
sgcBiometrics 2.1

Table of Contents
sgcBiometrics | System Sensor Pool ... 3
sgcBiometrics | Private Sensor Pool .. 3
Components | TsgcWinBioFingerPrint... 5
Components | TsgcWinBioFacial ... 7
Components | TsgcWinBioStorageFile .. 11
Components | TsgcWinBioUsersINI .. 13

i

sgcBiometrics | Windows Biometric
Framework
Every individual has unique characteristics that can be used for identification.
Typically these characteristics are physical and include traits such as
fingerprints, but they can also include behavioral traits such as gait and typing
rhythm. The term biometrics encompasses both meanings. Biometric
information is increasingly replacing passwords to identify and verify users. It is
more secure and often more convenient for both user and administrator.

Sensors are used to capture biometric information. The information is captured
by the sensor as a biometric sample. A single sample contains data that
represents a single biometric characteristic for one individual. Multiple samples
are averaged to create a biometric template, and the template is securely
stored. Later, a sample from an unknown user is compared to the stored
templates to establish and verify user identity. The Windows Biometric service,
part of the Windows Biometric Framework (WBF), provides the following
functionality. You can use the Windows Biometric Framework API to leverage
this functionality.

• Captures biometric samples and uses them to create a template.
• Securely saves and retrieves biometric templates.
• Maps each template to a unique identifier such as a GUID or SID.

There are two types of sensor pools: private and system. The fingerprint
sensors compatible with Windows Hello support System pool but only some
of them support private sensor pool.

To support both Windows authentication scenarios and vendor defined
authentication, the Windows Biometric service organizes biometric units into
three possible sensor pools:

• Private pool: a collection of biometric units allocated for exclusive use
by a client application. Private pools can support authentication
scenarios that are not Windows-based, and they make it possible for an
application to access the hardware of a biometric unit in a vendor-defined
fashion. There can be as many private sensor pools on the system as
there are biometric units.

• System sensor pool: a collection of sharable biometric units that
provide access to Windows authentication services. This pool is used by
Winlogon, UAC, and any other client that associates a SID with a specific
biometric template. Each biometric service provider has one system
sensor pool.

1

sgcBiometrics | Windows Biometric Framework

Applications can use the shared system pool or they can create a private pool
made up of biometric units removed from the system or unassigned pools.
When an application releases its private pool, the biometric units are
reconfigured and returned to their original pools. To prevent denial of service
attacks, only privileged users are permitted to remove the last sensor from the
system pool. For more information, see the following topics.

sgcBiometrics currently has the following components:

1. TsgcWinBioFingerPrint: allows to login using a fingerprint sensor.
2. TsgcWinBioFacial: allows to detect face presence, facial recognition and
more. (*only system sensor pool is supported).
3. TsgcWinBioStorageFile: allows to set a private pool where biometric units
are allocated for use by a client application (*only Fingerprint sensors support
StorageFile).
4. TsgcWinBioUsersINI: if you link this component to a TsgcWinBioFingerPrint
object, when you try to enroll a new biometric sample, you cat save user data
like username, userid... and when you identify a fingerprint, you can recover this
data from INI file (*only Fingerprint sensors support StorageFile)

2

SensorPools
sgcBiometrics | System Sensor Pool
The system sensor pool is a collection of sharable biometric units that provide
access to Windows authentication services. This pool is used by Winlogon,
UAC, and any other client that associates a SID with a specific biometric
template. Biometric units in the system pool:

• Can be shared by multiple client applications.
• Send event notices generated by the completion of biometric operations

only to the application that has current window focus.
• Use account SIDs to represent the template identities. All of the

templates associated with a single user account are tagged with the SID
assigned to that account.

Depend on trustworthy template storage provided by the Windows Biometric
Service.

A biometric unit can be included in the system pool if it can be:

• Configured to operate in basic mode and act only as a biometric capture
device.

• Configured to operate in advanced mode but has no onboard template
storage. That is, it must use the storage adapter and template store
supplied by Microsoft.

• Configured to operate in advanced mode, contains onboard template
storage, and can generate the required hashes.

Check TsgcWinBioFingerPrint or TsgcWinBioFacial to see how to use.

sgcBiometrics | Private Sensor Pool
A private sensor pool is a collection of biometric units reserved for exclusive use
by a client application. Private pools support proprietary authentication methods
and enable a client application to access a biometric unit by using vendor-
specified control commands. Biometric units in a private sensor pool:

• Are available only to the client application that created the pool.
• Send event notices generated by the completion of biometric operations

directly to the application without regard to current window focus.

3

SensorPools

• Use GUIDs to identify biometric templates.
• Share a single, application selected template database.

Private sensor pools must be used if the client application:

• Manages a collection of dedicated biometric units that use an
application-specific template database. For an example, consider an
employee attendance application where employees signal their arrival at
work by swiping their finger on a fingerprint reader. The employees do
not have Windows accounts on the computer running the application.
Instead, their fingerprints are identified by GUIDs managed by the
attendance application.

• Collects biometric samples rather than simply maps samples to SIDs.
• Places the biometric unit hardware into maintenance mode to update the

firmware.
• Sends vendor-defined control commands to the biometric unit hardware

or software.
• Attempts to configure a biometric unit with onboard storage to operate in

advanced mode but the unit cannot perform the required hashing
operations.

• Runs from a Remote Desktop client session.

*Currently, the private sensor pool is only supported by some fingerprints
sensors.

4

Components
Components | TsgcWinBioFingerPrint
This component allows to login using a FingerPrint reader. By default uses
System Sensor Pool, but if you attach a Storage Component, like
TsgcWinBioStorageFile, you can setup your own Private Sensor Pool.

Requirements

• A compatible fingerprint sensor with support for Windows Hello.
• Windows 10+ (desktop apps only)
• Windows Server 2016+ (desktop apps only).

Basic Usage (System Sensor Pool)

1. Drop a TsgcWinBioFingerPrint in any form or datamodule.

2. Call InitializeSensors method to start to use your sensor.

TsgcWinBioFingerPrint1.InitializeSensors;

 a. If initialization is successful, then OnEnumBiometricUnit event will be
called.
 b. If there is any error, OnError event is raised.

3. To save your FingerPrint in a Storage Template, call EnrollBiometric
method

TsgcWinBioFingerPrint1.EnrollBiometric(aSubType);

Where aSubType can be any of the following:

WINBIO_ANSI_381_POS_RH_THUMB
WINBIO_ANSI_381_POS_RH_INDEX_FINGER
WINBIO_ANSI_381_POS_RH_MIDDLE_FINGER
WINBIO_ANSI_381_POS_RH_RING_FINGER
WINBIO_ANSI_381_POS_RH_LITTLE_FINGER

WINBIO_ANSI_381_POS_LH_THUMB
WINBIO_ANSI_381_POS_LH_INDEX_FINGER
WINBIO_ANSI_381_POS_LH_MIDDLE_FINGER
WINBIO_ANSI_381_POS_LH_RING_FINGER
WINBIO_ANSI_381_POS_LH_LITTLE_FINGER

Three Events will be called in Enroll process:

5

Components

OnEnrollBegin: when enrollment starts.
OnEnrollCapture: every time you touch your sensor, you will get
information about it, if it's correct sample, if it's bad...
OnErollCommit: when enrollment finishes.

You can check which fingerprints are already enrolled calling
EnumEnrollments method:

OnEnumEnrollments: this event is called for every enrollment.

4. To verify if your fingerprint has been saved, just call Identify method

TsgcWinBioFingerPrint1.Identify;

OnIdentify event will be raised and If you a SID or GUID is provided,
means sample exists.

 Case aIdentity._Type of
 WINBIO_ID_TYPE_SID: vId :=
 aIdentity.AccountSid.Data;
 WINBIO_ID_TYPE_GUID: vId :=
 aIdentity.TemplateGuid.Guid;
 else
 vId := '';
 End;

 case aSubfactor of
 WINBIO_ANSI_381_POS_RH_THUMB: vSubFactor :=
'RH_THUMB';
 WINBIO_ANSI_381_POS_RH_INDEX_FINGER: vSubFactor :=
'RH_INDEX_FINGER';
 WINBIO_ANSI_381_POS_RH_MIDDLE_FINGER: vSubFactor
:= 'RH_MIDDLE_FINGER';
 WINBIO_ANSI_381_POS_RH_RING_FINGER: vSubFactor :=
'RH_RING_FINGER';
 WINBIO_ANSI_381_POS_RH_LITTLE_FINGER: vSubFactor
:= 'RH_LITTLE_FINGER';
 WINBIO_ANSI_381_POS_LH_THUMB: vSubFactor :=
'LH_THUMB';
 WINBIO_ANSI_381_POS_LH_INDEX_FINGER: vSubFactor :=
'LH_INDEX_FINGER';
 WINBIO_ANSI_381_POS_LH_MIDDLE_FINGER: vSubFactor
:= 'LH_MIDDLE_FINGER';
 WINBIO_ANSI_381_POS_LH_RING_FINGER: vSubFactor :=
'LH_RING_FINGER';
 WINBIO_ANSI_381_POS_LH_LITTLE_FINGER: vSubFactor
:= 'LH_LITTLE_FINGER';
 end;

6

sgcBiometrics 2.1

5. To capture a biometric sample just call CaptureSample method

TsgcWinBioFingerPrint1.CaptureSample;

OnCaptureSample event will be raised is result is successful.

The fingerprint image data is just a grayscale bitmap. Assuming you have
a correctly-sized bitmap available, here's how to draw the bitmap. (Note,
I'm assuming here that the fingerprint image is 8 bits per pixel. Actually,
the pixel width is stored in the aAnsiBdbHeader, and a real application
would have to use the value found there to calculate the proper X and Y
values, based on pixel size.)

 for y := 0 to aAnsiBdbRecord.VerticalLineLength -
1 do

begin
 for x := 0 to
aAnsiBdbRecord.HorizontalLineLength - 1 do
 begin
 vByte := aFirstPixel[(y *
aAnsiBdbRecord.HorizontalLineLength) + x];
 vRGB := RGB(vByte, vByte, vByte);
 end;
 end;

Asynchronous

By default, FingerPrint components uses Synchronous calls to request
info about biometric devices, this mean that when you request user put
fingerprint on sensor, application will wait till user has done the action and
this locks application.

If you set Asynchronous property to True, all calls will be processed
asynchronously, so application won't lock.

Components | TsgcWinBioFacial
Facial Recognition is supported using a compatible Windows Hello camera, this
allows to monitor if there is a human person in front of the camera (you can
know if there is someone, identify, arrives, departs and more). Facial
Recognition and Identification is supported too.

Facial Recognition is only supported by system sensor pool, so you must
first enroll a user using Windows Hello (WBF doesn't allow to enroll faces, only
fingerprints are supported). You can register more than one face in your
windows, you only must create a new windows account and attach the new face
to this account.

7

Components

Requirements

• A compatible camera with support for Windows Hello.
• Windows 10+ (desktop apps only)
• Windows Server 2016+ (desktop apps only).

Log in Windows 10 with your face

How to log in to Windows 10 with your face

• Go to Settings > Accounts > Sign-in options.
• Set up an account password and PIN.
• Click the "Set up" button for Face under Windows Hello.
• Click the "Get started" button, enter your PIN, and sit in front of the
camera while Windows takes a few seconds to scan your face.
• Click "Close" and you're all set.

Basic Usage

1. Drop a TsgcWinBioFacial in any form or datamodule.

2. Check if there is a Session opened, if not, call InitializeSensors method to
start to use your sensor. The Facial Recognition component uses
Asynchronous mode, so set a Timeout to Initialize sensors (in milliseconds).

if not TsgcWinBioFacial1.SessionIsOpen then
 TsgcWinBioFacial1.InitializeSensors(10000);

 a. If initialization is successful, then OnEnumBiometricUnit event will be
called.
 b. If there is any error, OnError event is raised.

3. Call FacialRecognize to try to recognize the face, if returns true, means that
face has been recognized.

if TsgcWinBioFacial1.FacialRecognize then
 ShowMessage('Face Recognized')
else
 ShowMessage('Unknown Face');

4. You can get the Face Identification Id calling the method FacialIdentify, if
successful returns the AccountSid as a string.

ShowMessage(TsgcWinBioFacial1.FacialIdentify);

8

sgcBiometrics 2.1

Presence Monitor

This method activate the sensor of your windows camera and every time there
is a new face, departs or arrives you will be notified.

1. Drop a TsgcWinBioFacial in any form or datamodule.

2. Check if there is a Session opened, if not, call InitializeSensors method to
start to use your sensor. The Facial Recognition component uses
Asynchronous mode, so set a Timeout to Initialize sensors (in milliseconds).

if not TsgcWinBioFacial1.SessionIsOpen then
 TsgcWinBioFacial1.InitializeSensors(10000);

3. Call StartMonitorPresence to start the presence monitor. Every time there is
a change in your camera you will be notified

TsgcWinBioFacial1.StartMonitorPresence;

You can use the following events to track all changes:

• The type of event is unknown. This value is used for the
uninitialized structure.

procedure OnFacialPresenceUnknown(Sender: TObject;
const aUnitId: Integer);
begin
 WriteLn('Monitor Presence: UNKNOWN');
end;

• Provides information about all of the faces current in the camera
frame.

procedure OnFacialPresenceUpdateAll(Sender:
TObject; const aUnitId: Integer);
begin
 WriteLn('Monitor Presence: UPDATE ALL');
end;

• A new face entered the camera frame.

procedure OnFacialPresenceArrive(Sender: TObject;
const aUnitId: Integer;
 const aPresence: WINBIO_PRESENCE);
begin
 WriteLn('Monitor Presence [' +
IntToStr(aPresence.TrackingId) + ']: ARRIVE');
end;

• A face was matched to an enrolled user.

9

Components

procedure OnFacialPresenceRecognize(Sender:
TObject; const aUnitId:
 Integer; const aPresence: WINBIO_PRESENCE);
begin
 if aPresence.Identity._Type = WINBIO_ID_TYPE_SID
then
 WriteLn('Monitor Presence [' +
IntToStr(aPresence.TrackingId) + ']: RECOGNIZE ' +
 aPresence.Identity.AccountSid.Data)
 else
 WriteLn('Monitor Presence [' +
IntToStr(aPresence.TrackingId) + ']: RECOGNIZE');
end;

• A previously detected face has been out of the camera frame for a
period of time.

procedure TFRMFacial.FacialPresenceDepart(Sender:
TObject; const aUnitId:
 Integer; const aPresence: WINBIO_PRESENCE);
begin
 WriteLn('Monitor Presence [' +
IntToStr(aPresence.TrackingId) + ']: DEPART');
end;

• Provides updates information about the bounding box and reject
detail values for a subset of the faces that are currently in the
camera frame.

procedure TFRMFacial.FacialPresenceTrack(Sender:
TObject; const aUnitId:
 Integer; const aPresence: WINBIO_PRESENCE);
var
 vReject: string;
begin
 vReject := '';
 case aPresence.RejectDetail of
 WINBIO_FACE_TOO_BRIGHT: vReject := 'FACE Too
Bright';
 WINBIO_FACE_TOO_DARK: vReject := 'FACE Too
Dark';
 WINBIO_FACE_SPOOF_DETECTED: vReject := 'FACE
Spoof Detected';
 WINBIO_FACE_AMBIGUOUS_TARGET: vReject := 'FACE
Ambiguous Target';
 WINBIO_FACE_EYES_OCCLUDED: vReject := 'FACE
Eyes Occluded';
 WINBIO_FACE_WRONG_ORIENTATION: vReject :=
'FACE Wrong Orientation';

10

sgcBiometrics 2.1

 WINBIO_FACE_TOO_HIGH: vReject := 'FACE Too
High';
 WINBIO_FACE_TOO_LOW: vReject := 'FACE Too
Low';
 WINBIO_FACE_TOO_LEFT: vReject := 'FACE Too
Left';
 WINBIO_FACE_TOO_RIGHT: vReject := 'FACE Too
Right';
 WINBIO_FACE_TOO_NEAR: vReject := 'FACE Too
Near';
 WINBIO_FACE_TOO_FAR: vReject := 'FACE Too
Far';
 end;
 WriteLn('Monitor Presence [' +
IntToStr(aPresence.TrackingId) + ']: TRACK [' +
vReject + ']');
end;

Multiple Facial Recognition

If you want to recognize more than 1 user on the same windows machine, first
you must create one windows account for every user and for every new user
created, enroll the face on the windows hello settings.

This way, every face will have a windows account attached.

After that, you can use the Facial Recognition component to Recognize ALL
Faces enrolled in the windows machine (you can recognize faces of other
accounts if they are saved on the same windows).

Components | TsgcWinBioStorageFile
This component allows to setup a private sensor pool if attached to a biometric
component like TsgcWinBioFingerPrint.
Not all fingerprint sensors support private sensor pool, use our demo sample to
test if your fingerprint sensor supports it.

Basic Usage (Private Sensor Pool)

1. Drop a TsgcWinBioFingerPrint in any form or datamodule.

2. Drop a TsgcWinBioStorageFile in any form or datamodule.

3. Link TsgcWinBioFingerPrint.Storage to TsgcWinBioStorageFile.

11

Components

4. In TsgcWinBioStorageFile you can customize your own DatabaseId (must
be a GUID).

5. Call InitializeSensors method to start to use your sensor.

TsgcWinBioFingerPrint1.InitializeSensors;

 a. If initialization is successful, then OnEnumBiometricUnit event will be
called.
 b. If there is any error, OnError event is raised.

6. To save your FingerPrint in a Storage Template, call EnrollBiometric
method

TsgcWinBioFingerPrint1.EnrollBiometric(aSubType);

Where aSubType can be any of the following:

WINBIO_ANSI_381_POS_RH_THUMB
WINBIO_ANSI_381_POS_RH_INDEX_FINGER
WINBIO_ANSI_381_POS_RH_MIDDLE_FINGER
WINBIO_ANSI_381_POS_RH_RING_FINGER
WINBIO_ANSI_381_POS_RH_LITTLE_FINGER

WINBIO_ANSI_381_POS_LH_THUMB
WINBIO_ANSI_381_POS_LH_INDEX_FINGER
WINBIO_ANSI_381_POS_LH_MIDDLE_FINGER
WINBIO_ANSI_381_POS_LH_RING_FINGER
WINBIO_ANSI_381_POS_LH_LITTLE_FINGER

Three Events will be called in Enroll process:

OnEnrollBegin: when enrollment starts.
OnEnrollCapture: every time you touch your sensor, you will get
information about it, if it's correct sample, if it's bad...
OnErollCommit: when enrollment finishes.

7. To verify if your fingerprint has been saved, just call Identify method

TsgcWinBioFingerPrint1.Identify;

OnIdentify event will be raised and If you a SID or GUID is provided,
means sample exists.

 Case aIdentity._Type of
 WINBIO_ID_TYPE_SID: vId :=
 aIdentity.AccountSid.Data;
 WINBIO_ID_TYPE_GUID: vId :=
 aIdentity.TemplateGuid.Guid;
 else

12

sgcBiometrics 2.1

 vId := '';
 End;

 case aSubfactor of
 WINBIO_ANSI_381_POS_RH_THUMB: vSubFactor :=
'RH_THUMB';
 WINBIO_ANSI_381_POS_RH_INDEX_FINGER: vSubFactor :=
'RH_INDEX_FINGER';
 WINBIO_ANSI_381_POS_RH_MIDDLE_FINGER: vSubFactor
:= 'RH_MIDDLE_FINGER';
 WINBIO_ANSI_381_POS_RH_RING_FINGER: vSubFactor :=
'RH_RING_FINGER';
 WINBIO_ANSI_381_POS_RH_LITTLE_FINGER: vSubFactor
:= 'RH_LITTLE_FINGER';
 WINBIO_ANSI_381_POS_LH_THUMB: vSubFactor :=
'LH_THUMB';
 WINBIO_ANSI_381_POS_LH_INDEX_FINGER: vSubFactor :=
'LH_INDEX_FINGER';
 WINBIO_ANSI_381_POS_LH_MIDDLE_FINGER: vSubFactor
:= 'LH_MIDDLE_FINGER';
 WINBIO_ANSI_381_POS_LH_RING_FINGER: vSubFactor :=
'LH_RING_FINGER';
 WINBIO_ANSI_381_POS_LH_LITTLE_FINGER: vSubFactor
:= 'LH_LITTLE_FINGER';
 end;

Components | TsgcWinBioUsersINI
If you require save user data associated to a fingerprint, example: you can user
System Pool Sensor to save fingerprints of different users (until the limit of
fingerprints types associated to a single database). You can link this component
to a TsgcWinBioFingerPrint component and every time you enroll a new
biometric sample, you can save user data like: username, user id...

How works

1. Drop a TsgcWinBioFingerPrint component.
2. Drop a TsgcWinBioUsersINI component.
3. Link TsgcWinBioFingerPrint.Users property to TsgcWinBioUsersINI

object.
4. Handle TsgcWinBioUsersINI events to set and get user data.

OnEnrollUser

13

Components

procedure
TFRMFingerPrint.sgcWinBioUsersINI1EnrollUser(Sender:
TObject; const
 User: TsgcBiometrics_WinBio_User);
begin
 User.UserId := '0001';
 User.UserName := 'John';
 User.UserData := '<xml><phone>656545644</phone></xml>';
 User.UserSubType := WINBIO_ANSI_381_POS_RH_THUMB;
end;

OnIdentifyUser

procedure
TFRMFingerPrint.sgcWinBioUsersINI1IdentifyUser(Sender:
TObject; const
 aUnitId: Integer; const aIdentity: WINBIO_IDENTITY;
const aSubFactor:
 WINBIO_BIOMETRIC_SUBTYPE; const aRejectDetail:
WINBIO_REJECT_DETAIL; const
 aUser: TsgcBiometrics_WinBio_User);
var
 vSubFactor: String;
begin
 case aSubfactor of
 WINBIO_ANSI_381_POS_RH_THUMB: vSubFactor := 'RH_THUMB';
 WINBIO_ANSI_381_POS_RH_INDEX_FINGER: vSubFactor :=
'RH_INDEX_FINGER';
 WINBIO_ANSI_381_POS_RH_MIDDLE_FINGER: vSubFactor :=
'RH_MIDDLE_FINGER';
 WINBIO_ANSI_381_POS_RH_RING_FINGER: vSubFactor :=
'RH_RING_FINGER';
 WINBIO_ANSI_381_POS_RH_LITTLE_FINGER: vSubFactor :=
'RH_LITTLE_FINGER';
 WINBIO_ANSI_381_POS_LH_THUMB: vSubFactor := 'LH_THUMB';
 WINBIO_ANSI_381_POS_LH_INDEX_FINGER: vSubFactor :=
'LH_INDEX_FINGER';
 WINBIO_ANSI_381_POS_LH_MIDDLE_FINGER: vSubFactor :=
'LH_MIDDLE_FINGER';
 WINBIO_ANSI_381_POS_LH_RING_FINGER: vSubFactor :=
'LH_RING_FINGER';
 WINBIO_ANSI_381_POS_LH_LITTLE_FINGER: vSubFactor :=
'LH_LITTLE_FINGER';
 end;
end;

14

Index
I
Introduction 1
P
Private Sensor Pool 3
S
System Sensor Pool 3

T
TsgcWinBioFacial 7
TsgcWinBioFingerPrint 5
TsgcWinBioStorageFile 11
TsgcWinBioUsersINI 13

15

	sgcBiometrics | Windows Biometric Framework
	SensorPools
	sgcBiometrics | System Sensor Pool
	sgcBiometrics | Private Sensor Pool

	Components
	Components | TsgcWinBioFingerPrint
	Requirements
	Basic Usage (System Sensor Pool)
	Asynchronous

	Components | TsgcWinBioFacial
	Requirements
	Log in Windows 10 with your face
	Basic Usage
	Presence Monitor
	Multiple Facial Recognition

	Components | TsgcWinBioStorageFile
	Basic Usage (Private Sensor Pool)

	Components | TsgcWinBioUsersINI
	How works
	OnEnrollUser
	OnIdentifyUser

	Index

