentials
	Considerations
	Programmatic access
	sgcOpenAPI Configuration

	OpenAPI Amazon AWS | S3
	ListBuckets
	GetObject
	PutObject

	OpenAPI | Google Cloud
	GoogleOptions
	Most common uses
	sgcOpenAPI AWS SDK

	OpenAPI Google Cloud | OAuth2
	OpenAPI Google Cloud | Service Accounts
	Domain-Wide Delegation

	OpenAPI Google Cloud | PubSub
	List Projects by Topic (OAuth2)
	List Projects by Topic (Service Accounts)

	OpenAPI Google Cloud Calendar
	List Events By Calendar (OAuth2)
	List Events By Calendar (Service Account)
	Insert Calendar Event

	OpenAPI | Microsoft
	MicrosoftOptions
	Most common uses
	sgcOpenAPI Microsoft APIs
	sgcOpenAPI Azure APIs

	OpenAPI Microsoft | Tenant
	Use an existing Azure AD tenant
	Create a new Azure AD tenant

	OpenAPI Microsoft | Register Application
	Add a redirect URI
	Add credentials
	Add a client secret

	OpenAPI Microsoft | OAuth2 Code
	OpenAPI Microsoft | OAuth2 Credentials
	OpenAPI Microsoft | Graph
	Get Current User

	APIs
	OpenAPI | AbstractApi Geolocation
	Demos | Server Chat
	Start Server
	Events Configuration
	
	Dispatch HTTP Requests

	Client Chat
	Connect to Server
	Send Message To Server
	Receive Messages from Server

	Demos | Client
	Connect to Server
	Client Events

	Demos | Client MQTT
	Configuration
	MQTT Events

	Demos | Client SocketIO
	Configuration
	Send Messages
	Receive Messages

	Demos | Server Monitor
	Configuration

	Demos | Server Snapshots
	Configuration

	Demos | Client Snapshots
	Connect to Server

	Demos | Upload File
	Configuration

	Demos | Server Authentication
	Authentication

	Demos | KendoUI_Grid
	Configuration
	WebSockets Updates

	Demos | ServerSentEvents
	Demos | Server WebRTC
	Configuration
	Run in WebBrowser

	Demos | Server AppRTC
	Configuration
	Run in WebBrowser

	Demos | Telegram Client
	Configuration
	Send Telegram Messages
	Receive Telegram Messages

	Coturn
	Windows Configuration
	turnserver.conf

	WebSockets
	HTTP/2
	JSON
	JSON-RPC 2.0
	Parsers

	WAMP
	WebRTC
	MQTT
	Server-Sent Events
	OAuth2
	JWT
	STUN
	AMQP
	TURN
	License
	Index

