eSeGeCe

SOFTWARE

sgcWebSockets .NET 2026.1

January 2026

Documentation for .NET

Copyright © 2012-2026 eSeGeCe Software

info@esegece.com
www.esegece.com

https:#nogo

SGCWEBSOCKETS

Contents

[T 1 o LT Tof Lo T o R 10

OVEIVIBWuuiiiiiiiiiiinninnssans 12
B ITIONS e e st r e re e nnes 12
INSEAHATION e st sr e 13

[0 11 T T'of 7] -] 5 Rt 14
OVEIVIBW <.ttt sttt et st e s b e e s bt e e et e e s bt e e st e e s mae e ssbeeasaeesnaeas 14
QUICKSTAITt WEDSOCKELS .eeiiiiiiiiii ettt ettt e et e s s e star e e e e esabaeeesesabaeeesesanns 16
TREEAAINEG FIOW ..ttt ettt st e st e s e e sae st e esteesteensesnseesseessaenseenseens 18
BUII ettt et et e b e b e e ae et e e be e be e be e ae e aeereereens 19
OPBNSSL ettt ettt s et e st e e st e e e bt e e s bba e e e b teeseabaeesnraeeearaes 20
OPENSSL WINAOWS ...veiiieiieiieieesieesie ettt e st e steesteesaeesteesbeesaeesseessaesseesseesseesssessesssnesseenses 23
OPENSSL OSX ettt ettt et e sttt e s sabe e e s bbe e e s bbeessabeeesnbeesesbbeessabaeesanraeennnees 25
OpPenSSL OWN CA CertifiCateS. .ttt ste st sreeseee s e e saaesaeeseeas 27
OPENSSL P12 CertifiCateS . cciiiiiiieiierieeieeseesteeseese ettt sbeesreesee e s e e saaesanesaeas 29
OpPeNnSSL Verify CertifiCate .ottt s e e e saaesaeeseeas 30

TOPICS coiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeessas 31
WEDSOCKET EVENTS ..ottt st sre e e 31
WebSocket Parameters CONNECLIONeoviirierienierierte sttt sttt ebe e 32
USING INSIAE @ DLL ittt ettt st sttt st s b e sbeesbeenbeens 33
WED BIrOWSEE TESE ..uviieiieiirieeierteetete ettt ettt e sbe e snesre e sesneennens 34

YU o LY gL [ef=] 1) o N 35

SGCWEBSOCKETS

BINAINES ettt sttt st st b e b st e e be e be e beebe e beebeenreens 43
POST BIZ FIlES ottt sttt ettt s e st e et st e s beebeebeebeebeens 44
(@] 0 0] o1 g<1SS] (o] o FES N OO O PSSP PP PROPPRRPRPRR 46
FLASH .t h e b bbb aeenees 47
LOCP ettt sttt h e bt h e bt bbb b et e et ettt aeene e s ene 48
ALPN Lttt ettt h e bt s h e h e b bbb et et et et et et e e be b ene 49
FOrward HTTP REQUESTS ..c..uiviiiieriiecterte sttt sttt st st s sv e st beebesbesbeesaeesesbeens 50
TCP CONNECLIONS ittt st st s e st sabe st st e sabesbesbeebeebeens 51
SUDPIOTOCOI ..ttt sttt st b e st sbe e 52
TEOTEIE ettt et a bbb b e beene e 53
SEIVEI-SENT EVENTS ..ottt 54
Fragmented MESSAEEScccviviirierierierte st ste st ste st s testesaesbesbesbesbesbeesbeenseenseeseens 56
COMPONENLSceeeeeeeiiiiiiiiiiinneneeiiieittntessssseesssssssssressnes 57
TSECWEDSOCKETCHENT. ... ettt sttt ettt ne e 57
CoNNECt WEDSOCKET SEIVET ..ottt 63
Client OPen CONNECLION ..iitiiiieieeteeeee ettt sb e bt sb e sbeesaeesbeesaeesaeesaees 64
Client ClOSE CONNECLION ...iiiiiiiiieeieeteete ettt ettt sbe e st sbe e b e sbeesaeesbeesbeesbeesaees 66
Client Keep CONNECLION OPEN ...uuiiiiiiiiiieieeieesieerite ettt ettt et sb e sbeesaeesaeesaeesaeesaees 67
Dropped DiSCONNECLIONS. c...oiuiiiieeiieeieeteete ettt ettt sttt et et e b e sbeesbeesbeens 68
CONNECE TCP SEIVEI ettt st sat e e st ee st e st e e s an e e ssee e nteesnneas 69
CONNECLIONS TIME _WAIT oottt ettt e e ettt eeabreeeeeeeeetaaaseeeseeeesssannssesesssnnes 70
WebS0CKet REAINECHIONS.....iiiiiieiieeeeee ettt st be e 71
CONNECT SECUIE SEIVEL ittt ettt s e s e e st e sste e s sne e saeeesnneesneeas 72
CertifiCateS OPENSSLu ...ttt sttt sttt sb et be s et sae e enee 73
CertifiCates SCRANNEL ..ottt st b 74
Client SENA TEXE MESSAEEoiiieiieieeieeteee ettt sttt et sb e sbe e sbeesbeesaeesaeesaees 76
Client SENd BiNary MESSAEE.....ccctiriieiieiieitetestte sttt ettt satesbe e sbe e bt e saeesseesaeesaeesaees 77
Client Send Text and BiNary MESSAZEcc.coveiriirienieniieitenieesite sttt 78

SGCWEBSOCKETS

RECEIVE TEXE MESSAZES ...veiiiieeiiiiriieeite sttt sttt sttt sbe e s esabeesabeesabeessbeesaneesaseesaneenas 79
ReCEIVE BINAIY IMESSAZESeeeiiiiiieeitesieentee sttt e st steesbeesteesabeesasaesabaessbeesasaesaseesaseenns 80
Client AUTNENTICATION .o.veiiiiieieeeee et 81
(@ 1 T=T o o Cel=] o 4 (0] o 1= USSP PRRRORPI 83
Client WebSocket HaNASNAKE ..o 84
Client ReGIiSter ProtOCO] .. .ciuiiiiiieeeeiteeeteeet ettt sttt saaesaeesaees 85
ClIENT PrOXIES ..ttt sttt st sttt sbe et sb e st sb e e b esee b e sae e e nee 86
TSECWEDSOCKEESEIVEL ...eiitiiieiieeeetetete ettt st sttt aeebeebeebeens 87
SEIVEE STAIT ottt sb e bbb b 94
SIVEE BINAINES..eiiiiiiiiieieiitiesteesie ettt ettt e s e e beesbeesbaesbeesbaesbeesbaessaesasessnesseenseas 95
Server Startup SNULAOWNcoviiiiiecitcieceeeee ettt e saa e s e e sasesanesaees 96
SEIVEE KEEP ACHIVE ..ottt ettt st s e st e st e e s st e e sab e e sabeesaseesabeenanees 97
SEBIVEE SSLuiiiiiiiie e 98
Server Verify CertifiCate ..o saa e 100
Server Keep CoNNECLIONS AlIVEoouiiiiiiiiiiciesiececte ettt sieesaeesane s 101
SEIVEY PIAIN TCP ettt sttt sttt b e s nbesae e nees 102
Server CloSe CONNECTION ..cveiiirieeieteriteterte ettt sttt sb e sbe s nnes 103
Server AULNENTICAtION ..ottt 104
Server SENA TEXt IMESSAZEcvviriiriirierite ettt ettt sttt e e ste e te e beesbeesbeesbaesseesseesbeessnens 106
Server Send BiNAry MESSAEEcccviviiriiriinieeieeie st eie e ete et e e sbeesaeesaeesseesseesseesanens 107
Server RECEIVE TEXE MESSAE......cuviiiieieiienieeeiee sttt sreesbe e sbe e sabeesbeesareesaseesaseeane 108
Server Receive BiNary MESSAZE ...c...uiviiiriienieenieenreesiee st ste st sre st sse e sareesaseesaseenane 109
Server Read Headers from ClIeNt.......voiererieririeereeeeeseeee e 110
TSECWEDSOCKEtHTTPSEIVEL ..ottt sttt st st st s e s saaesaae s 111
HTTP SEIVEI REQUESTS ...eeeieeiiieeitee ettt ettt et e st e s e e s bbeesennaeesnneeas 115
HTTP DIiSPAtCN FIlES..uuiiiiiiiiiieeieetectesese ettt st st sttt s s 116
HTTP/2 SEIVEI .ttt 17
HTTP/2 SEIVEE PUSK vttt st s 118
HTTP/2 AItEINATE SEIVICO.. .ottt sttt sb e 120
HTTP/2 SErVer TRIEAUS. ...cueeteeiieieeteeeerteete ettt st st 121
TSECWSCONNECHION . .ttiiteeeiteeiee ettt ettt s e sate e st e e sabeesabeessteessbeesabeesasessssessssesnnenns 123

SGCWEBSOCKETS

PrOTOCOIS ettt sttt s b et b e s bt et sb e s bt e s e s beeneene e 125
ProtOCOIS JAVASCIIPT.ccuiiiiertertesierte sttt s st st st e saaesatesaeesanesaees 126
o) (o Talo] I\, (@ 1 I SRR 129
TSECWSPCHENT_MQTT ittt ettt et ste e s esaeesaeesae e saeesasesasessnesasesssesasesnnes 131
ClIeNt MQTT CONNECE ccutiiiiiiiiitiiie ettt ettt e e et e e e esabb e e e e s esabbeeeseesbbaeeesssaraeeeeas 137
Connect MosqQUItto MQTT SEIVEIS ...ccuiiriiirieeeieesreestee ettt sar e 138
ClIeNt MQTT SESSIONS ..uvvviiiiiiiiiiiee ettt e eerar e e e eesbrr e e e s esbbreeeeesbbaeeesessabareesssssraeeeeas 139
ClIeNt MQTT VEISION vttt ettt et e e s eaba e e e e e esabb e e e s esabbeeeseesaabaseeesensareesas 140
MQTT PUDBIISN SUDSCIIDE vttt e 141
IMQTT TOPICS veeeuteeeieeeieeeitee sttt e st e st esbe e st e st e e s bt e sabeessbeesabeesabeesabaesabeesasaesaseesasaessseesasees 142
MQTT SUDSCIIDE .ttt eerba e e s et e e e s esabbe e e e eesabareeesensnans 143
MQTT PUDBIISN MESSAEE ..coveiiiiiieriectectesesesese ettt s st s 144
MQTT RECEIVE IMESSAZRS ..cuveeiieerieeeite st eitesree st e st e s bt e sbeesbeesbeesbeessaessseesasaessseesasees 145
MQTT Publish and Wait RESPONSEooiiriiriirieriectese ettt 146
MQTT Clear RetaiNed MESSAZES.cccueriiriirierienieste st ste st ste st stesaesresssessessesssesaees 147
ProtOCOI APPRTC ittt sttt st st st st st st st st e sstesstesstesasesnnesaeas 148
TSECWSPSEIVEI _APPRTC .ottt ettt s b e s baeessaraeesnnee s 149
ProtOCOI WEBRTC ...ttt st 150
TSECWSPSErver_WEDRTCottt ettt sieesie e st st sanesatesanessaesanesnnes 151
Protocol WEbRTC JAVASCIIPT....ciiirierierieriesiesteste sttt sttt s sne s 152
PrOTOCOI FIlES ..ottt b e 153
TSECWSPSEIVEL _FIlES...iiiiiiiiieeieeieceete ettt sae e sae e st saa e saaesanesaaesanesanes 154
TSECWSPCHENT_FIlES ..viiiiiieeieeecteete ettt sttt st s s sab e saa e saaesaaesaaesanesanas 156
TSECWSMESSAZEFIIR ...eiieiieeieeeeeeee ettt st sas e st esaaesaaesanesanes 158
HOW SeNd FIlE€S TO SEIVEI ..ottt s 159
HOW Send FileS TO ClENTES ..cuirieeieeee ettt s 160
HOW SENA Big FIlES ..ottt sttt st st st st st saa e sane e 161
APLBINANCE ..ot e e st st st s st 162
Binance Connect WebSOCKEET APcoueiiiiiriieierieeteeeeee e 169
Binance Subscribe WebSocket Channel ..o 170

BiNANCE GOt MATKEE DAt .ottt ettt e e e e aaaeaaeaesnasnnnes 171

SGCWEBSOCKETS

BiNance Private REST APL....oi ot s 172
BiNANCE Trade SPOL.....iiiiiiiiiieciestetee ettt st st st bbb e saaesaaesanes 173
Binance Private REQUESES TIME c....ciiiiiiiiieiieeiieeieeeteeeite sttt s s 175
API BINANCE FULUMES ...ttt st st st st s e s 176
API BINANCE FULUIES Trad@ ..ottt sttt s e 181
APL SOCKELIO ...ttt sb e s b bbbt e bt e e et ns 182
APTWRNAESAPP everveeriieniintinie st ste st st st e st e st st s tesatesaaesaaesssesssessaesssesasesasesssesasesssesasennnas 184
WHatSADD Create AP coveicieeieeieiieiiteesieesie et esie st e steesteesisesaeessaessaesasesasesasesssesasesssesssesnnes 188
WhatsApp Phone NUMDEr [Q......oiiiiiiieiicececeeteesese st 190
WRNALSADPD TOKEN ..ttt ettt ettt sae e saa e saa e sanesaaesanesaaesanesanas 191
WhatSAPP WEDNOOK ...c.viiiieieeee e 192
WHNAtSADD SECUILY ueiiiiieeieeieeieeteeie ettt ettt sttt st sae e saa e saa e sasesanesasesanesaaesasesanes 193
WhatSAPD SENA IMESSAEESeeiiiiiieieiieeteeit ettt ettt s saeesae e siaesanesaaesasesaaessaesasesanas 194
WhatsApp Send INteractive MESSAZES......ccvviriiriirienienieneenee st ste e snesaesaesaessesnnes 197
WhatsApp Send Template MeSSAgeS.....ccviiiriiriinienienieneesee st ae e 201
WhatsApp Receive Messages and Status NotificationsS.......cccccvcevvevienieniencieniienienne, 202
WHhatSAPP SENA FIlES ..oeiiiiiiieeeeeeeeeee ettt st s s s saa e s ae s aaesaaesnaes 204
WhatSAPP DOWNIOAd MEAI ..ccveeiiiiiiiiiiieiieicctestest ettt s sae s 206
APL T@IEEIAM c.eiiiieiieeteetese ettt sttt st st st st e st e st e st e st e sasesabesasesasesasesanas 207
Send Telegram Message With Inline BUttONS......cccvvivviiiiiiiiiinecnecccecceeene e 215
Send Telegram Message With BUtLONS........oociiviirieriiinieciececceeesie e 216
Send Telegram MesSage BOldoovovieriiniiniieiecieeiecece e s 217
Telegram Chat NOt foUNd @S BOT ...couiiiiiiiiiiiicieeecteeeee e s 218
Telegram SPONSOred MESSAEESccveireirieiriienieerieesteste e e seesitestesresaressessesaesasesanas 219
Send Telegram INVOICE MESSAEEcvcuiviiriiiieeieee ettt saeesaeesaaesbaesbeesanens 220
Telegram Get SUPErGroup MEMDEIScc.iiiiiiiniereereertesre st s sae e 221
Add TeIEEIAM PrOXY.ciiiiiisieiiesiiesiesiesiteste e st ste st st saestesiaesaaesasesasesasesssesasesssesssesnnes 222
REZISTEr TEIEEIAM USEI ..oiiiiiiiiiieeiestesteste sttt sttt st st st st saaesaaesaaesaaesanas 223
RTCMUILICONNECEION .ttt st sbe e ne e 224
WEDPUSH ..ottt b e 226
TSECWSAPISErVer_WebPUSK ...c..coiiiiiiciectctctestese sttt s 227

SGCWEBSOCKETS

TSECWEDPUSHN_CIIENT...iiiiiieeieeieeeeeee ettt st s s st s ae st satesanes 229
EXEENSIONS .t st et sttt s 230
PerMesSage-Deflate......iiiiiiieriereee e et 231
D flatE-FramI@ ...t 232
OAULNZ Lttt ettt ettt a e bbb bbbt e bt ettt ene 233
TSECHTTP_OAULNZ_CHENT c..eiiviiieeieeieeeereet ettt sttt s s s aesaae s 234
OAuth2 Client for Web AppPliCatioNScuovviiiiriiiieciecececece e 240
OAuth2 Client for Desktop APPliCAtiONS......cccvvciirieriieriieeiecieereereere e 241
TSECHTTP_OAULNZ_SEIVEL ..ceiiiiieieeteettettet ettt sttt st sttt st st s 242
OAULN2 Server EXaMPIE ...ttt sbe e saeesaeesbeesbeesanens 245
OAuUth2 Customize SigN-IN HTMLoociiiiiiiiniieiecieciecre e sie e sane s 249
OAULN2 Server ENAPOINTS.....ciiiiriiiieriesieeteste sttt sttt esreesteeste et esreesaeesaaessaesseesseesanens 250
OAULNZ2 REZISTET APPS wvvervieriieniieriesiesite st stestestestestesseesseesseesseesseesseesseesseesseesseesseesseens 251
OAUth2 Recover ACCESS TOKENSccuirieierierteie ettt 252
OAUth2 Server AUtNENTICAtION.......coirieereeeeeeee e 253
OAUth2 None AUthentiCate URLS........cocererierinieiesieeeesescetesie et 254
J N T ettt h e bbb bbbt et ettt et et eas 255
TSECHTTP_JWT _CHENT ..eiteiieeiecteeteeeee ettt sttt s st sat e saa e st e sanesaaesanesnnas 257
TSECHTTP _JWT _SBIVEN ettt ettt et e s e s s b e e s sabaeesnnee s 260
Webauthn JavasCript CHENT.......eiiieeeeeeeeere e s 262
STUN ettt ettt b st b e s bbbt e st et et oot e st e st e bt sb e e bt sbesbe st e st et e be b entenseneene 266
TSECSTUNUCEHENT ..ottt st e s e st e saeesae e saaesabesasesasesanesasesasesanas 267
STUN Client UDP RetranSmMiSSIONS.cccueririerierieieniesieniesieeieseeseeseesseesessesseessesneenenees 270
STUN Client Long Term CredentialS.........cccvvvieriiiiieniienieeiecicesecseesieesie e e e siee e 271
TSECSTUNSEIVEL ..ottt ettt e st e s st essabt e e sabeeesbaeessaseeesnnnens 272
STUN Server Long Term Credentials ... esieesieesieesieesanens 274
STUN Server AltEINAte SEIVENouivi ettt sa e s nees 275
TURN Lttt ettt et b e bt e bt e bt e bt s b e s b e sbe s b e sbe st e st et et et et e e e st entenes 276
TSECTURNUCHENT ...eiteeiecie ettt ettt s s e st e e saa e saaesasesanesanesanesasesasesanes 277
TURN Client AllOCate [P AAIESS.....coiiieririeienieeieseeee ettt e 281
TURN Client Create PermiSSIONSc..ceceverierierinieneneeeesie st st sne e 282

vii

SGCWEBSOCKETS

TURN Client Send INAICAtiONc.eevieririerierieiesieeereeeee sttt e 283
TURN Client CRannelS... .ottt sttt s 284
TSECTURNSEIVEL ..ttt ettt et e st e s st e e ssabte e ssbeesebbeesenbaeesnsneas 285
TURN Server Long Term CredentialS ...t sae e 288
TURN Server AllOCAtIONS.....ccuevuirieierieeieteeiteeste ettt sttt st sbe s ne e 289
DT =T 3 Lo 290
SIVEE LAt ittt ettt ettt et b e bbb b e beesbeenreen 290
CHENT CRAT. ittt ettt et ettt et e s be e bt e beesbeesbeesbeesbeesbeens 292
(@1 T= o | S OO OO OO RUPPTOPTUPPTUPIOPI 294
(@ 1T=] o 1oAY [1 I R 295
CHENT SOCKETIO .ttt ettt ettt be e bt sbe e sbeesbeesbeens 297
YT V=T g\ (o] o] 10] PP P PR PR OPPRPRN 298
SEIVELN SNAPSNOLS ..ttt ettt et e b e b e sbeesbe e bt e sbeesbeen 301
ClENT SNAPSNOTS....e ettt et be e b sbe e s b e sbeesbeens 302
UPIOAA Fl@ ettt st st sttt 303
Server AULNENTICAtION c..ciuiiieee e s 305
(RG] Lo [0 161 T [TR 306
SEIVEISENTEVENTS ..ttt st et et e e e sane e sae e e 308
SEIVEN WEDRTC ...ttt ettt ettt e sb e be e b e e sbeesbeesbeesbeens 309
SEIVEI APPRTC .ttt et ab e e s aa e e e e e e s e e sane e saneenee 310
Telegram CHENT ..ottt st st st st st st st st st saees 312
2] =T = o ol N 314
WEDSOCKELS. ...ttt sttt et be et b e 314

HTTP/2 oo 315

SGCWEBSOCKETS

T o =Y o 1Y 325
L BN S e ettt e e e et ee e et e —eee et ——eeetaaeeeta——aeeta——aaetaaaaetn.rartaaaaanaann 325
13 Le (=) 327

INTRODUCTION

Introduction

WebSockets represent a long-awaited evolution in client/server web technology. They allow a single long-lived TCP
socket connection to be established between the client and server, enabling bi-directional, full-duplex messages to
be distributed instantly with little overhead, resulting in a very low latency connection.

Both the WebSocket APl and native WebSocket support in browsers such as Google Chrome, Firefox, Opera, and
a prototype Silverlight-to-JavaScript bridge implementation for Internet Explorer mean there are now WebSocket li-
brary implementations in Objective-C, .NET, Ruby, Java, Node.js, ActionScript, and many other languages.

The Internet wasn't designed to be so dynamic. It was designed to be a collection of HyperText Markup Language
(HTML) pages, linked together to form a conceptual web of information. Over time, static resources increased in
number and richer elements such as images became part of the web fabric. Server technologies evolved to allow
dynamic server pages - pages whose content is generated in response to a request.

Soon the need for more dynamic web pages led to the availability of Dynamic HyperText Markup Language
(DHTML), all thanks to JavaScript (let's pretend VBScript never existed). In the years that followed, we saw cross-
frame communication in an attempt to avoid page reloads, followed by in-frame HTTP polling. Things started to get
interesting with the introduction of LiveConnect, then the forever frame technique, and finally, thanks to Microsoft,
we ended up with the XMLHttpRequest object and thus Asynchronous JavaScript and XML (AJAX). AJAX in turn
enabled XHR Long-Polling and XHR Streaming. But none of these provided a truly standardised, cross-browser so-
lution for real-time, bi-directional communication between a server and a client.

Finally, WebSockets are a standard for bi-directional, real-time communication between servers and clients. Initially
in web browsers, but ultimately between any server and any client. The standards-first approach means that we as
developers can finally create functionality that works consistently across multiple platforms. Connection limitations
are no longer an issue as WebSockets represent a single TCP socket connection. Cross-domain communication
has been considered from day one and is handled within the connection handshake. This means that services like
Pusher can easily use them to provide a massively scalable real-time platform that can be used by any website,
web, desktop or mobile application.

WebSockets don't make AJAX obsolete, but they do replace Comet (HTTP Long-polling/HTTP Streaming) as the
solution of choice for true real-time functionality. AJAX should still be used for short-lived web service calls, and
when we eventually see a good uptake in CORS supporting web services, it will become even more useful. Web-
Sockets should now be the standard for real-time functionality, as they provide low-latency, bi-directional communi-
cation over a single connection. Even if a web browser doesn't natively support the WebSocket object, there are
polyfill fallback options that almost guarantee that any web browser can actually make a WebSocket connection.

sgcWebSockets is a complete package providing access to the WebSockets protocol, allowing you to create Web-
Socket servers and clients for .NET applications.

Fully functional multithreaded WebSocket server according to RFC 6455.

Supports Windows 32 / Windows 64

Supports MacOS 64.

Supports Linux64.

Assemblies for NET FRAMEWORK (2.0+), .NET STANDARD (1.6+), .NET CORE (1.0+).

» Supports Chrome, Firefox, Safari, Opera and Internet Explorer (including iPhone, iPad and iPod)
» Multiple Threads Support. Indy Servers support IOCP or default Indy one thread perconnection model.
» Supports Message Compression using PerMessage Deflate extension RFC 7692.

» Supports Text and Binary Messages.

» Supports Server and Client Authentication.

Server component providing WebSocket and HTTP connections through the same port.

FallBack support through Adobe Flash for old Web Browsers like Internet Explorer from 6+.
Supports Server-Sent Events (Push Notifications) over HTTP Protocol.

WatchDog and HeartBeat built-in support.

Supports client Socket.lO connections.

Supports Telegram Client.

» Binance Stock and Futures are supported (WebSocket, User Stream and REST APIs).

+ STUN and TURN protocols are fully spported (client and Server components).

+ Client WebSocket supports connections through HTTP Proxy Servers and SOCKS Proxy Servers.

INTRODUCTION

Events Available: OnConnect, OnDisconnect, OnMessage, OnError, OnHandshake

Built-in Javascript libraries to support browser clients.

Easy to setup

Javascript Events for full control

SSL/TLS Support for Server / Client Components (OpenSSL libraries required). OpenSSL 1.1.1 and 3.0.0
libraries are supported. Client supports SChannel for Windows.

Find below a list of the components included in sgcWebSockets Library.

’ sgcWebSockets
o TsgcWebSocketClient: WebSocket Client based on Indy Library.

o TsgcWebSocketServer: WebSocket Server based on Indy Library
o TsgcWebSocketHTTPServer: WebSocket + HTTP Server based on Indy Library.
o TsgcWebSocketServer_HTTPAPI: Fast Performance WebSocket + HTTP Server based on
HTTP.SYS Microsoft HTTP API.
e sgcWebSocket APIs
o TsgcWSAPI_Binance: Binance Spot Client, supports WebSocket + REST APls.
o TsgcWSAPI_Binance_Futures: Binance Futures Client, supports WebSocket + REST APls.
o TsgcWSAPI_SocketlO: Socket.lO Client.
e sgcWebSocket Libs
o TsgcTDLib_Telegram: Telegram API Client.
e sgcWebSocket Protocols
o TsgcWSPClient_MQTT: MQTT (3.1.1 and 5.0) Client. Supports WebSocket and Plain TCP Connec-
tions.
TsgcWSPServer_AppRTC: WebRTC Server based on AppRTC Google Project.
TsgcWSPServer_WebRTC: WebRTC Server Protocol.
TsgcWSPClient_Files: WebSocket File Transfer Client Protocol.

o

o

)

o

TsgcWSPServer_Files: WebSocket File Transfer Server Protocol.
e sgcWebSockets HTTP
o TsgcHTTP_JWT_Client: JWT (JSON WEB TOKEN) Client.
o TsgcHTTP_JWT_Server: JWT (JSON WEB TOKEN) Server.
o TsgcHTTP_OAuth2_Client: OAuth 2.0 Client.
o TsgcHTTP_OAuth2_Server: OAuth 2.0 Server.
6 sgcWebSockets P2P
o TsgcSTUNCIient: STUN Client.
o TsgcSTUNServer: STUN Server.
o TsgcTURNCIient: STUN / TURN Client.
o TsgcTURNServer: STUN / TURN Server.
a sgcWebSockets Al

OVERVIEW

Versions Support

.NET Supported Versions

.NET Framework 2.0+

.NET Standard 1.6+

.NET Core 1.0+

VSIX Package requires .NET Framework 4.5
Supports Windows 32 / Windows 64 / OSX64

OVERVIEW

Installation

Nuget Package

You can install sgcWebSockets .NET Community edition from the following nuget url:
https://www.nuget.org/packages/esegece.sgcWebSockets/
Check the following videos which show how install nuget package and use sgcWebSockets components

Visual Studio Windows
Visual Studio Mac OS

Assembly Reference

You can work with sgcWebSockets .NET package without using nuget package, just open your project and Add
Reference from contextual menu over project and select in Assemblies Folder the assembly you want to add as
reference.
Available Assemblies:
* .NET Framework 2.0
.NET Framework 3.5
.NET Framework 4.0
.NET Framework 4.5
.NET Framework 5.0
.NET 6.0
.NET 7.0
.NET 8.0
.NET Standard 1.6
.NET Standard 2.0
.NET Core 1.1
.NET Core 2.0
.NET Core 3.0

Remember to copy sgcWebSockets.dll (under Windows) or libsgcWebSockets.dylib (under OSX64)

https://www.nuget.org/packages/esegece.sgcWebSockets/
https://www.esegece.com/websockets/videos/net/quickstart-net/205-sgcwebsockets-net-nuget/file
https://www.esegece.com/websockets/videos/net/quickstart-net/404-sgcwebsockets-net-osx64-nuget/file

QUICKSTART

QuickStart

WebSockets Components

Creating a new WebSocket Server or WebSocket client is very simple, just create a new instance of the class, con-
figure the Host / Port and set the property Active = true to start the process.

QuickStart WebSockets

HTTP Components

The HTTP/2 protocol allows you to create much faster HTTP Servers / Clients than using HTTP/1 protocol. The
HTTP/2 Server is included in the WebSocket server while the HTTP/2 client is a dedicated components which im-
plements the HTTP/2 protocol.

QuickStart HTTP

Threading Flow

sgcWebSockets components are threaded, which means that connections runs in secondary threads. By de-
fault, the main events are dispatched on the main thread, this is useful when the number of events to dispatch is
low, but for better performance you can configure the components where the events are dispatched in the con-
text of connection thread. Read the following article which explains how configure threading flow:

How Configure NotifyEvents

How Build Applications

Build Applications with sgcWebSockets library is very easy, just follow the next tips which will helps to successfully
build your application.

Build

OpenSSL

When your application requires secure connections, usually openSSL libraries are required to encrypt communi-
cations, follow the next steps to configure successfully your application with openSSL libraries.

Configure OpenSSL

ASP.NET

You can use sgcWebSockets in your ASP.NET, only keep in mind that sgcWebSockets requires some unmanaged
dll (like sgcWebSockets.dll) and by default your ASP.NET projects won't find these libraries. In order to set the path
of your bin project, set the PATH with a code like this in your Global.asax file

QUICKSTART

protected void Application Start()
{

var path = string.Concat (Environment.GetEnvironmentVariable ("PATH"), ";",
AppDomain.CurrentDomain.RelativeSearchPath) ;
Environment.SetEnvironmentVariable ("PATH", path,

EnvironmentVariableTarget.Process);

}

QUICKSTART

QuickStart | WebSockets

Let's start with a basic example where we need to create a Server WebSocket and 2 client WebSocket types: Ap-
plication Client and Web Browser Client.

WebSocket Server

1. Create a new Window Forms Application
2. Drop a TsgcWebSocketServer onto a Form.
3. On Events Tab, Double click OnMessage Event, and type following code:

private void OnMessage(TsgcWSConnection Connection, const string Text)

{

MessageBox.Show("Message Received From Client: " + Text);

}

4. Drop a Button onto the Form, Double Click and type this code:

TsgcWebSocketServerl.Active = True;

WebSocket Client

1. Create a new Window Forms Application
2. Drop a TsgcWebSocketClient onto a Form and configure Host and Port Properties to connect to Server.
3. Drop a TButton in a Form, Double Click and type this code:

TsgcWebSocketClientl.Active = true;

4. Drop a Button onto the Form, Double Click and type this code:

TsgcwWebSocketClientl.WriteData("Hello Server From VCL Client");

Web Browser Client

1. Create a new HTML file

2. Open file with a text editor and copy following code:

<html>

<head>

<script type="text/javascript" src="http://host:port/sgcwebSockets.js"></script>
</head>

<body>

0pen
Send
</body>

</html>

You need to replace host and port in this file for your custom Host and Port!!

3. Save File and that's all, you have configured a basic WebSocket Web Browser Client.

QUICKSTART

How To Use

1. Start Server Application and press button to start WebSocket Server to listen new connections.

2. Start Client Application and press button1 to connect to server and press button2 to send a message. On Server
Side, you will see a message with text sent by Client.

3. Open then HTML file with your Web Browser (Chrome, Firefox, Safari or Internet Explorer 10+), press Open to
open a connection and press send, to send a message to the server. On Server Side, you will see a message with
a text sent by Web Browser Client.

ASP.NET

You can use sgcWebSockets in your ASP.NET, only keep in mind that sgcWebSockets requires some unmanaged
dll (like sgcWebSockets.dll) and by default your ASP.NET projects won't find these libraries. In order to set the path
of your bin project, set the PATH with a code like this in your Global.asax file

protected void Application Start()
{

var path = string.Concat (Environment.GetEnvironmentVariable ("PATH"), ";",
AppDomain.CurrentDomain.RelativeSearchPath);
Environment.SetEnvironmentVariable ("PATH", path,

EnvironmentVariableTarget.Process) ;

}

QUICKSTART

QuickStart | Threading Flow

sgcWebSockets components are threaded, for example, TsgcWebSocketHTTPServer (based on Indy library) cre-
ates one thread for every connection while TsgcWebSocketServer_HTTPAPI (based on Microsoft HTTP.SYS)
runs a pool of threads and the connections are handled by this pool of threads (max of 64 threads) and TsgcWeb-
SocketClient runs his own thread to run asynchronously the responses from WebSocket server.

By default, there is a property called NotifyEvents, which has the value neAsynchronous. This means that when a
WebSocket client receives a message, this message is queued and is dispatched on the main thread by OS later.
This runs well for clients that doesn't receive a lot of messages and for easy of use, because doesn't require to syn-
chronize with the main thread when you want for example update a control of your form.

But when the server / client must process several messages in short period of time, it's better change this threading
flow to another where the events are dispatched in the context of connection thread. To do this, just set Noti-
fyEvents property to neNoSync, this way, when for example a client receives a message from server, this message
will be dispatched in the context of a secondary thread, so if you need to update a control of your form, first syn-
chronize with the main thread and the update the form control (because form controls are not thread safe). The
same applies if you want access to a shared object, you need to implement your own synchronization methods.

Threading Flow Easy Mode (NotifyEvents = neAsynchronous) and Low Performance

This is the threading flow by default and it's usually used on demo samples. Select this mode if you don't expect to
handle several messages per seconds and you need update Form Controls or access shared objects.

NotifyEvents = neAsynchronous

Threading Flow Best Performance (NotifyEvents = neNoSync)

Set this threading flow for server components and for clients which needs a high performance because you expect
will require to handle several messages. Using this configuration, the events are dispatched in the context of con-
nection thread, so in order to update a Form control, first synchronize with the main thread.

NotifyEvents = neNoSync

QUICKSTART

QuickStart | Build

Build an application with sgcWebSockets library is very easy, only keep in mind if your components require
openSSL libraries or not. If your applications require secure connections, openSSL libraries must be deployed (ex-
cept if you use SChannel for windows on Client Components).

For windows applications, is enough to deploy the openSSL libraries in the same folder where application is lo-
cated.

QUICKSTART

OpenSSL

OpenSSL is a software library for applications that secure communications over computer networks against eaves-
dropping or need to identify the party at the other end. It is widely used by Internet servers, including the majority of
HTTPS websites.

This library is required by components based on Indy Library when a secure connection is needed. If your applica-
tion requires OpenSSL, you must have necessary files in your file system before deploying your application:

Currently, sgcWebSockets supports: 1.0.2, 1.1 and 3.0 to 3.3 openSSL versions.

Linking

Windows (32- gt:]((ajayBZ.dll libcrypto-1_1.dlland libcrypto-3.dll and Dynamic
bit and 64-bit) ssleay32.dll libssl-1_1.dll libssl-3.dlI

libcrypto.dylib, = libcrypto.1.1.dylib, libcrypto.3.dylib, .
OSX libssl.dylib libssl.1.1.dylib libss!.3.dylib Dynamic
1065 Dt libcrypto.a libcrypto.a and
(32-bit and and Iibsél a libssl.a ’ libcrypto.a and libssl.a Static
64-bit) ' '
. . libcrypto.dylib, libcrypto.1.1.dylib, libcrypto.3.dylib, .
I0S Simulator cdidviib- libssl.1.1.dylib libss!.3.dylib Dynamic
Android De- libcrypto.so, . . . : .
em libssl.so libcrypto.so, libssl.so libcrypto.so, libssl.so Dynamic

Find below how configure openSSL libraries for every Personality:

* Windows
+ OSX

openSSL Configurations

sgcWebSockets Indy based components allows you to configure some openSSL properties. Access to the following
properties:

+ Server Components: SSLOptions.OpenSSL_Options.
» Client Components: TLSOptions.OpenSSL_Options.

API Version

Standard Indy library only allows loading 1.0.2 OpenSSL libraries; these libraries have been deprecated and the
latest OpenSSL releases use the 1.1.1 API.

sgcWebSockets Enterprise allows you to load 1.1.1 openSSL libraries, you can configure in this property which
openSSL API version will be loaded. Only one API version can be loaded by process (so you can't mix openSSL
1.0.2 and 1.1.1 libraries in the same application).

LibPath

This property allows you to set the location of openSSL libraries. This is useful for Android or OSX projects, where
the location of the openSSL libraries must be set.
Accepts the following values:

http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#32-bit_and_64-bit_Windows
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#iOS_Simulator.2C_OS_X_and_Android
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#32-bit_and_64-bit_iOS_Device
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#iOS_Simulator.2C_OS_X_and_Android
http://docwiki.embarcadero.com/RADStudio/Rio/en/OpenSSL#iOS_Simulator.2C_OS_X_and_Android

QUICKSTART

+ oslpNone: this value doesn't set any library path value (is the value by default).
+ oslpDefaultFolder: this value sets the default folder of openSSL libraries. This path is different for every
personality (windows, 0sxX...).

Load Additional OpenSSL Functions

Use a Callback to load additional openssl functions not defined by default, you can read more OpenSSL Load Addi-
tional Functions.

Ciphers

If you want to provide support for TLS 1.2 and 1.3 on your server and using the best security and performance, use
the following configuration:

SSLOptions.Version :=tls1_3;

SSLOptions.OpenSSL_Options.VersionMin := tls1_2;

SSLOptions.OpenSSL_Options.APIVersion := oslAPI_3_0;

And set the following cipher list.
AEAD-AES128-GCM-SHA256:AEAD-AES256-GCM-SHA384:AEAD-CHACHA20-POLY 1305-SHA256:ECDHE-
ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-CHACHA20-POLY 1305:ECDHE-RSA-AES128-GCM-

SHA256:ECDHE-RSA-CHACHA20-POLY 1305:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-
GCM-SHA384

Self-Signed Certificates

You can use self-signed certificates for testing purposes, you only need to execute the following command to create
a self-signed certificate

openssl req -newkey rsa:2048 -new -nodes -x509 -days 3650 -keyout key.pem -out cert.pem

It will create 2 files: cert.pem (certificate) and key.pem (private key). You can combine both files in a single one.
Just create a new file and copy the content of both files on the new file. So you will have an structure like this:

Common Errors

SSL_GET_RECORD: wrong version number

This error means that the server and the client are using a different version of SSL/TLS protocol, to fix it, try to set
the correct version in Server and/or client component

Server.SSLOptions.Version
Client.TLSOptions.Version

SSL3_GET_RECORD: decryption failed or bad record mac

QUICKSTART

Usually these error is raised when:

1. Check that you are using the latest OpenSSL version, if is too old, update to latest supported.

2. If this error appears randomly, usually is because more than one thread is accessing to the OpenSSL connec-
tion. You can try to set NotifyEvents = neNoSync which means that the events: OnConnect, OnDisconnect, OnMes-
sage... will be fired in the context of thread connection, this avoids some synchronization problems and provides
better performance. As a down side, if for example you are updating a visual control in a form when you receive a
message, you must implement your own synchronization methods because visual controls are not thread-safe.

QUICKSTART

OpenSSL | Windows

There is one version for 32 bits and another for 64 bits. You must copy these libraries in the same folder where is
your application or in your system path.

If your Operating System is Windows 32 bits, just copy in System32 folder.

If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys-
Wow64 folder.

API 1.0

Requires the following libraries:

* libeay32.dll
+ ssleay32.dll

If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys-
Wow64 folder.

You can download latest libraries from your account (libraries don't have external dependencies and are digitally
signed).

API 1.1

Requires the following libraries:
Windows 32

* libcrypto-1_1.dll
* libssl-1_1.dll

Windows 64

* libcrypto-1_1-x64.dll
* libssl-1_1-x64.dll

If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys-
Wow64 folder.

You can download latest libraries from your account (libraries don't have external dependencies and are digitally
signed).

API 3.*

Requires the following libraries:
Windows 32

* libcrypto-3.dll
* libssl-3.dll

Windows 64

* libcrypto-3-x64.dll
* libssl-3-x64.dll

QUICKSTART

If your Operating System is Windows 32 bits, just copy in System32 folder.
If your Operating System is Windows 64 bits, copy 64 bits version in System32 folder and 32 bits version in Sys-
Wow64 folder.

You can download latest libraries from your account (libraries don't have external dependencies and are digitally
signed).

If you're using a p12 certificate, requires to deploy the legacy.dll library. Read more about OpenSSL p12 Certifi-
cates.

QUICKSTART

OpenSSL | OSX

Newer versions of OSX doesn't include openssl libraries or are too old, so you must deploy with your application.
Deploy these libraries using following steps:

Open Project/Deployment in your project.

Add required libraries.

Set RemotePath ='Contents\Macos\".

Configure the openSSL LibPath to default folder:
* Client. TLSOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.
» Server.SSLOptions.OpenSSL_Options.LibPath = oslpDefaultFolder.

AP11.0

Requires the following libraries:

* libcrypto.dylib
+ libssl.dylib

You can download latest libraries from your account.

API 1.1

Requires the following libraries:

* libcrypto.1.1.dylib
* libssl.1.1.dylib

There is one version for 32 bits and another for 64 bits. You must copy these libraries in the same folder where is

your application.
You can download latest libraries from your account.

API 3.0

Requires the following libraries:

* libcrypto.3.dylib
* libssl.3.dylib

Only 64bits version are provided. You must copy these libraries in the same folder where is your application
You can download latest libraries from your account.

If you include the openSSL libraries in a OSX application, after the application has been Notarized, the libraries will
be signed, you can check this using the following command:

codesign -dv --verbose=4 libcrypto.1.1.dylib

Check the following video which shows how Build a MacOSX64 Application with openSSL libraries

https://www.esegece.com/websockets/videos/delphi/quickstart/275-build-macosx64-application/file

https://www.esegece.com/websockets/videos/delphi/quickstart/275-build-macosx64-application/file

QUICKSTART

Errors

Clients should not load the unversioned libcrypto dylib as it does not have a stable ABI.

On MacOS Monterey+, you can get this error trying to load the openSSL libraries, the error happens when tries to
load first the openSSL libraries without version (libcrypto.dylib for example).

To fix this error set in the property OpenSSL_Options.UnixSymLinks the value oslsSymLinksDontLoad. This
avoids the loading of the openSSL libraries without version.

QUICKSTART

OpenSSL | Own CA Certificates

Github post

To create a certificate signed by your own CA and that can be trusted by Web Browsers (like Chrome) after adding
CA certificate to local machine.

1. Prepare the configuration files for creating certificates without prompts

CA.cnf

[req]

prompt = no

distinguished_name = req_distinguished_name
[req_distinguished_name]

C = Us

ST = Localzone

L = localhost

0 = Certificate Authority Local Center

OU = Develop

CN = develop.localhost.localdomain
emailAddress = root@localhost.localdomain

localhost.cnf

[req]

default_bits = 2048

distinguished_name = req_distinguished_name
reg_extensions = reqg_ext

x509_extensions = v3_req

prompt = no

[req_distinguished_name]

countryName = US

stateOrProvinceName = Localzone
localityName = Localhost

organizationName = Certificate signed by my CA
commonName = localhost.localdomain
[req_ext]

subjectAltName = @alt_names

[v3_req]

subjectAltName = @alt_names

[alt_names]

IP.1 = 127.0.0.1

IP.2 = 127.0.0.2

IP.3 = 127.0.0.3

IP.4 = 192.168.0.1

IP.5 = 192.168.0.2

IP.6 = 192.168.0.3

DNS.1 = localhost

DNS.2 = localhost.localdomain
DNS.3 = dev.local

2. Generate a CA private key and Certificate (valid for 5 years)

openssl req -nodes -new -x509 -keyout CA_key.pem -out CA_cert.pem -days 1825 -config CA.cnf

3. Generate web server secret key and CSR

openssl req -sha256 -nodes -newkey rsa:2048 -keyout localhost_key.pem -out localhost.csr -config localhost.cnf

4. Create certificate and sign it by own certificate authority (valid 1 year)

https://stackoverflow.com/questions/66558788/how-to-create-a-self-signed-or-signed-by-own-ca-ssl-certificate-for-ip-address

QUICKSTART

openssl x509 -req -days 398 -in localhost.csr -CA CA_cert.pem -CAkey CA_key.pem -CAcreateserial -out localhost_ce

5. Output files will be:

» cA.cnf — OpenSSL CA config file. May be deleted after certificate creation process.

» cA_cert.pem — [Certificate Authority] certificate. This certificate must be added to the browser local authority
storage to make trust all certificates that created with using this CA.

* cA_cert.srl — Random serial number. May be deleted after certificate creation process.

* cA_key.pem — Must be used when creating new [localhost] certificate. May be deleted after certificate cre-
ation process (if you do not plan reuse it and CA_cert.pem).

* localhost.cnf — OpenSSL SSL certificate config file. May be deleted after certificate creation process.

* localhost.csr — Certificate Signing Request. May be deleted after certificate creation process.

* localhost_cert.pem — SSL certificate. Must be configured in SSLOptions.CertFile property of the serv-
er.

* localhost_key.pem — Secret key. Must be installed at SSLOptions.KeyFile proeprty of the server.

QUICKSTART

OpenSSL | P12 Certificates

OpenSSL 3.0 moved several deprecated or insecure algorithms into an internal library module called legacy
provider. It is not loaded by default, so apps (or their language runtimes) that use OpenSSL for cryptographic oper-
ations cannot use such algorithms when loading certificates, creating message digests ...

Algorithms in the legacy provider include MD2, MD4, MDC2, RMD160, CAST5, BF (Blowfish), IDEA, SEED, RC2,
RC4, RC5 and DES (but not 3DES).

For security reasons, it is strongly recommended to retire the use of these legacy algorithms.

If your application utilizes client certificates stored in a file encrypted with a legacy cipher such as RC2-40-CBC, it is
possible to "modernize" the certificate file by re-encrypting it using the openssl program.

For example, if you have a client.p12 (or client.pfx) certificate file on your local computer:

$ openssl pkcsl2 -legacy -in client.pl2 -nodes -out cert-decrypted.tmp
(enter passphrases if prompted)

S openssl pkcsl2 -in cert-decrypted.tmp -export -out client-new.pl2
(enter passphrases if prompted)

$ rm cert-decrypted.tmp
The exported client-new.p12 certificate file now contains the same keys, but encrypted using AES-256-CBC.

Check below the configuration for sgcWebSockets and sgcindy packages:

sgcWebSockets

» Set the property OpenSSL_Options.Legacy.Enabled to True.
+ Set the location of the Legacy library.
- OpenSSL_Options.Legacy.LibPath: here you can configure where is located the legacy library
= oslpNone: this is the default, the legacy library should be in the same folder where is the bina-
ry or in a known path.
= oslpDefaultFolder: sets automatically the legacy library path where the libraries should be lo-
cated for all IDE personalities.
= oslpCustomFolder: if this is the option selected, define the full path in the property LibPath-
Custom.
- OpenSSL_Options.Legacy.LibPathCustom: when LibPath = oslpCustomFolder define here the
full path where are located the legacy library.

sgcindy

+ Set the property SSLOptions.Legacy to True.
» Before start the server or client, set the path where the legacy.dll library it's located. Use the
function IdOpenSSLSetOSSLPath and pass the path as argument.

QUICKSTART

OpenSSL | Verify Certificate

When using OpenSSL and setting the option Verify Certificate, the following error may appear:

Error connecting with SSL.error:80000002:system library::No such file or directory.

If you handle the event OnVerifyPeer and the parameter Error has a value of 20, the error means:

X509 V_ERR UNABLE TO GET ISSUER CERT LOCALLY

The main reason for this error is one or more certificates presented by the remote server are not present in the cer-
tificate store of your application. To resolve this, you can use the property RootCertFile and set the path where the

CAfile is located. If you don't have any, you can download from mozilla for example:

https://curl.haxx.se/docs/caextract.html

After setting the RootCertFile, the previous error should be gone.

https://curl.haxx.se/docs/caextract.html

TOPICS

WebSocket Events

WebSocket connections have the following events:

OnConnect
The event raised when a new connection is established.

OnDisconnect
The event raised when a connection is closed.

OnError
The event raised when a connection has any error.

OnMessage
The event raised when a new text message is received.

OnBinary
The event raised when a new binary message is received.

By default, sgcWebSockets uses an asynchronous mechanism to raise these events, when any of these events is
raised internally, it queues this message and is dispatched by the operating system when is allowed. This behav-
iour can be modified using a property called NotifyEvents, by default neAsynchronous is selected, if neNoSync
is checked then events will be raised without synchronizing with the main thread (if you need to update any VCL
control or access to shared resources, then you will need to implement your own synchronizing method).

neNoSync is recommended when:
1. You need to handle a lot of messages on a very short period of time.

2. Your project is built for command line (if you don't set neNoSync, you won't get any event).
3. Your project is a library.

If no, then you can set default property to neAsynchronous.

TOPICS

WebSocket Parameters Connection

Supported by

TsgcWebSocketClient
Java script

Sometimes is useful to pass parameters from client to server when a new WebSocket the connection is estab-
lished. If you need to pass some parameters to the server, you can use the following property:

Options / Parameters

By default, is set to '/, if you need to pass a parameter like id=1, you can set this property to '/?id=1'

On Server Side, you can handle client parameters using the following parameter:

public void WSServerConnect(TsgcwWSConnection Connection)
if (Connection.URL == "/?id=1")

HandleThisParameter;
}
}

Using Javascript, you can pass parameters using connection url, example:

<script src="http://localhost/sgcWebSockets.js" type="text/javascript"></script>
<script type="text/javascript">var socket = new sgcWebSocket('ws://localhost/?id=1");</script>

TOPICS

Using inside a DLL

If you need to work with Dynamic Link Libraries (DLL) and sgcWebSockets (or console applications), NotifyEvents
property needs to be set to neNoSync.

TOPICS

WebBrowser Test

TsgcWebSocketServer implements a built-in Web page where you can test WebSocket Server connection with your
favourite Web Browser.

To access to this Test Page, you need to type this URL:
http://host:port/sgcWebSockets.html
Example: if you have configured your WebSocket Server on IP 127.0.0.1 and uses port 80, then you need to type:
http://127.0.0.1:80/sgcWebSockets.html
In this page, you can test the following WebSocket methods:
Open
Close

Status
Send

To disable WebBrowser HTML Test pages, just set in TsgcWebSocketServer.Options.HTMLFiles = false;

TOPICS

Authentication

Supported by
TsgcWebSocketServer

TsgcWebSocketHTTPServer
TsgcWebSocketClient

Java script (*only URL Authentication is supported)
WebSockets Specification doesn't have any authentication method and Web browser implementations don't allow
sending custom headers on new WebSocket connections.
To enable this feature you need to access to the following property:

Authentication/ Enabled

sgcWebSockets implements 3 different types of WebSocket authentication:
Session: client needs to do an HTTP GET passing username and password, and if authenticated, server re-
sponse a Session ID. With this Session ID, client open WebSocket connection passing as a parameter. You
can use a normal HTTP request to get a session id using and passing user and password as parameters
http://host:port/sgc/req/auth/session/:user/:password
example: (user=admin, password=1234) --> http://localhost/sgc/req/auth/session/admin/1234

This returns a token that is used to connect to server using WebSocket connections:

ws://localhost/sgc/auth/session/:token

URL.: client open WebSocket connection passing username and password as a parameter.
ws://host:port/sgc/auth/url/username/password
example: (user=admin, password=1234) --> http://localhost/sgc/auth/url/admin/1234
Basic: implements Basic Access Authentication, only applies to VCL Websockets (Server and Client) and

HTTP Requests (client Web Browsers don't implement this type of authentication). When a client tries to
connect, it sends a header using AUTH BASIC specification.

You can define a list of Authenticated users, using Authentication/ AuthUsers property. You need to define every
item following this schema: user=password. Example:

admin=admin
user=1234

There is an event called OnAuthentication where you can handle authentication if the user is not in AuthUsers list,
client doesn't send an authorization request... You can check User and Password params and if correct, then set
Authenticated variable to True. example:

private void OnAuthenticationEvent(TsgcWSConnection Connection, string User, string Password, ref bool Authentice

if ((User == "user") && (Password == "1234"))

TOPICS

Authenticated = true;

}
}

TOPICS

Secure Connections

Supported by
TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient
Web Browsers
SSL support is based on Indy implementation, so you need to deploy openssl libraries in order to use this feature.

TsgcWebSocketClient supports Microsoft SChannel, so there is no need to deploy openssl libraries for windows 32
and 64 bits if SChannel option is selected in WebSocket Client.

Server Side
To enable this feature, you need to enable the following property:
SSL/ Enable

There are other properties that you need to define:

SSLOptions/ CertFile/ KeyFile/ RootCertFile: you need a certificate in .PEM format in order to encrypt
websocket communications.

SSLOptions/ Password: this is optional and only needed if the certificate has a password.

SSLOptions/ Port: port used on SSL connections.

Client Side
To enable this feature, you need to enable the following property:

TLS/ Enable

OpenSSL

By default, client and server components based on Indy make use of openSSL libraries when connect to secure
websocket servers.

Indy only supports 1.0.2 openssl APl so API 1.1 is not supported. If you compile sgcWebSockets with our custom
Indy library you can make use of APl 1.1 and select TLS 1.3 version. Just select in OpenSSL_Options properties
which openSSL API would you use:

» oslAPI_1_0: it's default indy API, you can use standard Indy package with openssl 1.0.2 libraries.
» oslAPI_1_1: only select if you are compiling sgcWebSockets with our custom Indy library (Enterprise Edi-
tion). Will use openssl 1.1.1 libraries.
» oslAPI_3_0: only select if you are compiling sgcWebSockets with our custom Indy library (Enterprise Edi-
tion). Will use openssl 3.0.0 libraries.
+ ECDHE: allows you to enable ECDHE for TLS 1.2 (more secure connections).

Microsoft SChannel
From sgcWebSockets 4.2.6 you can use SChannel instead of openssl (only for windows from Windows 7+). This

means there is no need to deploy openssl libraries. TLS 1.0 is supported from windows 7 but if you need more
modern implementations like TLS 1.2 in Windows 7 you must enable TLS 1.1 and TLS 1.2 in Windows Registry.

TOPICS

HeartBeat

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketServer_ HTTPAPI
TsgcWebSocketClient

On Server components, automatically sends a ping to all active WebSocket connections every x seconds.
On Client components, automatically sends a ping to the server every x seconds.
HeartBeat has the following properties:

+ Enabled: if true, sends a ping
* Interval: is the value in seconds when a ping will be sent. Example: if value is 10, a ping will be sent every
10 seconds
» Timeout: is the time will wait a response from server. Example: if value is 30, means will wait 30 seconds to
receive a response before close connection.
» HeartBeatType: allows customizing how the HeartBeat works
o hbtAlways: sends a ping every x seconds defined in the Interval.
> hbtOnlylfNoMsgRcvinterval: sends a ping every x seconds only if no messages has been received
during the latest x seconds defined in the Interval property.

Customize HeartBeat
Client and server components allow customization of HeartBeat to send custom pings and check that the connec-
tion is still alive. The event OnBeforeHeartBeat is built exactly for that; it allows you to send a custom message

and/or not send the standard ping.

Example: send a message text as a ping every 30 seconds.

void OnBeforeHeartBeat(TObject Sender; const TsgcWSConnection Connection; ref bool Handled)

Connection.WriteData("ping");
Handled = true;

}

TOPICS

WatchDog

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketServer_ HTTPAPI
TsgcWebSocketClient

Server

On Server components, automatically restart server after unexpected shutdown. To check if server is active every
60 seconds, just set the following properties:

WatchDog.Enabled = true;
WatchDog.Interval = 60;
WatchDog.Attempts = 0;

WatchDog.Monitor allows you to verify if new clients can connect to the server. This is done by an internal client
that tries to open a WebSocket connection to the server; if it fails, it restarts the server. To monitor whether clients
can connect to the server with a time-out of 10 seconds, set the following properties:

WatchDog.Enabled = true;
WatchDog.Interval = 60;
WatchDog.Attempts 0;
WatchDog.Monitor.Enabled true;
WatchDog.Monitor.TimeOut = 10;

Client

On Client components, automatically reconnect to server after unexpected disconnection. To reconnect after a dis-
connection every 10 seconds, just set the following properties:

WatchDog.Enabled = true;
WatchDog.Interval = 10;
WatchDog.Attempts = 0;

TOPICS

Logs

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

This is a useful feature that allows debugging WebSocket connections, to enable this, you need to access to the
following property:

LogFile/ Enabled

Once enabled, every time a new connection is established it will be logged in a text file. On Server component, if
the file it's not created it will be created but with you can't access until the server is closed, if you want to open log
file while the server is active, log file needs to be created before start server.

Example:

127.0.0.1:49854 Stat Connected.

127.0.0.1:49854 Recv 09/11/2013 11:17:03: GET / HTTP/1.1
Upgrade: websocket

Connection: Upgrade

Host: 127.0.0.1:5414

Origin: http://127.0.0.1:5414

Pragma: no-cache

Cache-Control: no-cache

Sec-WebSocket-Key: 1n5981dHs9SdRfxUK8u4Vw==
Sec-WebSocket-Version: 13

Sec-WebSocket-Extensions: x-webkit-deflate-frame

127.0.0.1:49854 Sent 09/11/2013 11:17:03: HTTP/1.1 101 Switching Protocols
Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: gDuzFRzwHBc18P1CfinlvKviBJc=

7.0.0.1:49854 Stat Disconnected.
.0.0.0:0 Stat Disconnected.

WebSocket Messages

WebSocket frames can be masked, which means that the message logged can not be read.
When the property LogFile.UnMaskFrames = True (by default it's true)

» Messages sent by WebSocket Client are saved as unmasked.
» Messages received by WebSocket Server are saved masked and unmasked (the reason is that when the
socket reads the buffer, it doesn't know if the protocol of the message, so it saves both).

TOPICS

HTTP

Supported by

TsgcWebSocketHTTPServer

TsgcWebSocketHTTPServer is a component that allows you to handle WebSocket and HTTP connections using
the same port. It is very useful when you need to set up a server where only the HTTP port is enabled (usually
port 80). This component supports all TsgcWebSocketServer features and allows you to serve HTML pages.

You can serve HTML pages statically, using DocumentRoot property, example: if you save test.html in directory
"C:\inetpub\wwwroot”, and you set DocumentRoot to "C:\inetpub\wwwroot". If a client tries to access to test.html, it
will be served automatically, example:

http://localhost/test.html

Or you can serve HTML or other resources dynamically by code, to do this, there is an event called OnCom-
mandGet that is fired every time a client requests a new HTML page, image, javascript file... Basically, you need to
check which document is requesting client (using ARequestinfo.Document) and send a response to client (using
AResponselnfo.ContentText where you send response content, AResponse.ContentType which is the type of re-
sponse and a AResponselnfo.ResponseNo with a number of response code, usually is 200), example:

private void OnCommandGetEvent(TsgcWSConnection Connection, TsgcWSHTTPRequestInfo RequestInfo,
ref TsgcWSHTTPResponseInfo ResponseInfo)

if (RequestInfo.Document == "/myfile.js")

ResponseInfo.ContentText = "<script type='text/javascript'>alert('Hello!');</script>";
ResponseInfo.ContentType = "text/javascript";

ResponseInfo.ResponseNo = 200;

b
}

TOPICS

Broadcast and Channels

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketServer HTTPAPI

Broadcast method by default send message to all clients connected, but you can use channels argument to fil-
ter and only broadcast message to clients subscribed to a channel.

Example: your server has 2 types of connected clients, desktop and mobile devices, so you can create 2 channels
"desktop" and "mobile".

If you can identify in OnConnect event of server if a client is mobile, you can do something like following.

void OnServerConnect(TsgcwWSConnection Connection)
if (desktop == true)

(TsgcwWSConnectionServer) (Connection).Subscribe("desktop");

First cast Connection to TsgcWSConnectionServer to access subscription methods and if fits your filter, will be sub-
scribed to desktop channel. Subscription to a channel can be done in any event, example, you can ask to client to
tell you if it's mobile or not and send a message from client to server with info about client. Then you can only
broadcast to desktop connections:

Server.Broadcast("Your text message", "desktop");

If you have 100 connections and 30 are mobile, message will be only sent to other 70.

TOPICS

Bindings

Supported by
TsgcWebSocketServer
TsgcWebSocketHTTPServer
Usually, Servers have more than one IP, if you enable a WebSocket Server and set listening port to 80, when the

server starts, tries to listen port 80 of ALL IP, so if you have 3 IP, it will block port 80 of each IP's.

Bindings allow defining which exact IP and Port are used by the Server. Example, if you need to listen on port 80
for IP 127.0.0.1 (internal address) and 80.254.21.11 (public address), you can do this before the server is activated:

wSServer .Bindings = "127.0.0.1:80,80.254.21.11:80";

TOPICS

Post Big Files

Supported by

TsgcWebSocketHTTPServer
TsgcWebSocketServer HTTPAPI

When a HTTP client sends a multipart/form-data stream, the stream is saved by server in memory. When the files
are big, the server can get an out of memory exception, to avoid these exceptions, the server has a property
called HTTPUploadFiles where you can configure how the POST streams are handled: in memory or as a file
streams. If the streams are handled as file streams, the streams received are stored directly in the hard disk so the
memory problems are avoided.

To configure your server to save multipart/form-data streams as file streams, follow the next steps:

1. Set the property HTTPUploadFiles.StreamType = pstFileStream. Using this setup, the server will store these
streams in the hard disk.

2. You can configure which is the minimum size in bytes where the files will be stored as file stream. By default
the value is zero, which means all streams will be stored as file stream.

3. The folder where the streams are stored using SaveDirectory, if not set, will be stored in the same folder where
the application is.

4. When a client sends a multipart/form-data, the content is encoded inside boundaries, if the property Remove-
Boundaries is enabled, the content of boundaries will be extracted automatically after the full stream is received.

Sample Code

First create a new server instance and set the Streams are saved as File Streams.

TsgcwWebSocketHTTPServer oServer = new TsgcWebSocketHTTPServer();
oServer .Port = 5555;

oServer .HTTPUploadFiles.StreamType = TwsPostStreamType.pstFileStream;
oServer .Active = true;

Then create a new html file with the following configuration

<html>
<head><title>sgcWebSockets - Upload Big File</title></head>
<body>
<form action="http://127.0.0.1:5555/file"™ method="post" enctype="multipart/
form-data" accept-charset="UTF-8">
<input type="file" name="file 1" />
<input type="submit" />
</form>
</body>
</html>

Finally open the html file with a web browser and send a file to the server. The server will create a new file stream
with the extension ".sgc_ps" and when the stream is fully received, it will extract the file from the boundaries.

Events

There are 2 events which can be used to customize the upload file flow (requires the property
HTTPUploadFiles.RemoveBoundaries is enabled)

OnHTTPUploadBeforeSaveFile

This event is fired BEFORE the file is saved and allows customizing the name of the file received.

TOPICS

private void OnHTTPUploadBeforeSaveFileEvent(TObject Sender, ref string aFileName, ref string aFilePath)
if (aFileName == 'test.jpg')

aFileName = 'custom_test.jpg';

b
}

OnHTTPUploadAfterSaveFile

This event is fired AFTER the file is saved and allows you to know the name of the saved file.

private void OnHTTPUploadBeforeSaveFileEvent(TObject Sender, string aFileName, string aFilePath)

DoLog('File Received: ' + aFileName);

OnHTTPUploadReadInput

This event is fired when the decoder reads an input value received different from the file input (example: if the form
has some variables like name, date...).

private void OnHTTPUploadReadInputEvent(TObject Sender, string aName, string aValue)

DoLog('Input value Received: ' + aName + ':' + aValue);

TOPICS

Compression

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

Web Browsers like Chrome

This is a feature that works very well when you need to send a lot of data, usually using a binary message, be-
cause it compresses WebSocket message using protocol "PerMessage Deflate" which is supported by some
browsers like Chrome.

To enable this feature, you need to activate the following property:

Extensions/ PerMessage_Deflate / Enabled
When a client tries to connect to a WebSocket Server and this property is enabled, it sends a header with this prop-
erty enabled, if Server has activated this feature, it sends a response to the client with this protocol activated and all
messages will be compressed, if Server doesn't have this feature, then all messages will be sent without compres-

sion.

On Web Browsers, you don't need to do anything, if this extension is supported it will be used automatically, if not,
then messages will be sent without compression.

If WebSocket messages are small, is better don't enable this property because it consumes cpu cycle to compress/
decompress messages, but if you are using a big amount of data, you will notify and increase on messages ex-
change speed.

TOPICS

Flash

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer

WebSockets are supported natively by a wide range of web browsers (please check http://caniuse.com/websockets),
but there are some old versions that don't implement WebSockets (like Internet Explorer 6, 7, 8 or 9). You can en-
able Flash Fallback for all these browsers that don't implement WebSockets.

Almost all other or older browser support Flash installing Adobe Flash Player. To Support Flash connection, you
need to open port 843 on your server because Flash uses this port for security reasons to check for cross-domain-
access. If port 843 is not reachable, waits 3 seconds and tries to connect to Server default port.

Flash is only applied if the Browser doesn't support WebSockets natively. So, if you enable Flash Fallback on the
server side, and Web Browser supports WebSockets natively, it will still use WebSockets as transport.

To enable Flash Fallback, you need to access to FallBack / Flash property on the server and enable it. There are
2 properties more:

1. Domain: if you need to restrict flash connections to a single/multiple domains (by default all domains are al-
lowed). Example: This will allow access to domain swf.example.com

swf.example.com
2. Ports: if you need to restrict flash connections to a single/multiple ports (by default all ports are allowed). Exam-
ple: This will allow access to ports 123, 456, 457, and 458

123,456-458

Flash connections only support Text messages, binary messages are not supported.

http://caniuse.com/websockets

TOPICS

IOCP

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer

IOCP for Windows is an APl which allows handles thousands of connections using a limited pool of threads instead
of using a thread for connection like Indy by default does.
To enable IOCP for Indy Servers, Go to IOHandlerOptions property and select iohlOCP as IOHandler Type.

Server.IOHandlerOptions.IOHandlerType = iohIOCP;
Server.IOHandlerOptions.IOCP.IOCPThreads = 0;
Server.IOHandlerOptions.IOCP.WorkOpThreads = 0;

IOCPThreads are the threads used for IOCP asynchronous requests (overlapped operations), by default the value
is zero which means the number of threads are calculated using the number of processors (except for Delphi 7 and
2007 where the number of threads is set to 32 because the function cpucount is not supported).

WorkOpThreads only must be enabled if you want that connections are processed always in the same thread.
When using I0OCP, the requests are processed by a pool of threads, and every request (for the same connection)
can be processed in different threads. If you want to handle every connection in the same thread set in
WorkOpThreads the number of threads used to handle these requests. This impacts in the performance of the
server and it's only recommended to set a value greater of zero only if you require this feature.

Enabling IOCP for windows servers is recommended when you need handle thousands of connections, if your
server is only handling 100 concurrent connections at maximum you can stay with default Indy Thread model.

OnDisconnect event not fired

IOCP works differently from default indy IOHandler. With default indy IOHandler, every connection runs in a thread
and these thread are running all the time and checking if connection is active, so if there is a disconnection, it's noti-
fied in a short period of time.

IOCP works differently, there is a thread pool which handles all connections, instead of 1 thread = 1 connection like
indy does by default. For IOCP, the only way to detect if a connection is still alive is trying to write in socket, if there
is any error means that connection is closed. There are 2 options to detect disconnections:

1. If you use TsgcWebSocketClient, you can enable it in Options property, CleanDisconnect := True (by default
is disabled). If it's enabled, before the client disconnects it sends a message informing the server about disconnec-
tion, so the server will receive this message and the OnDisconnect event will be raised.

2. You can enable heartbeat on the server side, for example every 60 seconds, so it will try to send a ping to all
clients connected and if there is any client disconnected, OnDisconnect will be called.

TOPICS

ALPN

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

Application-Layer Protocol Negotiation (ALPN) is a Transport Layer Security (TLS) extension for application-layer
protocol negotiation. ALPN allows the application layer to negotiate which protocol should be performed over a se-
cure connection in a manner that avoids additional round trips and which is independent of the application-layer
protocols. It is needed by secure HTTP/2 connections, which improves the compresslion of web pages and reduces
their latency compared to HTTP/1.x.

Client

You can configure in TLSOptions.ALPNProtocols, which protocols are supported by client. When client connects to
server, these protocols are sent on the initial TLS handshake 'Client Hello', and it lists the protocols that the client
supports, and server select which protocol will be used, if any.

You can get which protocol has been selected by server accessing to ALPNProtocol property of TsgcWSConnec-
tionClient.

Server

When there is a new TLS connection, OnSSLALPNSelect event is called, here you can access to a list of protocols which are supported by client
and server can select which of them is supported.

If there is no support for any protocol, aProtocol can be left empty.

// Client
void OnClientConnect(TsgcWSConnection Connection)
{
string vProtocol = (TsgcWSConnectionClient)(Connection).ALPNProtocol;
}
// Server

void OnSSLALPNSelect(string Protocols, ref string Protocol)

if (Array.IndexOf(Protocols.Split(',"'), "h2") >= 0)

Protocol = 'h2';

}
}

TOPICS

Forward HTTP Requests

Supported by

TsgcWebSocketHTTPServer
TsgcWebSocketServer HTTPAPI
TsgcWSHTTPWebBrokerBridgeServer
TsgcWSHTTP2WebBrokerBridgeServer
TsgcWSServer_HTTPAPI_WebBrokerBridge

You can configure the server to forward some HTTP requests to another server, this is very useful when you have
more than one server and only one server is listening on a public address.

Example: you can configure your server, to forward to another server all requests to /internal while all other re-
quests are handled by sgcWebSockets server.

Use the event OnBeforeForwardHTTP to check if the URL requested must be forwarded and if it is, then set the
URL to forward.

Example: if you want to forward all requests to the document "/internal" to the server "localhost:8080", do the fol-
lowing:

void OnBeforeForwardHTTP(TsgcwWSConnection Connection, TsgcWSHTTPRequestInfo ARequestInfo,
ref TsgcWSServerForwardHTTP aForward)

begin
if (ARequestInfo.Document == "/internal")

aForward.Enabled = true;
aForward.URL = "http://localhost:8080";

}
}

Other Options

When you want forward an HTTP request, you have the additional options:

1. By default, the request if forwarded using the original document. Example: if you forward the request http://local-
host:8080/internal to the internal server http://localhost:5555, the forwarded URL will be http://localhost:5555/inter-
nal. But you can modify the Document, using the Document property of Forward object (by default will use the
same of the original request).

aForward.Document = "/NewInternal”

2. If you forward a secure HTTP connection (HTTPs), you can customize the SSL/TLS options, in TLSOptions
property of Forward object. Example: set the TLS version

aForward.TLSOptions.Version = tis1_2

3. The following properties can be used to customize the HTTP request:

* QueryParams: the parameters after the document example: 'id=1&user=2".

* Host: specifies the host and port number of the server to which the request is being sent. Example:
www.esegece.com:443

+ Origin: the origin (scheme, hostname, and port) that caused the request. Example: https://
www.esegece.com/document.

* LogFilename: the name of the filename where the request/response will be stored.

* NoCache: if the request must not use the web-browser cache, by default is enabled.

+ CustomHeaders: a List of custom headers to be added to the request. Example:
CustomHeaders.Add('X-ReverseProxy-Host: http://127.0.0.1:8888/test');

TOPICS

TCP Connections

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

By default, sgcWebSocket use WebSocket as protocol, but you can use plain TCP protocol in client and server
components.

Client Component
Disable WebSocket protocol.

Client.Specifications.RFC6455 = false;

Server Component
Handle event OnUnknownProtocol and set Transport as trpTCP and Accept the connection.

void OnUnknownProtocol(TsgcWSConnection Connection, ref bool Accept)

{

Accept = true;

}

Then when a client connects to the server, this connection will be defined as TCP and will use plain TCP protocol
instead of WebSockets. Plain TCP connections don't know if the message is text or binary, so all messages re-
ceived are handle OnBinary event.

End of Message
If messages are big, sometimes can be received fragmented. There is a method to try to find end of message set-
ting which bytes find. Example: STOMP protocol, all messages ends with byte 0 and 10

void OnwSClientConnect(TsgcwWSConnection Connection)

{
Connection.SetTCPEndOfFrameScanBuffer (TtcpEOFScanBuffer.eofScanAllBytes);
Connection.AddTCPEndOfFrame(0);
Connection.AddTCPEndOfFrame(10);

}

TOPICS

SubProtocol

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient
TsgcWebSocketServer_ HTTPAPI

WebSocket provides a simple subprotocol negotiation, basically adds a header with protocols name supported by
request, these protocols are received and if the receiver supports one of them, sends a response with subprotocol
supported.

Example: you need to connect to a server which implements subprotocol "Test 1.0"

Client = new TsgcWebSocketClient();
Client.Host = "server host";
Client.Port = server.port;
Client.RegisterProtocol("Test 1.0");
Client.Active = true;

To use more than 1 protocol in a single connection, you can use the Broker Protocol (Server and Client) com-
ponents to handle it. Just put a Broker between the Client/Server and the protocols. Example: User SGC and Files
protocols using a single connection.

// ... server

oServer = TsgcWebSocketServer.Create();
oServerBroker = TsgcWSPServer_Broker.Create();
oServerBroker.Server = oServer;

oServerSGC = TsgcWSPServer_sgc.Create();
oServerSGC.Broker = oServerBroker;
oServerFiles = TsgcWSPServer_files.create();
oServerFiles.Broker = oServerBroker;

// ... client

oClient = TsgcWebSocketClient.Create();
oClientBroker = TsgcWSPClient_Broker.Create();
oClientBroker.Client = oClient;

0oClientSGC = TsgcWSPClient_sgc.Create();
oClientSGC.Broker = oClientBroker;
oClientFiles = TsgcWSPClient_files.create();
oClientFiles.Broker = oClientBroker;

When a broker protocol is attached between the Server/Client and the protocol, the events OnConnect and
OnDisconnect are fired in the Broker component (instead of the Server or Client components).

TOPICS

Throttle

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient

Bandwidth Throttling is supported by Server and Client components, if enabled, can limit the number of bits per
second sent/received by the socket. Indy uses a blocking method, so if a client is limiting its reading, unread data
will be inside the client socket and the server will be blocked from writing new data to the client. As much slower is
client reading data, much slower is server writing new data.

TOPICS

Server-sent Events (Push Notifications)

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
Java script

SSE are not part of WebSockets, defines an API for opening an HTTP connection for receiving push notifications
from a server.

SSEs are sent over traditional HTTP. That means they do not require a special protocol or server implementation to
get working. In addition, Server-Sent Events have a variety of features that WebSockets lack by design such as au-
tomatic reconnection, event IDs, and the ability to send arbitrary events.

Events

» Open: when a new SSE connection is opened.
» Message: when the client receives a new message.
» Error: when there any connection error like a disconnection.

JavaScript API

To subscribe to an event stream, create an EventSource object and pass it the URL of your stream:

var sse = new EventSource('sse.html');

sse.addEventListener('message', function(e)
{console.log(e.data);

}, false);

sse.addEventListener('open', function(e) {
// Connection was opened.

}, false);

sse.addEventListener('error', function(e) {
if (e.readyState == EventSource.CLOSED) {

// Connection was closed.

}
}, false);

When updates are pushed from the server, the onmessage handler fires and new data is available in its e.data
property. If the connection is closed, the browser will automatically reconnect to the source after ~3 seconds (this is
a default retry interval, you can change on the server side).

Fields

The following field names are defined by the specification:

event

The event's type. If this is specified, an event will be dispatched on the browser to the listener for the specified

event name; the web site would use addEventListener() to listen for named events. the onmessage handler is
called if no event name is specified for a message.

data

TOPICS

The data field for the message. When the EventSource receives multiple consecutive lines that begin with data:, it
will concatenate them, inserting a newline character between each one. Trailing newlines are removed.

id

The event ID to set the EventSource object's last event ID value to.

retry

The reconnection time to use when attempting to send the event. This must be an integer, specifying the reconnec-
tion time in milliseconds. If a non-integer value is specified, the field is ignored.

All other field names are ignored.

For multi-line strings use #10 as line feed.

Examples of use:

If you need to send a message to a client, just use WriteData method.

// If you need to send a message to a client, just use WriteData method.
Connection.WriteData("Notification from server");

// To send a message to all Clients, use Broadcast method.
Connection.Broadcast("Notification from server");

//To send a message to all Clients using url 'sse.html', use Broadcast method and Channel parameter:
Connection.Broadcast("Notification from server", "/sse.html");

// You can send a unique id with an stream event by including a line starting with "id:":
Connection.WriteData("id: 1 \r data: Notification from server");

// If you need to specify an event name:
Connection.WriteData("id: 1 \r data: Notification from server");

javascript code to listen "notifications" channel:

sse.addEventListener('notifications’, function(e) {
console.log('notifications:' + e.data);
}, false);

TOPICS

Fragmented Messages

Supported by

TsgcWebSocketServer
TsgcWebSocketHTTPServer
TsgcWebSocketClient
TsgcWebSocketServer_ HTTPAPI

By default, when a stream is sent using sgcWebSockets library, it sends all data in a single packet or buffers all
packets and when the latest packet is received, OnBinary message event is called.
This behaviour can be customized by Options.FragmentedMessages property, which accepts following values:

1. frgOnlyBuffer: this is the default value, means that packet messages will be buffered and only when all stream is
received, OnBinary message will be called.

2. frgOnlyFragmented: this means that OnFragmented event only will be called for every packet received.

3. frgAll: this means that OnFragmented event will be called for every packet received and when the full stream is
received.

OnFragmented event is useful when you must send big streams and receiver must show progress of the transfer.
Example: the client must send a stream of size 1.000.000 bytes to server and server wants show progress for

every 1000 bytes received

The client will send a stream using writedata method with a size for a packet of 1000

Client.WriteData(stream, 1000);

The server will set in Options.FragmentedMessages := frgAll and will handle OnFragmented event to receive
progress of streams

void OnFragmented(TsgcWSConnection Connection, TMemoryStream Data, TOpCode OpCode, boolean Continuation)

ShowProgress(Data.Size);
if (Continuation == false)

SaveStream(Data);

3
}

COMPONENTS

TsgcWebSocketClient

TsgcWebSocketClient implements Client WebSocket Component and can connect to a WebSocket Server. Follow
the steps below to configure this component:

1. Drop a TsgcWebSocketClient component onto the form

2. Set Host and Port (default is 80) to connect to an available WebSocket Server. You can set URL property and
Host, Port, Parameters... will be updated from URL. Example: wss://127.0.0.1:8080/ws/ will result in:

oClient = new TsgcWebSocketClient();
oClient.Host = "127.0.0.1";
oClient.Port = 80;

oClient.TLS = true;
oClient.Options.Parameters = "/ws/";

3. You can select if you require TLS (secure connection) or not, by default, it is not activated.
4. You can connect through an HTTP Proxy Server, you need to define proxy properties:
Host: proxy server hostname.
Port: proxy server port number.
Username: username for authentication, leave blank for anonymous.
Password: password for authentication, leave blank for anonymous.
5. If the server supports compression, you can enable compression to compress messages are sent.
6. Set Specifications allowed, by default, all specifications are enabled.
RFC6455: is standard and recommended WebSocket specification.
Hixie76: always is false
7. If you want, you can handle events
OnConnect: when a WebSocket connection is established, this event is triggered
OnDisconnect: when a WebSocket connection is dropped, this event is triggered
OnError: every time a WebSocket error occurs (like mal-formed handshake), this event is triggered
OnMessage: every time the server sends a text message, this event is triggered

OnBinary: every time the server sends a binary message, this event is triggered

OnFragmented: when a fragment from a message is received (only fired when Options.FragmentedMessages =
frgAll or frgOnlyFragmented).

OnHandhake: this event is triggered when the handshake is evaluated on the client side.
OnException: whenever an exception occurs, this event is triggered.

OnSSLVerifyPeer: if verify certificate is enabled, in this event you can verify and decide whether to accept the
server certificate.

OnBeforeHeartBeat: if HeartBeat is enabled, allows implementing a custom HeartBeat setting Handled parame-
ter to True (this means, standard websocket ping won't be sent).

OnBeforeConnect: before the client tries to connect to server, this event is called.

COMPONENTS

OnBeforeWatchDog: if WatchDog is enabled, allows implementing a custom WatchDog setting Handled para-
meter to True (this means, won't tries to connect to server). You can change the Server Connection properties too
before try to reconnect, example: connect to a fallback server if first fails.

8. Set the property Active to true to start a new websocket connection

Most common uses

¢ Connection

e How Connect WebSocket Server
Open a Client Connection
Close a Client Connection
Keep Connection active
Dropped Disconnections
Connect TCP Server
WebSocket Redirections

e Secure Servers
e Connect Secure Server
¢ Certificates OpenSSL
¢ Certificates SChannel

¢ Send Messages
* Send Text Message
* Send Binary Message

* Receive Messages
* Receive Text Messages
* Receive Binary Messages

Authentication
¢ Client Authentication

e Other
* Client Exceptions
e Client WebSocket HandShake

* Client Register Protocol
* Client Proxies

Methods

WriteData: sends a message to a WebSocket Server. Could be a String or MemoryStream. If "size" is set, the
packet will be split if the size of the message is greater of size.

Ping: sends a ping to a Server. If a time-out is specified, it waits for a response until a time-out is exceeded, if no
response, then closes the connection.

Start: uses a secondary thread to connect to the server, this prevents your application from freezing while trying
to connect.

Stop: uses a secondary thread to disconnect from the server, this prevents your application from freezing while
trying to disconnect.

Connect: tries to connect to the server and wait till the connection is successful or there is an error.

Disconnect: tries to disconnect from the server and wait till disconnection is successful or there is an error.

COMPONENTS

Properties

Authentication: if enabled, WebSocket connection will try to authenticate passing a username and password.
Implements 4 types of WebSocket Authentication / Authorization methods
* Session: client needs to do a HTTP GET passing username and password, and if authenticated,
server response a Session ID. With this Session ID, client open WebSocket connection passing as a
parameter.
* URL: client open WebSocket connection passing username and password as a parameter.
* Basic: uses basic authentication where user and password as sent as HTTP Header.
+ Token: sends a token as HTTP Header. Usually used for bearer tokens where token must be set in
AuthToken property.
o OAuth: if a OAuth2 component is attached, before client connects to server, it requests
a new Access Token to Authorization server. OAuth2 Component.

Host: IP or DNS name of the server.
Port: the listening port of the server.

HeartBeat: if enabled tries to keep the WebSocket connection alive by sending a ping every x seconds.
Interval: number of seconds between each ping.
Timeout: max number of seconds between a ping and pong.
HeartBeatType: allows customizing how the HeartBeat works
* hbtAlways: sends a ping every x seconds defined in the Interval.
+ hbtOnlylfNoMsgRcvinterval: sends a ping every x seconds only if no messages has been received
during the latest x seconds defined in the Interval property.
TCPKeepAlive: if enabled, uses keep-alive at TCP socket level, in Windows will enable
SIO_KEEPALIVE_VALS if supported and if not will use keepalive. By default is disabled. Read about Dropped Dis-

connections.

Time: if after X time socket doesn't sends anything, it will send a packet to keep-alive connection (value in
milliseconds).

Interval: after sends a keep-alive packet, if not received a response after interval, it will send another packet
(value in milliseconds).

ConnectTimeout: max time in milliseconds before a connection is ready.

LoadBalancer: it's a client which connects to Load Balancer Server to broadcast messages and get information
about servers.

Enabled: if enabled, it will connect to Load Balancer Server.
Host: Load Balancer Server Host.
Port: Load Balancer Server Port.

Servers: here you can set manual WebSocket Servers to connect (if you don't make use of Load Balancer
Server get server connection methods), example:

http://127.0.0.1:80
http://127.0.0.2:8888

Connected: returns true if the connection is active. Use this property carefully, because uses internal "connect-
ed" Indy method, and this method may lock the thread and/or increment the use of cpu. If you want to know if the
client is connected, just use the Active property, which is safer.

ReadTimeout: max time in milliseconds to read messages.

COMPONENTS

WriteTimeOut: maximum duration in milliseconds for sending data to other peer, 0 by default (only works under
Windows OS).

BoundPortMin: minimum local port used by client, by default zero (means there aren't limits).
BoundPortMax: max local port used by client, by default zero (means there aren't limits).
Port: Port used to connect to the host.

LogFile: if enabled, saves socket messages to a specified log file, useful for debugging. The access to log file is
not thread safe if it's accessed from several threads.

Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.
FileName: full path to the filename.
UnMaskFrames: by default True, means that saves the websocket messages are sent unmasked.
Raw: by default False, if enabled it will save the messages in hex format.

NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro-
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Options: allows customizing headers sent on the handshake.
FragmentedMessages: allows handling fragmented messages

frgOnlyBuffer: the message is buffered until all data is received, it raises OnBinary or OnMessage
event (option by default)

frgOnlyFragmented: every time a new fragment is received, it raises OnFragmented Event.

frgAll: every time a new fragment is received, it raises OnFragmented Event with All data received
from the first packet. When all data is received, it raises OnBinary or OnMessage event.

Parameters: define parameters used on GET.
Origin: customize connection origin.

RaiseDisconnectExceptions: enabled by default; raises an exception whenever a protocol error causes a
disconnection.

ValidateUTFS8: if enabled, validates if the message contains UTF8 valid characters, by default, it is disabled.

CleanDisconnect: if enabled, every time client disconnects from server, first sends a message to inform
server connection will be closed.

QueueOptions: this property allows queuing the messages in an internal queue (instead of send directly) and
send the messages in the context of the connection thread, this prevents locks when several threads try to send a
message. For every message type: Text, Binary or Ping a queue can be configured, by default the value set is gm-
None which means the messages are not queued. The other types, means different queue levels and the differ-
ence between them are just the order where are processed (first are processed gmLevel1, then gqmLevel2 and fi-
nally gmLevel3).

Example: if Text and Binary messages have the property set to gmLevel2 and Ping to gmLevel1. The client will
process first the Ping messages (so the ping message is sent first than Text or Binary if they are queued at the
same time), and then process the Text and Binary messages in the same queue.

Extensions: you can enable compression on messages are sent.

COMPONENTS

Protocol: if it exists, shows the current protocol used

Proxy: here you can define if you want to connect through a Proxy Server, you can connect to the following
proxy servers:
pxyHTTP: HTTP Proxy Server.
pxySocks4: SOCKS4 Proxy Server.
pxySocks4A: SOCKS4A Proxy Server.
pxySocks5: SOCKS5 Proxy Server.

WatchDog: if enabled, when an unexpected disconnection is detected, tries to reconnect to the server automati-
cally.

Interval: seconds before reconnection attempts.

Attempts: maximum number of reconnection attempts; zero means unlimited.
Throttle: used to limit bits per second sent or received.
TLS: enables a secure connection.
TLSOptions: if TLS enabled, here you can customize some TLS properties.

ALPNProtocols: list of the ALPN protocols which will be sent to server.
RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica-
tion is performed for the X.509 certificate.
Version: by default negotiates all possible TLS versions from newer to lower. A specific TLS version can be
selected.
tisUndefined: this is the default value, the client attempts to negotiate all available TLS versions
(starting from newest to oldest), till connects successfully.
tls1_0: implements TLS 1.0
tls1_1:implements TLS 1.1
tls1_2: implements TLS 1.2
tls1_3: implements TLS 1.3
IOHandler: select which library you will use to connection using TLS.
iohOpenSSL: uses OpenSSL library and is the default for Indy components. Requires to deploy
openssil libraries (can be download from the private account of registered customers).
iohSChannel: uses Secure Channel which is a security protocol implemented by Microsoft for Win-
dows, doesn't require to deploy openssl libraries. Only works in Windows 32/64 bits.
OpenSSL_Options: configuration of the openSSL libraries.
APIVersion: allows defining which OpenSSL API will be used.
oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses APl 1.1 OpenSSL, requires our custom Indy library and allows using
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses APl 3.0 OpenSSL, requires our custom Indy library and allows using
OpenSSL 3.0.0 libraries (with TLS 1.3 support).
LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath-
Custom.
LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default, it is en-
abled, except under OSX64):
oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.

COMPONENTS

oslsSymLinksDontLoad: don't load the SymLinks.
MinVersion: set here the minimum version that will use the client to connect to a secure server. By
default, the value is tisUndefined which means the minimum version is the same which has been set
in the Version property. Example: if you want to set the Client to only connect using TLS 1.2 or TLS
1.3 set the following values.

SSLOptions.Version :=tls1_3;
SSLOptions.OpenSSL_Options.MinVersion := tIs1_2;
X509Checks: use this property to enable additional X509 certificate validations:

Mode: select which options will be validated
oslIx509chHostName: verifies the hostname certificate.
osIx509chIiPAddress: verifies the ip address of the certificate.

HostName: set the hostname if it's different from the request.

IPAddress: set the ip address if it's different from the request.

SChannel_Options: allows you to use a certificate from Windows Certificate Store.
CertHash: is the certificate Hash. You can find the certificate Hash running a dir command in power-
shell.
CipherList: here you can set which Ciphers will be used (separated by ™""). Example:

CALG_AES_256:CALG_AES_128

CertStoreName: the store name where is stored the certificate. Select one of below:
scsnMY (the default)
scsnCA
scsnRoot
scsnTrust

CertStorePath: the store path where is stored the certificate. Select one of below:
scspStoreCurrentUser (the default)
scspStoreLocalMachine

COMPONENTS

TsgcWebSocketClient | Connect WebSocket
Server

URL Property

The most easy way to connect to a WebSocket server is use URL property and call Active = true.

Example: connect to www.esegece.com using secure connection.

oClient = new TsgcWebSocketClient();
oClient.URL = "wss://www.esegece.com:2053";
oClient.Active = true;

Host, Port and Parameters

You can connect to a WebSocket server using Host and port properties.

Example: connect to www.esegece.com using secure connections

oClient = new TsgcWebSocketClient();
oClient.Host = "www.esegece.com";
oClient.Port = 2053;

oClient.TLS = true;

oClient.Active = true;

COMPONENTS

TsgcWebSocketClient | Client Open Connec-
tion

Once your client is configured to connect to server, there are 3 different options to call Open a new connection.

Active Property

The most easy way to open a new connection is Set Active property to true. This will attempts to connect to server
using component configuration.
If you set Active property to false, will close connection if active.
This method is executed in the same thread that caller. So if you call in the Main Thread, method will be executed
in Main Thread of application.
Open Connection
oClient = new TsgcWebSocketClient();
ééiient.Active = true;
When you call Active = true, you can't still send any data to server because client maybe is still connecting, you

must first wait to OnConnect event is fired and then you can start to send messages to server.

Close Connection

oClient.Active = false;

When you call Active = false, you cannot be sure that connection is already closed just after this code, so you
must wait to OnDisconnect event is fired.

Start/Stop methods

When you call Start() or Stop() to connect/disconnect from server, is executed in a secondary thread, so it doesn't
blocks the thread where is called. Use this method if you want connect to a server and let your code below contin-
ue.

Open Connection

oClient = new TsgcWebSocketClient();

oClient.Start();

When you call Start(), you can't still send any data to server because client maybe is still connecting, you must
first wait to OnConnect event is fired and then you can start to send messages to server.

Close Connection

oClient.Stop();

When you call Stop(), you cannot be sure that connection is already closed just after this code, so you must
wait to OnDisconnect event is fired.

COMPONENTS

Connect/Disconnect methods

When you call Connect() or Disconnect() to open/close connection from server, this is executed in the same thread
where is called, but it waits till process is finished. You must set a Timeout to set the maximum time to wait till
process is finished (by default 10 seconds)

Example: connect to server and wait till 5 seconds

oClient = new TsgcWebSocketClient();

if (oClient.Connect(5000) == true)
oClient.WriteData("Hello from client");

}

else

Error();

If after calling Connect() method, the result is successful, you can already send a message to server because con-
nection is alive.

Example: connect to server and wait till 10 seconds

if (oClient.Disconnect(10000) == true)
ShowMessage("Disconnected");

}

else
ShowMessage("Not Disconnected");

}

If after calling Disconnect() event the result is successful, this means that connection is already closed.

OnBeforeConnect event can be used to customize the server connection properties before the client tries to con-
nect to it.

COMPONENTS

TsgcWebSocketClient | Client Close Con-
nection

Connection can be closed using Active property, Stop or Disconnect methods, read more from Client Open Con-
nection.

CleanDisconnect

When connection is closed, you can notify other peer that connection is closed sending a message about close
connection, to enable this feature, Set Options.CleanDisconnect property to true.

If this property is enabled, before connection is closed, a Close message will be sent to server to notify that client is
closing connection.

Disconnect

TsgcWSConnection has a method called Disconnect(), that allows you to disconnect connection at socket level. If
you call this method, socket will be disconnected directly without waiting any response from server. You can send a
Close Code with this method.

Close

TsgcWSConnection has a method called Close(), which allows you to send a message to server requesting to
close connection, if server receives this message, must close the connection and client will receive a notification
that connection is closed. You can send a Close Code with this method.

COMPONENTS

TsgcWebSocketClient |Client Keep Connec-
tion Open

Once your client has connected to server, sometimes connection can be closed due to poor signal, connection er-
rors... there are 2 properties which helps to keep connection active.

HeartBeat

HeartBeat property allows you to send a Ping every X seconds to maintain connection alive. Some servers,
close TCP connections if there is no data exchanged between peers. HeartBeat solves this problem, sending a
ping every a specific interval. Usually this is enough to maintain a connection active, but you can set a TimeOut in-
terval if you want to close connection if a response from server is not received after X seconds.

Example: send a ping every 30 seconds

oClient = new TsgcWebSocketClient();
oClient.HeartBeat.Interval = 30;
oClient.HeartBeat.Timeout 0;
oClient.HeartBeat.Enabled true;
oClient.Active = true;

There is an event called OnBeforeHeartBeat which allows customizing HeartBeat behaviour. By default, if Heart-
Beat is enabled, client will send a websocket ping every X seconds set by HeartBeat.Interval property.
OnBeforeHeartBeat has a parameter called Handled, by default is false, which means the flow is controlled by Ts-
gcWebSocketClient component. If you set the value to True, then ping won't be sent, and you can send your cus-
tom message using Connection class.

WatchDog

If WatchDog is enabled, when client detects a disconnection, WatchDog try to reconnect again every X seconds
until connection is active again.

Example: reconnect every 10 seconds after a disconnection with unlimited attempts.

oClient = new TsgcWebSocketClient();
oClient.watchDog.Interval = 10;
oClient.watchDog.Attempts = 0;
oClient.wWatchDog.Enabled = true;
oClient.Active = true;

You can use OnBeforeWatchDog event to change the Server where the client will attempts to connect. Example:
after 3 retries, if the client cannot connect to a server, will attempts to connect to a secondary server.
The Handled property, if set to True, means that the client won't try to reconnect.

COMPONENTS

TsgcWebSocketClient | Dropped Disconnec-
tions

Once the connection has been established, if no peer sends any data, then no packets are sent over the net. TCP
is an idle protocol, so it assumes that the connection is active.

Disconnection reasons

» Application closes: when a process is finished, usually sends a FIN packet which acknowledges the other
peer that connection has been closed. But if a process crashes there is no guarantee that this packet will be
sent to other peer.

» Device Closes: if devices closes, most probably there won't be any notification about this.

» Network cable unplugged: if network cable is unplugged it's the same that a router closes, there is no data
being transferred so connection is not closed.

* Loss signal from router: if application loses signal from router, connection will still be alive.

Detect Half-Open Disconnections

You can try to detect disconnections using the following methods
Second Connection

You can try to open a second connection and attempts to connect but this has some disadvantages, like you are
consuming more resources, create new threads... and if other peer has rebooted, second connection will work but
first won't.

Ping other peer

If you try to send a ping or whatever message with a half-open connection, you will see that you don't get any error.

Enable KeepAlive at TCP Socket level

A TCP keep-alive packet is simply an ACK with the sequence number set to one less than the current sequence
number for the connection. A host receiving one of these ACKs responds with an ACK for the current sequence
number. Keep-alives can be used to verify that the computer at the remote end of a connection is still available.
TCP keep-alives can be sent once every TCPKeepAlive.Time (defaults to 7,200,000 milliseconds or two hours) if
no other data or higher-level keep-alives have been carried over the TCP connection. If there is no response to a
keep-alive, it is repeated once every TCPKeepAlive.Interval seconds. KeepAlivelnterval defaults to 1000 millisec-
onds.

You can enable per-connection KeepAlive and allow that TCP protocol check if connection is active or not. This is
the preferred method if you want to detect dropped disconnections (for example: when you unplug a network ca-
ble).

TsgcWebSocketClient oClient = new TsgcWebSocketClient();
TCPKeepAlive.Enabled = true;

TCPKeepAlive.Time = 5000;

TCPKeepAlive.Interval = 1000;

COMPONENTS

TsgcWebSocketClient | Connect TCP Server

TsgcWebSocketClient can connect to WebSocket servers but can connect to plain TCP Servers too.

URL Property
The most easy way to connect to a WebSocket server is use URL property and call Active = true.

Example: connect to 127.0.0.1 port 5555

oClient = new TsgcWebSocketClient();
oClient.URL = "tcp://127.0.0.1:5555";
oClient.Active = true;

Host, Port and Parameters

You can connect to a TCP server using Host and port properties.

Example: connect to 127.0.0.1 port 5555

oClient = new TsgcWebSocketClient();
oClient.Specifications.RFC6455 = false;
oClient.Host = "127.0.0.1";
oClient.Port = 5555;

oClient.Active = true;

COMPONENTS

TsgcWebSocketClient | Connections
TIME_WAIT

When a client initiates a disconnection from server, there is an exchange between client and server to inform about
the state of disconnection. When the process is finished, the client socket connection states as TIME_WAIT during
a variable time. This is a normal behavior, in windows operating systems, this time defaults to about 4 minutes.

You can reduce or eliminate this behaviour, do with careful, using the following alternatives.
REGEDIT
You can reduce the TIME_WAIT value using the Windows Regedit

1. Open Regedit and access to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\TCPIP\Parameters registry subkeys.

2. Create a new REG_DWORD value named TcpTimedWaitDelay

3. Set the value in Seconds. Example: if you set a value of 5, means that TIME_WAIT will waits as max as 5 sec-
onds.

4. Save and restart the system.

LINGER

Another option to avoid TIME_WAIT state, is use the socket option SO_LINGER, if enabled, instead of closing the
connection gracefully, the client resets the connection so the TIME_WAIT state is avoided.

You can enable this option using LingerState property, by default has a value of -1. If you set a value of zero, the
connection will be reset when disconnecting from socket without Timeout.

This options is probably the less recommended and only use as a last option.

COMPONENTS

TsgcWebSocketClient | WebSocket Redirec-
tions

When the client connects to a WebSocket server, the server can return an HTTP Response Code 30x. If the Re-
sponse code it's a 301, means that the location has been moved permanently, and the new url is informed in the
Location HTTP Header.

The WebSocket client, handle redirections automatically, so if detects the Server Response contains a redirection,
it will disconnect the actual connection and attempts to connect with then new Location URL.

Example

1. Client first tries to connect to url ws://127.0.0.1:5000
2. Server returns a Response Code of 301 and contains a Header Location with the value ws://80.50.1.2:3000
3. Client reads the Response from server, detects that it's a redirection and reads the Location

1. First Disconnects the actual connection.

2. Update the URL property with the value of Location Header (ws://80.50.1.2:3000)

3. Connects to the new server.

COMPONENTS

TsgcWebSocketClient | Connect Secure
Server

TsgcWebSocketClient can connect to WebSocket servers using secure and none-secure connections.

You can configure a secure connection, using URL property or Host / Port properties, see Connect to WebSocket
Server.

TLSOptions

In TLSOptions property there are the properties to customize a secure connection. The most important property
is version, which specifies the version of TLS protocol. Usually setting TLS property to true and
TLSOptions.Version to tisUndefined is enough for the wide majority of WebSocket Servers.

TLSOptions.Version allows you to set the TLS version used to connect to server or let the client negotiate the TLS
version from all available (this is the default when value is tisUndefined).

If you get an error trying to connect to a server about TLS protocol, most probably this server requires a TLS
version newer than you set.

If TLSOptions.IOHandler is set to iohOpenSSL, you need to deploy OpenSSL libraries (which are the libraries
that handle all TLS stuff), check the following article about OpenSSL.

If TLSOptions.IOHandler is set to iohSChannel, then there is no need to deploy any library (only windows is
supported).

COMPONENTS

TsgcWebSocketClient | Certificates
OpenSSL

When the server requires that client connects using a SSL Certificate, use the TLSOptions property of TsgcWeb-
SocketClient to set the certificate files. The certificate must be in PEM format, so if the certificate has a different for-
mat, first must be converted to PEM.

Connection through OpenSSL libraries requires that TLSOptions.IOHandler = iohOpenSSL.

Configure the following properties:

» CertFile: is the path to the certificate in PEM format.

» KeyfFile: is the path to the private key of the certificate.

» RootCertFile: is the path to the root of the certificate.

» Password: if certificate is protected by a password, set here the secret.

COMPONENTS

TsgcWebSocketClient | Certificates SChan-
nel

When the server requires that client connects using a SSL Certificate, use the TLSOptions property of TsgcWeb-
SocketClient to set the certificate files.

Connection through SChannel requires that TLSOptions.IOHandler = iohSChannel.
SChannel support 2 types of certificate authentication:

1. Using a PFX certificate
2. Setting the Hash Certificate of an already installed certificate in the windows system.

PFX Certificate

PFX Certificate is a file that contains the certificate and private key, sometimes you have a certificate in PEM for-
mat, so before use it, you must convert to PFX.
Use the following openssl command to converte a PEM certificate to PFX

openssl pkcsl2 -inkey certificate-pem.key -in certificate-pem.crt -export -out certificate.pfx

Once the certificate has PFX format, you only need to deploy the certificate and set in the TLSOptions.Certificate
property the path to it.

TLSOptions.IOHandler = iohSChannel
TLSOptions.CertFile <certificate path>
TLSOptions.Password <certificate optional password>

Hash Certificate

If the certificate is already installed in the windows certificate store, you only need to know the certificate thumbprint
and set in the TLSOptions.SChannel_Options property.

Finding the hash of a certificate is as easy in powershell as running a dir command on the certificates container.

dir cert:\localmachine\my

The hash is the hexadecimal Thumbprint value.

Directory: Microsoft.PowerShell.Security\Certificate::localmachine\my
Thumbprint Subject

C12A8FCBAE668F866B48F23E753C93D357E9BE1O CN=*.mydomain.com

Once you have the Thumbprint value, you must to set in the TLSOptions.SChannel_Options property the hash
and where is located the certificate.

TLSOptions.IOHandler = iohSChannel
TLSOptions.SChannel_Options.CertHash = <certificate thumbprint>
TLSOptions.SChannel Options.CertStoreName = <certificate store name>

COMPONENTS

TLSOptions.SChannel Options.CertStorePath = <certificate store path>
TLSOptions.Password = <certificate optional password>

COMPONENTS

TsgcWebSocketClient | Client Send Text
Message

Once client has connected to server, it can send Text Messages to server. To send a Text Message, just call Write-
Data() method and send your text message.

Send a Text Message
Call To WriteData() method and send a Text message. This method is executed on the same thread that is called.

TsgcWebSocketClientl.WriteData("My First sgcWebSockets Message!.");

If QueueOptions.Text has a different value from gqmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

Send a Text Message and Wait the Response

Call To WriteAndWaitData() method to send a Text message and wait a response from the server. The function re-
turns the text message received.

TsgcWebSocketClientl.WriteAndwaitDataData("My First sgcWebSockets Message!.");

COMPONENTS

TsgcWebSocketClient | Client Send Binary
Message

Once client has connected to server, it can send Binary Messages to server. To send a Text Message, just call
WriteData() method and send your binary message.
Send a Binary Message

Call To WriteData() method and send a Binary message. This method is executed on the same thread that is
called.

byte[] bytes;

+éécWebSocketClient1.WriteData(bytes);
If QueueOptions.Binary has a different value from gqmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

Send a Binary Message and Wait the Response

Call To WriteAndWaitData() method to send a Binary message and wait a response from the server. The function
returns the binary message received.

TsgcWebSocketClientl.WriteAndwaitDataData(bytes);

COMPONENTS

TsgcWebSocketClient | Client Send a Text
and Binary Message

WebSocket protocol only allows you to types of messages: Text or Binary. But you can't send a binary with text in
the same message.

One way to solve this, is add a header to binary message before is sent and decode this binary message when is
received.

There are 2 functions in sgcWebSocket Helpers which can be used to set a short description of binary packet, ba-
sically adds a header to stream which is used to identify binary packet.

Before send a binary message, call method to encode stream.

sgcWSBytesWrite("00001", oBytes);
TsgcWebSocketClientl.WriteData(oBytes);

When binary message is received, call method to decode stream.

sgcwWSBytesRead(oBytes, VvID);

The only limitation is that text used to identify binary message, has a maximum length of 10 characters (this can be
modified if you have access to source code).

COMPONENTS

TsgcWebSocketClient | Receive Text Mes-
sages

When client receives a Text Message, OnMessage event is fired, just read Text parameter to know the string of
message received.

void OnMessage(TsgcWSConnection Connection, string Text)

{

MessageBox.Show("Message Received from Server: " + Text);

}

By default, client uses neAsynchronous method to dispatch OnMessage event, this means that this event is exe-
cuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your client receives lots of messages or you need to control the synchronization with other threads, set Noti-
fyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec-
tion thread, so if you require to update any control of a form or access shared objects, you must implement your
own synchronization methods.

COMPONENTS

TsgcWebSocketClient | Receive Binary Mes-
sages

When client receives a Binary Message, OnBinary event is fired, just read Data parameter to know the binary mes-
sage received.

private void OnBinary(TsgcWSConnection Connection, byte[] Bytes)

{
MemoryStream stream = new MemoryStream(Bytes);
pictureBox1.Image = new Bitmap(stream);

}

By default, client uses neAsynchronous method to dispatch OnMessage event, this means that this event is exe-
cuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your client receives lots of messages or you need to control the synchronization with other threads, set
NotifyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec-
tion thread, so if you require to update any control of a form or access shared objects, you must implement
your own synchronization methods.

COMPONENTS

TsgcWebSocketClient | Client Authentication

TsgcWebSocket client supports 4 types of Authentications:

» Basic: sends an HTTP Header during WebSocket HandShake with User and Password encoded as Basic
Authorization.

» Token: sends a Token as HTTP Header during WebSocket HandShake, just set in
Authentication.Token.AuthToken the required token by server.

» Session: first client request an HTTP session to server and if server returns a session this is passed in GET
HTTP Header of WebSocket HandShake. (* own authorization method for sgcWebSockets library).

» URL: client request authorization using GET HTTP Header of WebSocket HandShake. (* own authorization
method for sgcWebSockets library).

Authorization Basic

Is a simple authorization method where user and password are encoded and passes as an HTTP Header. Just set
User and Password and enable only Basic Authorization type to use this method.

oClient = new TsgcWebSocketClient();
oClient.Authorization.Enabled = true;
oClient.Authorization.Basic.Enabled = true;
oClient.Authorization->User = "your user";
oClient.Authorization->Password = "your password";
oClient.Authorization.Token.Enabled = false;
oClient.Authorization.URL.Enabled = false;
oClient.Authorization.Session.Enabled = false;
oClient.Active = true;

Authorization Token

Allows to get Authorization using JWT, requires you obtain a Token using any external tool (example: using an
HTTP connection, OAuth2...).

If you Attach an OAuth2 component, you can obtain this token automatically. Read more about OAuth2.

Basically you must set your AuthToken and enable Token Authentication.

oClient = new TsgcWebSocketClient();
oClient.Authorization.Enabled = true;
oClient.Authorization.Token.Enabled = true;
oClient.Authorization.Token.AuthToken = "your token";
oClient.Authorization.Basic.Enabled = false;
oClient.Authorization.URL.Enabled = false;
oClient.Authorization.Session.Enabled = false;
oClient.Active = true;

Authorization Session

First client connects to server using an HTTP connection requesting a new Session, if successful, server returns a
Sessionld and client sends this Sessionld in GET HTTP Header of WebSockets HandShake.
Requires to set UserName and Password and set Session Authentication to True.

oClient = new TsgcWebSocketClient();
oClient.Authorization.Enabled = true;
oClient.Authorization.Session.Enabled = true;
oClient.Authorization.User = "your user";
oClient.Authorization.Password = "your password";

COMPONENTS

oClient.Authorization.Basic.Enabled = false;
oClient.Authorization.URL.Enabled = false;
oClient.Authorization.Token.Enabled = false;
oClient.Active = true;

Authorization URL

This Authentication method, just passes username and password in GET HTTP Header of WebSockets Hand-
Shake.

oClient = new TsgcWebSocketClient();
oClient.Authorization.Enabled = true;
oClient.Authorization.URL.Enabled = true;
oClient.Authorization.User = "your user";
oClient.Authorization.Password = "your password";
oClient.Authorization.Basic.Enabled = false;
oClient.Authorization.Session.Enabled = false;
oClient.Authorization.Token.Enabled = false;
oClient.Active = true;

COMPONENTS

TsgcWebSocketClient | Client Exceptions

Sometimes there are some errors in communications, server can disconnect a connection because it's not autho-
rized or a message hasn't the correct format... there are 2 events where errors are captured

OnError

This event is fired every time there is an error in WebSocket protocol, like invalid message type, invalid utf8 string...

private void OnError(TsgcWSConnection Connection, string aError)

{

Console.WriteLine("#error: " + Error);

}

OnException

This event is fired every time there is an exception like write a socket is not active, access to an object that not ex-
ists

private void OnException(TsgcWSConnection Connection, Exception E)

{

Console.WriteLine("#exception: " + E.Message);

}

By default, when connection is closed by server, an exception will be fired, if you don't want that these excep-
tions are fired, just disable in Options.RaiseDisconnectExceptions.

COMPONENTS

TsgcWebSocketClient | WebSocket Hand-
Shake

WebSocket protocol uses an HTTP HandShake to upgrade from HTTP Protocol to WebSocket protocol. This hand-
shake is handled internally by TsgcWebSocket Client component, but you can add your custom HTTP headers if
server requires some custom HTTP Headers info.

Example: if you need to add this HTTP Header "Client: sgcWebSockets"

void OnHandshake(TsgcwWSConnection Connection, ref string Headers)

Headers = Headers + Environment.NewLine + "Client: sgcWebSockets";

}

You can check HandShake string before is sent to server using OnHandShake event too.

COMPONENTS

TsgcWebSocketClient | Client Register Pro-
tocol

By default, TsgcWebSocketClient doesn't make use of any SubProtocol, basically websocket sub-protocol are built
on top of websocket protocol and defines a custom message protocol, example of websocket sub-protocols can be
MQTT, STOMP...

WebSocket SubProtocol name is sent as an HTTP Header in WebSocket HandShake, this header is processed by
server and if server supports this subprotocol will accept connection, if is not supported, connection will be closed
automatically

Example: connect to a websocket server with SubProtocol name 'myprotocol'

Client = new TsgcWebSocketClient();
Client.Host = "server host";
Client.Port = server.port;
Client.RegisterProtocol("myprotocol");
Client.Active = true;

COMPONENTS

TsgcWebSocketClient | Client Proxies

TsgcWebSocket client support connections through proxies, to configure a proxy connection, just fill the Proxy
properties of TsgcWebSocket client.

Client = new TsgcWebSocketClient();
Client.Proxy.Enabled = true;
Client.Proxy.Username "user";

Client.Proxy.Password = "secret";
Client.Proxy.Host = "80.55.44.12";
Client.Proxy.Port = 8080;
Client.Active = true;

COMPONENTS

TsgcWebSocketServer

TsgcWebSocketServer implements Server WebSocket Component and can handle multiple threaded client connec-
tions. Follow the steps below to configure this component:

1. Drop a TsgcWebSocketServer component onto the form
2. Set Port (default is 80). If you are behind a firewall probably you will need to configure it.
3. Set Specifications allowed, by default, all specifications are allowed.

RFC6455: is standard and recommended WebSocket specification.

Hixie76: it's a draft and it's only recommended to establish Hixie76 connections if you want to provide support to
old browsers like Safari 4.2

4. The following events are available:
OnConnect: every time a WebSocket connection is established, this event is triggered.
OnDisconnect: every time a WebSocket connection is dropped, this event is triggered.
OnError: whenever a WebSocket error occurs (like mal-formed handshake), this event is triggered.
OnMessage: every time a client sends a text message and it's received by server, this event is triggered.
OnBinary: every time a client sends a binary message and it's received by server, this event is triggered.
OnHandhake: this event is triggered after the handshake is evaluated on the server side.
OnException: whenever an exception occurs, this event is triggered.

OnAuthentication: if authentication is enabled, this event is triggered. You can check user and password
passed by the client and enable/disable Authenticated Variable.

OnUnknownProtocol: if WebSocket protocol is not detected (because the client is using plain TCP protocol for
example), in this event connection can be accepted or rejected.

OnStartup: raised after the server has started.
OnShutdown: raised after the server has stopped.

OnTCPConnect: public event, is called AFTER the TCP connection and BEFORE Websocket handshake. Is
useful when your server accepts plain TCP connections. By default Ithe OnConnect event is only fired after first
message sent by client, if you want to change this behaviour when using plain TCP connections, handle this event
and set the connection transport to trpTCP.

void OnTCPConnectEvent(SgcWSConnection aConnection, ref bool Accept)

{
aConnection.Transport = trpTcp;
Accept = true;

}

OnBeforeHeartBeat: if HeartBeat is enabled, allows implementing a custom HeartBeat setting Handled parame-
ter to True (this means, standard websocket ping won't be sent).

COMPONENTS

5. Create a procedure and set property Active = True.

Most common uses

Start
» Server Start
+ Server Bindings
» Server Startup - Shutdown
» Server Keep Active

Connections
» Server Keep Connections Alive
» Server Plain TCP
» Server Close Connection

Authentication
» Server Authentication

Send Messages
» Server Send Text Message
» Server Send Binary Message

Receive Messages
» Server Receive Text Message
» Server Receive Binary Message

Methods

Broadcast: sends a message to all connected clients.
Message / Stream: message or stream to send to all clients.
Channel: if you specify a channel, the message will be sent only to subscribers.
Protocol: if defined, the message will be sent only to a specific protocol.
Exclude: if defined, list of connection guid excluded (separated by comma).
Include: if defined, list of connection guid included (separated by comma).
WriteData: sends a message to a single or multiple clients. Every time a Client establishes a

WebSocket connection, this connection is identified by a Guid, you can use this Guid to send a mes-
sage to a client.

Ping: sends a ping to all connected clients. If a time-out is specified, it waits a response until a
time-out is exceeded, if no response, then closes the connection.

DisconnectAll: disconnects all active connections.

Start: uses a secondary thread to connect to the server, this prevents your application from
freezing while trying to connect.

Stop: uses a secondary thread to disconnect from the server, this prevents your application from
freezing while trying to disconnect.

COMPONENTS

Properties

Authentication: if enabled, you can authenticate WebSocket connections against a username and password.
Authusers: is a list of authenticated users, following spec:
user=password
Implements 3 types of WebSocket Authentication

Session: client needs to do an HTTP GET passing username and password, and if authenticated, server re-
sponse a Session ID. With this Session ID, client open WebSocket connection passing as a parameter.

URL: client open Websocket connection passing username and password as a parameter.
Basic: implements Basic Access Authentication, only applies to VCL Websockets (Server and Client) and
HTTP Requests (client web browsers don't implement this type of authentication).

+ CustomHeaders: here you can add the custom headers that will be sent if there si any authentication
error.

Bindings: used to manage IP and Ports.

Count: Connections number count.

LogFile: if enabled, saves socket messages to a specified log file, useful for debugging.
Enabled: if enabled every time a message is received and sent by socket it will be saved on a file.
FileName: full path to the filename.
UnMaskFrames: by default True, means that saves the websocket messages received unmasked.

Extensions: you can enable message compression (if client don't support compression, messages will be ex-
changed automatically without compression).

FallBack: if WebSockets protocol it's not supported natively by the browser, you can enable the following fall-
backs:

Flash: if enabled, if the browser hasn't native WebSocket implementation and has flash enabled, it uses Flash
as a Transport.

ServerSentEvents: if enabled, allows you to send push notifications from the server to browser clients.
Retry: interval in seconds to try to reconnect to server (3 by default).
HeartBeat: if enabled, attempts to keep alive WebSocket client connections by sending a ping every x seconds.
Interval: number of seconds between each ping.
Timeout: max number of seconds between a ping and pong.
HeartBeatType: allows customizing how the HeartBeat works
» hbtAlways: sends a ping every x seconds defined in the Interval.
» hbtOnlylfNoMsgRcvinterval: sends a ping every x seconds only if no messages has been received
during the latest x seconds defined in the Interval property. When using IOHandler = iohDefault, the
ping is sent in the context of the connection thread instead of using a separate thread to send a ping

to all connected clients.

TCPKeepAlive: if enabled, uses keep-alive at TCP socket level; in Windows, it will enable
SIO_KEEPALIVE_VALS if supported, otherwise it will use keepalive. By default is disabled.

Interval: in milliseconds.

COMPONENTS

Timeout: in milliseconds.

HTTP20ptions: by default HTTP/2 protocol is not enabled, it uses HTTP 1.1 to handle HTTP requests. Enable
this property if you want to use the HTTP/2 protocol if the client supports it.

Enabled: if true, HTTP/2 protocol is supported. If client doesn't supports HTTP/2, HTTP 1.1 will be used as
fallback.

Settings: Specifies the header values to send to the HTTP/2 server.
EnablePush: by default enabled, this setting can be used to avoid server push content to client.
HeaderTableSize: Allows the sender to inform the remote endpoint of the maximum size of the head-
er compression table used to decode header blocks, in octets. The encoder can select any size equal
to or less than this value by using signaling specific to the header compression format inside a header

block. The initial value is 4,096 octets.

InitialWindowsSize: Indicates the sender’s initial window size (in octets) for stream-level flow control.
The initial value is 65,535 octets. This setting affects the window size of all streams.

MaxConcurrentStreams: Indicates the maximum number of concurrent streams that the sender will
allow. This limit is directional: it applies to the number of streams that the sender permits the receiver
to create. Initially, there is no limit to this value.

MaxFrameSize: Indicates the size of the largest frame payload that the sender is willing to receive, in
octets. The initial value is 16,384 octets.

MaxHeaderListSize: This advisory setting informs a peer of the maximum size of header list that the
sender is prepared to accept, in octets. The value is based on the uncompressed size of header
fields, including the length of the name and value in octets plus an overhead of 32 octets for each
header field.
IOHandlerOptions: by default uses normal Indy Handler (every connection runs in his own thread)
iohDefault: default indy IOHandler, every new connection creates a new thread.
iohlOCP: only for windows and requires sgcWebSockets Enterprise Edition, a thread pool handles all con-
nections. Read more about IOCP.
LoadBalancer: it's a client which connects to Load Balancer Server to broadcast messages and send informa-
tion about the server.

AutoRegisterBindings: if enabled, sends automatically server bindings to load balancer server.

AutoRestart: time to wait in seconds after a load balancer server connection has been dropped and tries to re-
connect; zero means no restart (by default);

Bindings: here you can set manual bindings to be sent to Load Balancer Server, example:

WS://127.0.0.1:80
WSS://127.0.0.2:8888

Enabled: if enabled, it will connect to Load Balancer Server.
Guid: used to identify server on Load Balancer Server side.
Host: Load Balancer Server Host.

Port: Load Balancer Server Port.

MaxConnections: max connections allowed (if zero there is no limit).

COMPONENTS

NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro-
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Options:
FragmentedMessages: allows handling fragmented messages

frgOnlyBuffer: the message is buffered until all data is received, it raises OnBinary or OnMessage
event (option by default)

frgOnlyFragmented: every time a new fragment is received, it raises OnFragmented Event.

frgAll: every time a new fragment is received, it raises OnFragmented Event with All data received
from the first packet. When all data is received, it raises OnBinary or OnMessage event.

HTMLFiles: if enabled, allows you to request Web Browser tests, enabled by default.
JavascriptFiles: if enabled, allows requesting built-in JavaScript libraries, enabled by default.

RaiseDisconnectExceptions: enabled by default; raises an exception every time there's a disconnection
due to a protocol error.

ReadTimeOut: time in milliseconds to check if there is data in socket connection, 10 by default.

WriteTimeOut: max time in milliseconds sending data to other peer, 0 by default (only works under Win-
dows OS).

ValidateUTF8: if enabled, validates whether the message contains valid UTF8 characters; by default, it's
disabled.

Software: contains the value of the HTTP Server header; the default value is the library name and version.

QueueOptions: this property allows queuing the messages in an internal queue (instead of send directly) and

send the messages in the context of the connection thread (QueueOptions only works on Indy based servers
where every connection runs in his own thread), this prevents locks when several threads try to send a message
using the same connection. For every message type: Text, Binary or Ping a queue can be configured, by default
the value set is gmNone which means the messages are not queued. The other types, means different queue lev-
els and the difference between them are just the order where are processed (first are processed gmLevel1, then
gmLevel2 and finally gmLevel3).
Example: if Text and Binary messages have the property set to gmLevel2 and Ping to gmLevel1. The server will
process first the Ping messages (so the ping message is sent first than Text or Binary if they are queued at the
same time), and then process the Text and Binary messages in the same queue. QueueOptions is not supported
when IOHandlerOptions = iohlOCP

ReadEmptySource: max number of times an HTTP Connection is read and there is no data received, 0 by de-
fault (means no limit). If the limit is reached, the connection is closed.

SecurityOptions:

OriginsAllowed: define here which origins are allowed (by default accepts connections from all origins), if
the origin is not in the list closes the connection. Examples:

. Allow all connections to IP 127.0.0.1 and port 5555. OriginsAllowed = "http://127.0.0.1:5555"
. Allow all connections to IP 127.0.0.1 and all ports. OriginsAllowed = "http://127.0.0.1:*"
. Allow all connections from any IP. OriginsAllowed = ""

SSL: enables secure connections.

COMPONENTS

SSLOptions: used to define SSL properties: certificates filenames, password...

RootCertFile: path to root certificate file.

CertFile: path to certificate file in PEM format.

KeyFile: path to certificate key file in PEM format.

Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyCertificate_Options:

FailflfNoCertificate: if the client did not return a certificate, the TLS/SSL handshake is immediately
terminated with a "handshake failure" alert.

VerifyClientOnce: only request a client certificate on the initial TLS/SSL handshake. Do not ask for a
client certificate again in case of a renegotiation.

VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica-
tion is performed for the X.509 certificate.

Version: by default negotiates all possible TLS versions from newer to lower. A specific TLS version can be
selected.

tisUndefined: this is the default value, the client attempts to negotiate all available TLS versions
(starting from newest to oldest), till connects successfully.

tls1_0: implements TLS 1.0

tls1_1:implements TLS 1.1

tls1_2: implements TLS 1.2

tls1_3: implements TLS 1.3

OpenSSL_Options:

APIVersion: allows defining which OpenSSL API will be used.
oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses APl 1.1 OpenSSL, requires our custom Indy library and allows using
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses APl 3.0 OpenSSL, requires our custom Indy library and allows using
OpenSSL 3.0.0 libraries (with TLS 1.3 support).
LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath-
Custom.
LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en-
abled, except under OSX64):
oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.
ECDHE: if enabled, uses ECDHE instead of RSA as key exchange. Recommended to enable ECD-
HE if you use OpenSSL 1.0.2.
CipherList: leave blank to use the default ciphers, if you want to customize the cipher list, set the val-
ue in this property. Example: ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256
Curvelist: leave blank to use the default curves. You can set your own curve list names, for
example: P-521:P-384:P-256:brainpoolP256r1
MinVersion: set here the minimum version accepted by the Server. By default, the value
is tisUndefined which means the minimum version is the same which has been set in the Version
property. Example: if you want to set the Server to only accept TLS 1.2 and TLS 1.3 set the following
values.

SSLOptions.Version := tls1_3;
SSLOptions.OpenSSL_Options.MinVersion := tls1_2;

X509Checks: use this property to enable additional X509 certificate validations:
Mode: select which options will be validated

COMPONENTS

oslIx509chHostName: verifies the hostname certificate.

osIx509chIPAddress: verifies the ip address of the certificate.
HostName: set the hostname if it's different from the request.
IPAddress: set the ip address if it's different from the request.

ThreadPool: if enabled, when a thread is no longer needed this is put into a pool and marked as inactive (do
not consume CPU cycles), it's useful if there are a lot of short-lived connections. The ThreadPool is not compatible
with IOCP, so please don't enable it when IOCP is enabled.

MaxThreads: max number of threads to be created, by default is 0 meaning no limit. If max number is
reached then the connection is refused.

PoolSize: size of ThreadPool, by default is 32.

WatchDog: if enabled, restarts the server after an unexpected disconnection.
Interval: seconds before reconnecting.

Attempts: maximum number of reconnection attempts; if zero, unlimited.

Throttle: used to limit the number of bits per second sent or received.

COMPONENTS

TsgcWebSocketServer | Start Server

The first you must set when you want start a Server is set a Listening Port, by default, this is set to port 80 but you
can change for any port.
Once the port is set, there are 2 methods to start a server.

Active Property

If you set Active property to true, server will start to listening all incoming connection on port set.

oServer = new TsgcWebSocketServer();
oServer.Port = 80;
oServer.Active = true;

If you set Active property to false, server will stop and close all active connections.

oServer.Active = false;

Start / Stop methods

While if you call Active property the process of start / stop server is done in the same thread, calling Start and Stop
methods will be executed in a secondary thread.

oServer = new TsgcWebSocketServer();
oServer.Port = 80;
oServer.Start();

If you call Stop() method, server will stop and close all active connections.

oServer.Stop();

You can use the method ReStart, to Stop and Start server in a secondary thread.

COMPONENTS

TsgcWebSocketServer | Server Bindings

By default, if you only fill Port property, server binds listening port of ALL IPs, so if for example, you have 3 IP:
127.0.0.1, 80.5411.22 and 12.55.41.17. Your server will bind this port on 3 IPs.

Usually is recommended only binding to needed IPs, here is where you can user Bindings property.

Instead of use Port property, just use Binding property and fill with IP and Port required.

Example: bind Port 5555 to IP 127.0.0.1 and IP 80.58.25.40

oServer = new TsgcWebSocketServer();
oServer.Bindings = "127.0.0.1:5555,80.58.25.40:5555";
oServer.Active = true;

COMPONENTS

TsgcWebSocketServer | Server Startup
Shutdown

Once you have set all required configurations of your server, there are 2 useful events to know when server has
started and when has stopped.

OnStartup

This event is fired when server has started and can process new connections.

void OnStartup()

Console.WriteLine("#server started");

}

OnShutdown

This event is fired after server has stopped and no more connections are accepted.

void OnStartup()

Console.OnShutdown("#server stopped");

}

COMPONENTS

TsgcWebSocketServer | Server Keep Active

Once server is started and OnShutdown event is fired, sometimes server can stopped for any reason. If you want
to restart server after an unexpected close, you can use WatchDog property

WatchDog

If WatchDog is enabled, when server detects a Shutdown, WatchDog try to restart again every X seconds until
server is active again.

Example: restart every 10 seconds after an unexpected stop with unlimited attempts.

oServer = new TsgcWebSocketServer();
oServer.WatchDog.Interval = 10;
oServer .WatchDog.Attempts = 0;
oServer .WatchDog.Enabled = true;
oServer.Active = true;

COMPONENTS

TsgcWebSocketServer | Server SSL

Server can be configured to use SSL Certificates, in order to get a Production Server with a server certificate, you
must purchase a Certificate from a well known provider: Namecheap, godaddy, Thawte... For testing purposes
you can use a self-signed certificate (check out in Demos/Chat which uses a self-signed certificate).

Certificate must be in PEM format, PEM (from Privacy Enhanced Mail) is defined in RFCs 1421 through 1424, this
is a container format that may include just the public certificate (such as with Apache installs, and CA certificate
files /etc/ssl/certs), or may include an entire certificate chain including public key, private key, and root certificates.
To create a single pem certificate, just open your private key file, copy the contents and paste on certificate file.

Example:

certificate.crt

To enable SSL, just enable SSL property and configure the paths to CertFile, KeyFile and RootFile. If certificate
contains entire certificate (public key, private key...) just set all paths to the same certificate.

Another property you must set is SSLOptions.Port, this is the port used for secure connections.

Simple SSL Configuration

Example: configure SSL in IP 127.0.0.1 and Port 443

oServer = new TsgcWebSocketServer()
oServer.SSL = true;

oServer.SSLOptions.CertFile = "c:\certificates\mycert.pem";
oServer.SSLOptions.KeyFile = "c:\certificates\mycert.pem";
oServer.SSLOptions.RootCertFile = "c:\certificates\mycert.pem";

oServer.SSLOptions.Port = 443;
oServer.Port = 443;
oServer.Active = true;

SSL and None SSL

You can configure the server to listen on more than one IP and port; check the Binding article which explains how it
works. The server can be configured to allow SSL connections and non-SSL connections at the same time (of

COMPONENTS

course, listening on different ports). You only need to bind to two different ports and configure one port for SSL con-
nections and another port for non-SSL connections.

Example: configure server in IP 127.0.0.1, port 80 (none encrypted) and 443 (SSL)

oServer = new TsgcWebSocketServer()
oServer.Bindings = "127.0.0.1:80,127.0.0.1:443"
oServer.SSL = true;

oServer.Port = 80;

oServer.SSLOptions.CertFile = "c:\certificates\mycert.pem";
oServer.SSLOptions.KeyFile = "c:\certificates\mycert.pem";
oServer.SSLOptions.RootCertFile = "c:\certificates\mycert.pem";

oServer.SSLOptions.Port = 443;
oServer.Active = true;

COMPONENTS

TsgcWebSocketServer | Server Verify Certifi-
cate

By default, the server doesn't verify the peer certificates. To configure the server to verify the client certificate imple-
ment the next steps:

1. Set the property SSLOptions.VerifyCertificate = true

Handle the event OnSSLVerifyPeer and implement the following code to be notified every time a client connects
with a certificate.

private void OnSSLVerifyPeerEvent(object Sender, TIdX509 Certificate, ref bool Accept)
{
// ... validate the certificate
if (Certificate_OK)
Accept = true;
else
Accept = false;

}

Note that the event OnSSLVerifyPeer is only called if the client provides a certificate, if a client doesn't pro-
vides a certificate, the event is not fired.

You can configure the server that only allow SSL connections using a certificate, to do this, set the property

» SSLOptions.VerifyCertificate_Options.FaillfNoCertificate = true

If the client doesn't provide a certificate, the connection will be closed in the SSL Handshake.

COMPONENTS

TsgcWebSocketServer | Server Keep Con-
nections Alive

Once your client has connected to server, sometimes connection can be closed due to poor signal, connection er-
rors... use to keep connection alive.

property allows you to send a Ping every X seconds to maintain connection alive. Some servers, close TCP
connections if there is no data exchanged between peers. solves this problem, sending a ping every a specific in-
terval. Usually this is enough to maintain a connection active, but you can set a TimeOut interval if you want to
close connection if a response from client is not received after X seconds.

Example: send a ping to all connected clients every 30 seconds

oServer = new TsgcWebSocketServer();
oServer..Interval = 30;
oServer..Timeout 0;

oServer. .Enabled true;

oServer.Active = true;

COMPONENTS

TsgcWebSocketServer | Server Plain TCP

WebSocket server accepts WebSocket, HTTP, SSE... protocols, but can work too with plain tcp connections. Read
more about TCP Connections.

There are 2 events, which can be used to handle TCP connections better.
OnTCPConnect

This event is called after a client connects to server and before any handshake between client and server. OnCon-
nect event is only fired after client sends a message (to allow server detect which is the protocol to be used).

This event allows you to know that a new client is trying to connect to server and server can accept or not the con-
nection. By default, server always accept connection.
OnUnknownProtocol

This event is called when server receives a first message from client but cannot detect if is any of known protocols.
In this event, server can accept or not protocol

OnConnect

This event is fired after a successful and complete connection, if connection is plain TCP, is fired after protocol is
accepted in OnUnknownProtocol event.

COMPONENTS

TsgcWebSocketServer | Server Close Con-
nection

A single Connection can be closed using Close or Disconnect methods.

Disconnect

TsgcWSConnection has a method called Disconnect(), that allows you to disconnect connection at socket level. If
you call this method, socket will be disconnected directly without waiting any response from client. You can send a
Close Code with this method.

Close

TsgcWSConnection has a method called Close(), which allows you to send a message to server requesting to
close connection, if client receives this message, must close the connection and server will receive a notification
that connection is closed. You can send a Close Code with this method.

DisconnectAll

Disconnects all active connections. This method is called automatically before server stops listening, but you can
call this method at any time.

COMPONENTS

TsgcWebSocketServer | Server Authentica-
tion

TsgcWebSocket server supports 3 types of Authentications:

» Basic: read an HTTP Header during WebSocket HandShake with User and Password encoded as Basic
Authorization.

» Session: first client request an HTTP session to server and if server returns a session this is passed in GET
HTTP Header of WebSocket HandShake. (* own authorization method for sgcWebSockets library).

* URL: read request authorization using GET HTTP Header of WebSocket HandShake. (* own authorization
method for sgcWebSockets library).

You can set a list of Authenticated users, using AuthUsers property, just set your users with the following format:
user=password

OnAuthentication

Every time server receives an Authentication Request from a client, this event is called to return if user is authenti-
cated or not.
Use Authenticated parameter to accept or not the connection.

void OnAuthentication(TsgcwWSConnection Connection, string aUser, string aPassword,
ref bool Authenticated)

if ((auUser == "user") && (aPassword == "secret"))
Authenticated = true;

}

else
Authenticated = false;

3
}

OnUnknownAuthentication

If Authentication is not supported by default, like JWT, still you can use this event to accept or not the connection.
Just read the parameters and accept or not the connection.

void OnUnknownAuthenticationEvent(TsgcWSConnection Connection, string AuthType, string AuthData,
ref string User, ref string Password, ref bool Authenticated)

if (AuthType == "Bearer")
if (AuthData == "jwt_token")
Authenticated = true;
}
else

Authenticated = false;

}
}

else

Authenticated = false;

b
}

104

COMPONENTS

COMPONENTS

TsgcWebSocketServer | Server Send Text
Message

Once client has connected to server, server can send text messages. To send a Text Message, just call WriteData()
method to send a message to a single client or use Broadcast to send a message to all clients.

Send a Text Message

Call To WriteData() method and send a Text message.

TsgcWebSocketClientl.WriteData("guid", "My First sgcWebSockets Message!.");

If QueueOptions.Text has a different value from gqmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

QueueOptions doesn't work if the property IOHandlerOptions.IOHandlerType = iohlOCP (due to the IOCP architec-

ture, this feature is not supported).

You can call to WriteData() method from TsgcWSConnection too, example: send a message to client when con-
nects to server.

void OnConnect(TsgcWSConnection *Connection);

{

Connection.WriteData("Hello From Server");

}

Send a message to ALL connected clients

Call To Broadcast() method to send a Text message to all connected clients.

TsgcWebSocketServerl.Broadcast("Hello From Server");

COMPONENTS

TsgcWebSocketServer | Server Send Binary
Message

Once client has connected to server, server can send binary messages. To send a Binary Message, just call Write-
Data() method to send a message to a single client or use Broadcast to send a message to all clients.
Send a Text Message

Call To WriteData() method and send a Binary message.

TsgcWebSocketClientl.WriteData("guid", new MemoryStream);

If QueueOptions.Binary has a different value from gmNone, instead of be processed on the same thread that is
called, it will be processed on a secondary thread. By default this option is disabled.

QueueOptions doesn't work if the property IOHandlerOptions.IOHandlerType = iohlOCP (due to the IOCP architec-
ture, this feature is not supported).

You can call to WriteData() method from TsgcWSConnection too, example: send a message to client when con-
nects to server.

void OnConnect(TsgcWSConnection *Connection);

{

Connection.WriteData(new MemoryStream());

}

Send a message to ALL connected clients

Call To Broadcast() method to send a Binary message to all connected clients.

TsgcWebSocketServerl.Broadcast(new MemoryStream());

107

COMPONENTS

TsgcWebSocketServer | Server Receive Text
Message

When server receives a Text Message, OnMessage event is fired, just read Text parameter to know the string of
message received.

void OnMessage(TsgcWSConnection Connection, string Text)

{

MessageBox.Show("Message Received from Client: " + Text);

}

By default, server uses neAsynchronous method to dispatch OnMessage event, this means that this event is ex-
ecuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your server receives lots of messages or you need to control the synchronization with other threads, set Noti-
fyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec-
tion thread, so if you require to update any control of a form or access shared objects, you must implement your
own synchronization methods.

COMPONENTS

TsgcWebSocketServer | Server Receive Bi-
nary Message

When server receives a Binary Message, OnBinary event is fired, just read Data parameter to know the binary
message received.

private void OnBinary(TsgcWSConnection Connection, byte[] Bytes)

{

MemoryStream stream = new MemoryStream(Bytes);
pictureBox1.Image = new Bitmap(stream);

}

By default, server uses neAsynchronous method to dispatch OnMessage event, this means that this event is ex-
ecuted on the context of Main Thread, so it's thread-safe to update any control of a form for example.

If your server receives lots of messages or you need to control the synchronization with other threads, set Noti-
fyEvents property to neNoSync, this means that OnMessage event will be executed on the context of connec-
tion thread, so if you require to update any control of a form or access shared objects, you must implement your
own synchronization methods.

COMPONENTS

TsgcWebSocketServer | Server Read Head-
ers from Client

When client connects to WebSocket server, sends a list of headers with information about client connection. In
order to read these client headers, you can OnHandshake event of Server component, which is called when server
receives the headers from client and before sends a response to client.

Client headers are stores in HeadersRequest property of TsgcWSConnectionServer.

void OnServerHandshake(TsgcwWSConnection Connection; var TStringList Headers);
begin

MessageBox.Show(Headers.HeadersRequest.Text());
end;

COMPONENTS

TsgcWebSocketHTTPServer

TsgcWebSocketHTTPServer implements Server WebSocket Component and can handle multiple threaded client
connections as TsgcWebSocketServer, and allows you to server HTML pages using a built-in HTTP Server, sharing
the same port for WebSocket connections and HTTP requests.

Follow the steps below to configure this component:
1. Drop a TsgcWebSocketHTTPServer component in the form
2. Set Port (default is 80). If you are behind a firewall probably you will need to configure it.
3. Set Specifications allowed, by default, all specifications are allowed.
RFC6455: is standard and recommended WebSocket specification.

Hixie76: it's a draft and it's only recommended to establish Hixie76 connections if you want to provide support to
old browsers like Safari 4.2

4. The following events are available:
OnConnect: every time a WebSocket connection is established, this event is triggered.
OnDisconnect: every time a WebSocket connection is dropped, this event is triggered.
OnError: whenever a WebSocket error occurs (like mal-formed handshake), this event is triggered.
OnMessage: every time a client sends a text message and it's received by server, this event is triggered.
OnBinary: every time a client sends a binary message and it's received by server, this event is triggered.
OnHandhake: this event is triggered after handshake is evaluated on the server side.

OnCommandGet: this event is triggered when HTTP Server receives a GET, POST or HEAD command request-
ing a HTML page, an image... Example:

AResponseInfo.ContentText := '<HTML><HEADER>TEST</HEAD><BODY>Hello!</BODY></
HTML>"';

OnCommandOther: this event is triggered when HTTP Server receives a command different of GET, POST or
HEAD.

OnCreateSession: this event is triggered when HTTP Server creates a new session.
OnlinvalidSession: this event is triggered when an HTTP request is using an invalid/expiring session.
OnSessionStart: this event is triggered when HTTP Server starts a new session.
OnCommandOther: this event is triggered when HTTP Server closes a session.

OnException: this event is triggered when HTTP Server throws an exception.

OnAuthentication: if authentication is enabled, this event if fired. You can check user and password passed by
the client and enable/disable Authenticated Variable.

OnUnknownProtocol: if WebSocket protocol is not detected (because the client is using plain TCP protocol for
example), in this event connection can be accepted or rejected.

OnBeforeHeartBeat: if HeartBeat is enabled, allows implementing a custom HeartBeat setting Handled parame-
ter to True (this means, standard websocket ping won't be sent).

file:/C:/Users/Sergio/AppData/Local/Temp/RHTMP/NET%20PDFJy6wsg/TsgcWebSocketHTTPServer.htm

COMPONENTS

OnBeforeForwardHTTP: allows you to forward a HTTP request to another HTTP server. Use forward property
to enable this and set the destination URL.

OnHTTPUploadBeforeCreatePostStream: this event is called after the headers have been read and before
the post stream is created.

OnHTTPUploadBeforeSaveFile: the event is fired when a new file has been uploaded and before is saved to
disk file, allows you to modify the filename where will be saved.

OnHTTPUploadAfterSaveFile: the event is fired after a new file has been uploaded and saved to disk file.

OnHTTPUploadReadInput: the event is fired when the form post reads an input variable different from the file.

* In some cases, you may get a high consume of cpu due to unsolicited connections, in these cases, just return an
error 500 if it's a HTTP request or close connection for Unknown Protocol requests.

5. Create a procedure and set property Active = true.

Most common uses

e HTTP

* HTTP Server Requests
HTTP Dispatch Files
HTTP/2 Server
HTTP/2 Server Push
HTTP/2 Alternate Service
« HTTP/2 Server Threads
+ HTTP Post Big Files

Methods

Broadcast: sends a message to all connected clients.
Message / Stream: message or stream to send to all clients.
Channel: if you specify a channel, the message will be sent only to subscribers.
Protocol: if defined, the message will be sent only to a specific protocol.
Exclude: if defined, list of connection guid excluded (separated by comma).
Include: if defined, list of connection guid included (separated by comma).
WriteData: sends a message to a single or multiple clients. Every time a Client establishes a
WebSocket connection, this connection is identified by a Guid, you can use this Guid to send a mes-
sage to a client.

Ping: sends a ping to all connected clients.

DisconnectAll: disconnects all active connections.

COMPONENTS

Properties

Connections: contains a list of all clients connections.
Bindings: used to manage IP and Ports.

DocumentRoot: here you can define a directory where you can put all html files (javascript, HTML, CSS...) if a
client sends a request, the server automatically will search this file on this directory, if it finds, it will be served.

Extensions: you can enable message compression (if client don't support compression, messages will be ex-
changed automatically without compression).

MaxConnections: max connections allowed (if zero there is no limit).

Count: Connections number count.

AutoStartSession: if SessionState is active, when the server gets a new HTTP request, creates a new session.
SessionState: if active, enables HTTP sessions.

KeepAlive: if enabled, connection will stay alive after the response has been sent.

ReadStartSSL: max. number of times an HTTPS connection tries to start.

SessionList: read-only property used as a container for TIdHTTPSession instances created for the HTTP serv-
er.

SessionTimeOut: timeout of sessions.

HTTP2Options: by default HTTP/2 protocol is not enabled, it uses HTTP 1.1 to handle HTTP requests. Enable
this property if you want to use the HTTP/2 protocol if the client supports it.

Enabled: if true, HTTP/2 protocol is supported. If client doesn't supports HTTP/2, HTTP 1.1 will be used as
fallback.

FragmentedData: this property allows you to configure how handle the fragments received.

+ h2fdOnlyBuffer: it's the default option, the response is dispatched only when has been received the
latest packet.

+ h2fdAll: the response is dispatched for every packet received (one or more) on the event
OnHTTP2ResponseFragment and on the event OnHTTP2Response when the latest packet has been
received.

+ h2fdOnlyFragmented:: the response is only dispatched in the event OnHTTP2ResponseFragment
for every packet received (one response can be compound of 1 or multiple packets).

Settings: Specifies the header values to send to the HTTP/2 server.
EnablePush: by default enabled, this setting can be used to avoid server push content to client.

HeaderTableSize: Allows the sender to inform the remote endpoint of the maximum size of the head-
er compression table used to decode header blocks, in octets. The encoder can select any size equal
to or less than this value by using signaling specific to the header compression format inside a header
block. The initial value is 4,096 octets.

InitialWindowSize: Indicates the sender’s initial window size (in octets) for stream-level flow control.
The initial value is 65,535 octets. This setting affects the window size of all streams.

MaxConcurrentStreams: Indicates the maximum number of concurrent streams that the sender will
allow. This limit is directional: it applies to the number of streams that the sender permits the receiver
to create. Initially, there is no limit to this value.

COMPONENTS

MaxFrameSize: Indicates the size of the largest frame payload that the sender is willing to receive, in
octets. The initial value is 16,384 octets.

MaxHeaderListSize: This advisory setting informs a peer of the maximum size of header list that the
sender is prepared to accept, in octets. The value is based on the uncompressed size of header
fields, including the length of the name and value in octets plus an overhead of 32 octets for each
header field.

Events: here you can configure if you want be notified when there is a new HTTP/2 connection or not.

OnConnect: if enabled when there is a new HTTP/2 connection, OnConnect event will be called (by
default is disabled).

OnDisconnect: if enabled when there is a new HTTP/2 disconnection, OnDisconnect event will be
called (by default is disabled).

HTTPUploadFiles: by default when a client sends a file using a POST stream, the file is saved in memory. If you
want to save these streams directly as files to avoid memory problems, you set the StreamType to pstFileStream
and the files will be saved in the hard disk. Read more about Post Big Files.

MinSize: Minimum size in bytes of the stream to be saved as a file stream. By default is zero, which means
all streams will be saved as FileStreams (if StreamType = pstFileStream).

RemoveBoundaries: the files uploaded using POST multipart/form-data, are encapsulated in boundaries, if
this property is enabled, the files will be extracted from boundaries and saved in the hard disk.

SaveDirectory: the folder where the files will be saved. If empty, will be saved in the same folder where is
the application.

StreamType: the type of the stream where the stream will be saved, by default memory.

pstMemoryStream: as memory stream.
pstFileStream: as file stream.

COMPONENTS

TsgcWebSocketHTTPServer | HTTP Server
Requests

Use OnCommandGet to handle HTTP client requests. Use the following parameters:
* RequestiInfo: contains HTTP request information.

* Responselnfo: is the HTTP response to HTTP Request.
» ContentText: is the response in text format.
+ ContentType: is the type of Content-Type.
* ResponseNo: number of HTTP response, example: 200.

void OnCommandGet (TsgcWSConnection Connection, TsgcWSHTTPRequestInfo RequestInfo,
ref TsgcWSHTTPResponseInfo ResponseInfo)

if (RequestInfo.Document == "/")
ResponseInfo.ContentText "<html><head><title>Test Page</title></head><body></body></html>";

ResponseInfo.ContentType "text/html";
ResponseInfo.ResponseNo = 200;

b
}

OnBeforeCommand

Use this event to customize the HTTP response, example: if you want that some endpoints are using an authoriza-
tion scheme while others can be accessed without authorization, use the options parameter to allow or disable it.
Find below an example when Authorization Basic is enabled but when a user requests the endpoint /public the au-
thorization is not required.

public void OnBeforeCommand(TsgcWSConnection aConnection, TIdHTTPRequestInfo ARequestInfo, TIdHTTPResponseInfo AF

if (ARequestInfo.Document == "/public")
aOptions = TsgcHTTPCommandOptions.hcoAuthorizedBasic;

COMPONENTS

TsgcWebSocketHTTPServer | HTTP Dis-
patch Files

When a client request a file, OnCommandGet event is fired, but you can use DocumentRoot property to dispatch
automatically files.

Example: if you set DocumentRoot to c:/wwwilfiles. Every time a new file is requested, will search in this folder if
file exists and if exists, will be dispatched automatically.

COMPONENTS

TsgcWebSocketHTTPServer | HTTP/2 Server

sgcWebSockets HTTP Server allows you to handle HTTP/1.1 and HTTP/2.0 requests, you can enable HTTP/2 pro-
tocol using HTTP20ptions of Server.

Set HTTP2Options.Enabled = true to allow the server to accept HTTP/2 protocol requests. The requests can be
processed by user exactly equal than with HTTP/1.1 protocol, read more.

When HTTP/2 protocol is enabled, server will still support HTTP/1.1 requests.
By default, OnConnect and OnDisconnect events won't be called when there is a new HTTP/2 connection, but this

can be modified accessing to properties HTTP2Options.Events, here you can customize if you want be notified
every time there is a new HTTP/2 connection and/or disconnection.

117

COMPONENTS

TsgcWebSocketHTTPServer | HTTP/2 Server
Push

HTTP usually works with Request/Response pattern, where client REQUEST a resource to SERVER and SERVER
sends a RESPONSE with the resource requested or an error. Usually the client, like a browser, makes a bunch of
requests for those assets which are provided by the server.

TYPICAL WEB SERVER COMMUNICATION

USER REQUESTS index. html

USER RECEIVES :%i"_-,'].l'-_‘."p. C5%

WEEB BROWSER WEB SERVER

The main problem of this approach is that first client must send a request to get the resource, example: index.html,
wait till server sends the response, the client reads the content and then make all other requests, example:
styles.css

HTTP/2 server push tries to solve this problem, when the client requests a file, if server thinks that this file needs
another file/s, those files will be PUSHED to client automatically.

WEB SERVER COMMUNICATION
WITH HTTP/2 SERVER PUSH

USER REQUESTS index . html .e
LUSER RECEIVES index . html
USER RECEIVES styles.css

WEB BROWSER WEB SERVER

In the prior screenshot, first client request index.html, server reads this request and sends as a response 2 files:
index.html and styles.css, so it avoids a second request to get styles.css

Configure Server Push

Following the prior screenshots, you can configure your server so every time there is a new request for /index.html
file, server will send index.html and styles.css

Use the method PushPromiseAddPreLoadLinks, to associate every request to a push promise list.

TsgcWebSocketHTTPServer server = new TsgcWebSocketHTTPServer (this);
server->PushPromiseAddPreLoadLinks("/index.html", "/styles.css");

void OnCommandGet (TsgcwWSConnection Connection, TsgcWSHTTPRequestInfo RequestInfo, ref TsgcWSHTTPResponseInfo Resg
{

if (RequestInfo.Document == "/index.html")

{

COMPONENTS

ResponseInfo.ContentText "y
ResponseInfo.ContentType "text/html";
ResponseInfo.ResponseNo = 200;

else if (RequestInfo.Document == "/styles.css")
{
ResponseInfo.ContentText ",
ResponseInfo.ContentType "text/css";
ResponseInfo.ResponseNo = 200;

3

}

Using the chrome developer tool, you can view how the styles.css file is pushed to client.

[w ﬂ Elements Console Sources Network Performance Memory Application Seourity Lighthouse TR INEE «
® O Y Q [J Preserve log () Disable cache | Online v + *
Filter (J Hide data URLs [} | ¥HR J5 C55 Img Media Font Doc WS Manifest Other [Hasblocked cookies
[Tl Blocked Requests
(O Use large request rows (J Group by frame
Show overview [CJ Capture screenshots
| 10 ms 20 ms 30 ms 40 s 50 ms 60 ms 70 ms 80 s 90 s 100 ms
Mame Status Protocol Type Initiater Size Time Waterfall
[| index.html 200 h2 document Other 213B 2ms |
| | styles.css 200 h2 stylesheet Push / index.html 1358 3ms |
[| favicon.ico 200 h2 text/html Other 169 B 2ms | |

COMPONENTS

TsgcWebSocketHTTPServer | HTTP/2 Alter-
nate Service

The Alt-Svc HTTP header is used to inform the clients that the same resource can be reached from another
service or protocol, this is useful if you want inform the HTTP clients that your server supports HTTP/2 for exam-
ple.

Example: if your server is running on a local IP 127.0.0.1 and is listening on 2 ports: 80 (non encrypted) and 443
(encrypted). You can inform the clients, that HTTP/2 is supported on port 443 using the following HTTP header

Alt-Svc: h2=":443"

When HTTP/2 is enabled, automatically adds this header if the connection is not running on HTTP/2 protocol.
You can enable or disable this feature using the property HTTP2Options.AltSvc.

COMPONENTS

TsgcWebSocketHTTPServer | HTTP/2 Server
Threads

See below the differences between HTTP 1.1 and HTTP 2.0:

HTTP 1.1

In traditional HTTP behavior, when making multiple requests over the same connection, the client has to wait for
the response of each request before sending the next one. This sequential approach significantly increases the
load time of a website's resources. To address this issue, HTTP/1.1 introduced a feature called pipelining, allowing
a client to send multiple requests without waiting for the server's responses. The server, in turn, responds to the
client in the same order as it received the requests.

While pipelining appeared to be a solution, it faced challenges:

» Server Ignorance or Response Corruption: Some servers either ignored pipelined requests or corrupted
the responses, leading to unreliable communication.

+ Head-of-Line Blocking: The first request in the pipeline could block subsequent requests, causing a delay
in the processing of other requests. This phenomenon, known as head-of-line blocking, resulted in slower
page loading times.

In an effort to optimize page loading from servers supporting HTTP/1.1, the Web-Browsers implemented a
workaround. It opens six-eight parallel connections to the server, enabling the simultaneous transmission of multi-
ple requests. This parallelism aims to mitigate the issues associated with pipelining and improve overall page load
times.

The choice of six-eight parallel connections by the Web-Browsers is based on optimization considerations. The
specific reasons behind selecting this number may involve a trade-off between resource utilization, network efficien-
cy, and avoiding potential bottlenecks.

HTTP 2.0

In response to the constraints encountered in pipelining, HTTP/2 introduced a feature called multiplexing. Multi-
plexing allows for more efficient communication between the client and server by enabling the concurrent
transmission of multiple requests and responses over a single connection.

HTTP/2 utilizes a binary framing mechanism, which means that HTTP messages are broken down into smaller, in-
dependent units called frames. These frames can be interleaved and sent over the connection independently of
one another. At the receiving end, the frames are reassembled to reconstruct the original HTTP message.

This binary framing mechanism is fundamental to achieving multiplexing in HTTP/2. It enables the browser to send
multiple requests over the same connection without encountering blocking issues. As a result, browsers like
Chrome utilize the same connection ID for HTTP/2 requests, allowing for efficient and uninterrupted communication
between the client and server.

In essence, HTTP/2's multiplexing feature, enabled by the binary framing mechanism, enhances the efficiency and
speed of data exchange between clients and servers by facilitating concurrent transmission of multiple requests
and responses over a single connection.

COMPONENTS

TsgcWebSocketHTTPServer

To improve the performance of the HTTP/2 protocol, the requests are dispatched by default in a Pool Of Threads
(by default 32) every time a new HTTP/2 request is received by the server, this avoid waits when a single connec-
tion sends a lot of concurrent requests which will require processing sequentially (in the context of the connection
thread) in the absence of this pool of threads.

The behaviour of the PoolOfThreads can be configured in the following properties.

+ HTTP20ptions.PoolOfThreads.Enabled: (by default false) enable to dispatch the http/2 requests in the
pool of threads instead of the connection thread.

+ HTTP20ptions.Threads: (by default 32) the number of threads used to handle the HTTP/2 requests. Set a
number according the number of processors of your server.

To fine-tune the requests, selecting which must be processed in the Pool Of Threads (because are time consum-
ing) while others can be processed in the connection thread, you <can wuse the event
OnHttp2BeforeAsyncRequest, this event is raised before queue the request in the pool of threads, use the para-
meter Async to set if the request is threaded or not.

COMPONENTS

TsgcWSConnection

TsgcWSConnection is a wrapper of client WebSocket connections, you can access to this object on Server or
Client Events.

Methods

WriteData: sends a message to the client.

Close: sends a close message to other peer. A "CloseCode" can be specified optionally. By default, the value sent
is NORMAL close code. If you send a Negative Close code, the reason of closing won't be sent.

Disconnect: close client connection from the server side. A "CloseCode" can be specified optionally.

Ping: sends a ping to the client.

AddTCPEndOfFrame: if connection is plain TCP, allows you to set which byte/s define the end of message. Mes-
sage is buffered till is received completely.

Subscribe: subscribe this connection to a channel. Later you can Broadcast a message from server component

to all connections subscribed to this channel.

UnSubscribe: unsubscribe this from connection from a channel.

Properties

Protocol: returns sub-protocol used on this connection.

IP: returns Peer IP Address.

Port: returns Peer Port.

LocallP: returns Host IP Address.

LocalPort: returns Host Port.

URL: returns URL requested by the client.

Guid: returns connection ID.

HeadersRequest: returns a list of Headers received on Request.

HeadersResponse: returns a list of Headers sent as Response.

RecBytes: number of bytes received.

SendBytes: number of bytes sent.

Transport: returns the transport type of connection:
trpRFC6455: a normal WebSocket connection.
trpHixie76: a WebSocket connection using draft WebSocket spec.

trpFlash: a WebSocket connection using Flash as FallBack.

COMPONENTS

trpSSE: a Server-Sent Events connection.

trpTCP: plain TCP connection.

TCPEndOfFrameScanBuffer: allows defining which method use to find end of message (if using trpTCP as tans-
port).

eofScanNone: every time a new packet arrive, OnBinary event is called.

eofScanLatestBytes: if latest bytes are equal to bytes added with AddTCPEndOfFrame method, OnBinary
message is called, otherwise this packet is buffered

eofScanAllBytes: search in all packet if find bytes equal to bytes added with AddTCPEndOfFrame method.
If true, OnBinary message is called, otherwise this packet is buffered

124

COMPONENTS

Protocols

With WebSockets, you can implement sub-protocols, allowing you to create customized communications. For ex-
ample, you can implement a sub-protocol over the WebSocket protocol to communicate with a customized applica-
tion using JSON messages, and you can implement another sub-protocol using XML messages.

When a connection is open on the Server side, it will validate if sub-protocol sent by the client is supported by the
server, if not, then it will close the connection. A server can implement several sub-protocols, but only one can be
used on a single connection.

Sub-protocols are very useful to create customized applications and be sure that all clients support the same com-
munication interface.

Although the protocol name is arbitrary, it's recommended to use unique names like "dataset.esegece.com"
With sgcWebSockets package, you can build your own protocols and you can use built-in sub-protocols provided:

1. Protocol MQTT: MQTT is a Client Server publish/subscribe messaging transport protocol. It is lightweight, open,
simple, and designed so as to be easy to implement.

2. Protocol AppRTC: is a webrtc demo application developed by Google and Mozilla, it enables both browsers to
“talk” to each other using the WebRTC API.

3. Protocol WebRTC: open source project aiming to enable the web with Real-Time Communication (RTC) capa-
bilities.

4. Protocol Files: implemented using binary messages, provides support for send files: packet size, authorization,
QoS, message acknowledgement and more.

Protocols can be registered at runtime, just call Method RegisterProtocol and pass protocol component as a pa-
rameter.

Javascript Reference

Here you can get more information about common javascript library used on sgcWebSockets.

COMPONENTS

Protocols Javascript

Default Javascript sgcWebSockets uses sgcWebSocket.js file.
Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:

if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con-
figure your access to sgcWebSocket.js file as:

<script src="http://www.example.com:80/sgcwWebSockets.js"></script>

Open Connection

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>

var socket = new sgcWebSocket('ws://{%host%}:{%port%}');
</script>

sgcWebSocket has 3 parameters, only first is required:

sgcWebSocket (url, protocol, transport)

. URL: WebSocket server location, you can use "ws:" for normal WebSocket connections and "wss:" for
secured WebSocket connections.

sgcWebSocket ('ws://127.0.0.1")
sgcWebSocket ('wss://127.0.0.1")

. Protocol: if the server accepts one or more protocol, you can define which is the protocol you want to
use.

sgcWebSocket ('ws://127.0.0.1', 'esegece.com')

. Transport: by default, first tries to connect using WebSocket connection and if not implemented by
Browser, then tries Server Sent Events as Transport.

Use WebSocket if implemented, if not, then use Server Sent Events:
sgcWebSocket ('ws://127.0.0.1")
Only use WebSocket as transport:
sgcWebSocket ('ws://127.0.0.1"', '', ['websocket'])
Only use Server Sent as transport:

sgcWebSocket ('ws://127.0.0.1"', '', ['sse'])

Open Connection With Authentication

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>

var socket = new sgcWebSocket({"host":"ws://{%host%}:{%port%}", "user":"admin", "password":"1234"});
</script>

COMPONENTS

Send Message

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}"');
socket.send('Hello sgcWebSockets!');
</script>

Show Alert with Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}');
socket.on('message', function(event)

alert(event.message);

}

</script>

Binary Message Received

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}"');
socket.on('stream', function(event)

{
document.getElementById('image').src = URL.createObjectURL(event.stream);
event.stream = "";
}
</script>

Binary (Header + Image) Message Received

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}');
socket.on('stream', function(event)

sgcwWSStreamRead(evt.stream, function(header, stream) {
document.getElementById('text').innerHTML = header;
document.getElementById('image').src = URL.createObjectURL(event.stream);
event.stream = "";

}

</script>

Show Alert OnConnect, OnDisconnect and OnError Events

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>
var socket = new sgcWebSocket('ws://{%host%}:{%port%}');

127

COMPONENTS

socket.on('open', function(event)
alert('sgcwWebSocket Open!');

sécket.on('close', function(event)
alert('sgcWebSocket Closed!');

sécket.on('error', function(event)
alert('sgcwWebSocket Error: ' + event.message);

1

</script>

Close Connection

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script>

socket.close();
</script>

Get Connection Status

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script>

socket.state();
</script>

COMPONENTS

Protocol MQTT

MQTT is a Client-Server publish/subscribe messaging transport protocol. It is light weight, open, simple, and de-
signed so as to be easy to implement. These characteristics make it ideal for use in many situations, including con-
strained environments such as for communication in Machine to Machine (M2M) and the Internet of Things (loT)
contexts where a small code footprint is required and/or network bandwidth is at a premium.

The protocol runs over TCP/IP, or over other network protocols that provide ordered, lossless, bi-directional con-
nections. Its features include:

Use of the publish/subscribe message pattern which provides one-to-many message distribution and decou-
pling of applications.

A messaging transport that is agnostic to the content of the payload.

Three qualities of service for message delivery:

"At most once", where messages are delivered according to the best efforts of the operating environ-
ment. Message loss can occur. This level could be used, for example, with ambient sensor data where it
does not matter if an individual reading is lost as the next one will be published soon after.

"At least once", where messages are assured to arrive but duplicates can occur.

"Exactly once", where message are assured to arrive exactly once. This level could be used, for ex-
ample, with billing systems where duplicate or lost messages could lead to incorrect charges being applied.

A small transport overhead and protocol exchanges minimized to reduce network traffic.

A mechanism to notify interested parties when an abnormal disconnection occurs.

Features

» Supports 3.1.1 and 5.0 MQTT versions.

» Publish/subscribe message pattern to provide one-to-many message distribution and decoupling of appli-
cations.

+ Acknowledgment of messages sent.

+ Implements QoS (Quality of Service) for message delivery (all levels: At most once, At least once and Exact-
ly once)

» Last Will Testament.

» Secure connections.

* HeartBeat and Watchdog.

+ Authentication to server.

Components

TsgcWSPClient_MQTT: MQTT Client Component.

Most common uses

¢ Connection
* Client MQTT Connect
» Connect Mosquitto MQTT Servers
» Client MQTT Sessions
* Client MQTT Version

e Publish & Subscribe
e MQTT Publish Subscribe
* MQTT Topics
« MQTT Subscribe
* MQTT Publish Message

COMPONENTS

* MQTT Receive Messages
* MQTT Publish and Wait Response

e Other
*+ MQTT Clear Retained Messages

COMPONENTS

TsgcWSPClient MQTT

The MQTT component provides a lightweight, fully-featured MQTT client implementation with support for versions
3.1.1 and 5.0. The component supports plaintext and secure connections over both standard TCP and WebSock-
ets.

Connection to a MQTT server is simple, you need to drop this component in the form and select a TsgcWebSocket-
Client Component using Client Property. Set host and port in TsgcWebSocketClient and set Active := True to con-
nect.

MQTT v5.0 is not backward compatible (like v3.1.1). Obviously too many new things are introduced so existing im-
plementations have to be revisited.

According to the specification, MQTT v5.0 adds a significant number of new features to MQTT while keeping much
of the core in place.

* The Clean Session flag functionality is divided into 2 properties to allow for finer control over session state
data: the CleanStart parameter and the new SessionExplinterval.

» Server disconnect: Allow DISCONNECT to be sent by the Server to indicate the reason the connection is
closed.

+ All response packets (CONNACK, PUBACK, PUBREC, PUBREL, PUBCOMP, SUBACK, UNSUBACK, DIS-
CONNECT) now contain a reason code and reason string describing why operations succeeded or failed.

* Enhanced authentication: Provide a mechanism to enable challenge/response style authentication including
mutual authentication. This allows SASL style authentication to be used if supported by both Client and
Server, and includes the ability for a Client to re-authenticate within a connection.

» The Request / Response pattern is formalized by the addition of the ResponseTopic.

» Shared Subscriptions: Add shared subscription support allowing for load balanced consumers of a subscrip-
tion.

» Topic Aliases can be sent by both client and server to refer to topic filters by shorter numerical identifiers in
order to save bandwidth.

» Servers can communicate what features it supports in ConnectionProperties.

» Server reference: Allow the Server to specify an alternate Server to use on CONNACK or DISCONNECT.
This can be used as a redirect or to do provisioning.

+ More: message expiration, Receive Maximums and Maximum Packet Sizes, and a Will Delay interval are all
supported.

Methods

Connect: this method is called automatically after a successful WebSocket connection.

Ping: Sends a ping to the server, usually to keep the connection alive. If you enable HeartBeat property, ping will
be sent automatically by a defined interval.

Subscribe: subscribe client to a custom channel. If the client is subscribed, OnMQTTSubscribe event will be
fired.
SubscribeProperties: (New in MQTT 5.0)

. Subscriptionldentifier: MQTT 5 allows clients to specify a numeric subscription identifier which will
be returned with messages delivered for that subscription. To verify that a server supports subscrip-
tion identifiers, check the "SubscriptionldentifiersAvailable"

. UserProperties: This property is intended to provide a means of transferring application layer name-
value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

Example:

TsgcWSMQTTSubscribe_Properties oProperties = new TsgcWSMQTTSubscribe_Properties();

COMPONENTS

oProperties.SubscriptionIdentifier = 16385;
mgtt.Subscribe("myChannel", TmgttQoS.mtgsAtMostOnce, oProperties);

Unsubscribe: unsubscribe client to a custom channel. If the client is unsubscribed, OnMQTTUnsubscribe event
will be fired.
UnsubscribeProperties: (New in MQTT 5.0)

. UserProperties: This property is intended to provide a means of transferring application layer name-
value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

Example:

TsgcWSMQTTUnsubscribe_Properties oProperties = new TsgcWSMQTTUnsubscribe_Properties();
oProperties.UserProperties = "Temp=21,Humidity=55";
mqtt.UnSubscribe("myChannel", TmgttQoS.mtgsAtMostOnce, oProperties);

Publish: sends a message to all subscribed clients. There are the following parameters:
Topic: is the channel where the message will be published.
Text: is the text of the message.
QoS: is the Quality Of Service of published message. There are 3 possibilities:

mtgsAtMostOnce: (by default) the message is delivered according to the best efforts of the underly-
ing TCP/IP network. A response is not expected and no retry semantics are defined in the protocol.
The message arrives at the server either once or not at all.

mtgsAtLeastOnce: the receipt of a message by the server is acknowledged by an ACKNOWLEDG-
MENT message. If there is an identified failure of either the communications link or the sending de-
vice or the acknowledgement message is not received after a specified period of time, the sender re-
sends the message. The message arrives at the server at least once. A message with QoS level 1
has an ID param in the message.

mtqgsExactlyOnce: where message are assured to arrive exactly once. This level could be used, for
example, with billing systems where duplicate or lost messages could lead to incorrect charges being
applied. If there is an identified failure of either the communications link or the sending device, or the
acknowledgement message is not received after a specified period of time, the sender resends the
message.

Retain: if True, Server MUST store the Application Message and its QoS, so that it can be delivered to fu-
ture subscribers whose subscriptions match its topic name. By default is False.
PublishProperties: (New in MQTT 5.0)

. PayloadFormat: select payload format from: mqpfUnspecified (which is equivalent to not sending a
Payload Format Indicator) or mqpfUTF8 (Message s UTF-8 Encoded Character Data).

. MessageExpiryInterval: Length of time after which the server must stop delivery of the publish mes-
sage to a subscriber if not yet processed.

. TopicAlias: is an integer value that is used to identify the Topic instead of using the Topic Name. This

reduces the size of the PUBLISH packet, and is useful when the Topic Names are long and the same
Topic Names are used repetitively within a Network Connection.

. ResponseTopic: is used as the Topic Name for a response message.

. CorrelationData: The Correlation Data is used by the sender of the Request Message to identify
which request the Response Message is for when it is received.

. UserProperties: This property is intended to provide a means of transferring application layer name-

value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

. Subscriptionldentifier: A numeric subscription identifier included in SUBSCRIBE packet which will
be returned with messages delivered for that subscription.

. ContentType: String describing content of message to be sent to all subscribers receiving the mes-
sage.

PublishAndWait: is the same method than Publish, but in this case, if QoS is [mtgsAtLeastOnce, mtgsExactly-
Once] waits till server processes the message, this way, if you get a positive result, means that message has been
received by server. There is a timeout of 10 seconds by default, if after the timeout there is no response from serv-
er, the response will be false.

COMPONENTS

Disconnect: disconnects from MQTT server.
ReasonCode: code identifies reason why disconnects.(New in MQTT 5.0)
DisconnectProperties (New in MQTT 5.0)

. SessionExpirylnterval: Session Expiry Interval in seconds.

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.

. UserProperties: provide additional information to the Client including diagnostic information.

. ServerReference: can be used by the Client to identify another Server to use.

Auth: is sent from Client to Server or Server to Client as part of an extended authentication exchange, such as
challenge / response authentication. (New in MQTT 5.0)
ReAuthenticate: if True Initiate a re-authentication, otherwise continue the authentication with another step.

AuthProperties
. AuthenticationMethod: contains the name of the authentication method.
. AuthenticationData: contains authentication data.
. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
. UserProperties: provide additional information to the Client including diagnostic information.
Events

OnMQTTBeforeConnect: this event is triggered before a new connection is established. There are 2 parameters:
CleanSession: if True (by default), the server must discard any previous session and start a new session. If
false, the server must resume communication.

Clientldentifier: every new connection needs a client identifier, this is set automatically by component, but
can be modified if needed.

OnMQTTConnect: this event is triggered when the client is connected to MQTT server. There are 2 parameters:

Session:
1. If client sends a connection with CleanSession = True, then Server Must respond with Session =
False.
2. If client sends a connection with CleanSession = False:
. If the Server has stored Session state, Session = True.
. If the Server does not have stored Session state, Session = False

ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
ConnectProperties: (New in MQTT 5.0)

. SessionExpirylnterval: Session Expiry Interval in seconds.

. ReceiveMaximum: number of QoS 1 and QoS 2 publish messages, the server will process concur-
rently for the client.

. MaximumQoS: maximum accepted QoS of PUBLISH messages to be received by the server.

. RetainAvailable: indicates whether the client may send PUBLISH packets with Retain set to True.

. MaximumPacketSize: maximum packet size in bytes the server is willing to accept.

. AssignedClientldentifier: the Client Identifier which was assigned by the Server when client didn't
send any.

. TopicAliasMaximum: indicates the hishest value that the server will accept as a Topic Alias sent by
the client.

. ReasonString: represents the reason associated with this response. This Reason String is a human

readable string designed for diagnostic.
. UserProperties: provide additional information to the Client including diagnostic information.
. WildcardSubscriptionAvailable: indicates whether the server supports wildcard subscriptions.
. SubscriptionldentifiersAvailable: indicates whether the server supports subscription identifiers.
. SharedSubscriptionAvailable: indicates whether the server supports shared subscriptions.

. Responselnformation: used as the basis for creating a Response Topic.
. ServerReference: can be used by the Client to identify another Server to use.
. AuthenticationMethod: identifier of the Authentication Method.

COMPONENTS

. AuthenticationData: string containing authentication data.

OnQTTDisconnect: this event is triggered when the client is disconnected from MQTT server. Parameters:
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
DisconnectProperties: (New in MQTT 5.0)

. SessionExpirylnterval: Session Expiry Interval in seconds.

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.

. UserProperties: provide additional information to the Client including diagnostic information.

. ServerReference: can be used by the Client to identify another Server to use.

OnMQTTPing: this event is triggered when the client receives an acknowledgment from a ping previously sent.

OnMQTTPubAck: this event is triggered when receives the response to a Publish Packet with QoS level 1. There
is one parameter:
Packetldentifier: is packet identifier sent initially.
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
PubAckProperties: (New in MQTT 5.0)

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
. UserProperties: provide additional information to the Client including diagnostic information.

OnMQTTPubComp: this event is triggered when receives the response to a PubRel Packet. It is the fourth and fi-
nal packet of the QoS 2 protocol exchange. There are the following parameters:
Packetldentifier: is packet identifier sent initially.
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)
ReasonName: text description of ReturnCode.(New in MQTT 5.0)
PubCompProperties: (New in MQTT 5.0)

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
. UserProperties: provide additional information to the Client including diagnostic information.

OnMQTTPublish: this event is triggered when the client receives a message from the server. There are 2 para-
meters:
Topic: is the topic name of the published message.
Text: is the text of the published message.
PublishProperties: (New in MQTT 5.0)

. PayloadFormat: select payload format from: mqgpfUnspecified (which is equivalent to not sending a
Payload Format Indicator) or mqpfUTF8 (Message s UTF-8 Encoded Character Data).

. MessageExpirylInterval: Length of time after which the server must stop delivery of the publish mes-
sage to a subscriber if not yet processed.

. TopicAlias: is an integer value that is used to identify the Topic instead of using the Topic Name. This

reduces the size of the PUBLISH packet, and is useful when the Topic Names are long and the same
Topic Names are used repetitively within a Network Connection.

. ResponseTopic: is used as the Topic Name for a response message.

. CorrelationData: The Correlation Data is used by the sender of the Request Message to identify
which request the Response Message is for when it is received.

. UserProperties: This property is intended to provide a means of transferring application layer name-

value tags whose meaning and interpretation are known only by the application programs responsible
for sending and receiving them.

. Subscriptionldentifier: A numeric subscription identifier included in SUBSCRIBE packet which will
be returned with messages delivered for that subscription.

. ContentType: String describing content of message to be sent to all subscribers receiving the mes-
sage.

OnMQTTPubRec: this event is triggered when receives the response to a Publish Packet with QoS 2. It is the
second packet of the QoS 2 protocol exchange. There are the following parameters:
Packetldentifier: is packet identifier sent initially.
ReasonCode: returns code with the result of connection.(New in MQTT 5.0)

134

COMPONENTS

ReasonName: text description of ReturnCode.(New in MQTT 5.0)
PubRecProperties: (New in MQTT 5.0)

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
. UserProperties: provide additional information to the Client including diagnostic information.

OnMQTTSubscribe: this event is triggered as a response to subscribe method. There are the following parame-
ters:
Packetldentifier: is packet identifier sent initially.
Codes: codes with the result of a subscription.
SubscribeProperties: (New in MQTT 5.0)

. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
. UserProperties: provide additional information to the Client about subscription.

OnMQTTUnSubscribe: this event is triggered as a response to subscribe method. There are the following para-
meters:
Packetldentifier: is packet identifier sent initially.
Codes: codes with the result of a subscription.
UnsubscribeProperties: (New in MQTT 5.0)

. UserProperties: provide additional information to the Client about subscription.
OnMQTTAuth: this event is triggered as a response to Auth method. There is one parameter: (New in MQTT 5.0)

ReasonCode: returns code with the result of connection.
ReasonName: text description of ReturnCode.

AuthProperties:
. AuthenticationMethod: contains the name of the authentication method used for extended authenti-
cation.
. AuthenticationData: data associated to authentication.
. ReasonString: represents the reason associated with this response. This Reason String is a human
readable string designed for diagnostic.
. UserProperties: provide additional information to the Client including diagnostic information.

Enhanced Authentication (New in MQTT 5.0)

To begin an enhanced authentication, the Client includes an Authentication Method in the ConnectProperties. This
specifies the authentication method to use. If the Server does not support the Authentication Method supplied by
the Client, it may send a Reason Code "Bad authentication method" or Not Authorized.

Example:

» Client to Server: CONNECT Authentication Method="SCRAM-SHA-1" Authentication Data=client-first-data

» Server to Client: AUTH ReasonCode="Continue authentication" Authentication Method="SCRAM-SHA-1"
Authentication Data=server-first-data

» Client to Server AUTH ReasonCode="Continue authentication" Authentication Method="SCRAM-SHA-1" Au-
thentication Data=client-final-data

« Server to Client CONNACK ReasonCode=0 Authentication Method="SCRAM-SHA-1" Authentication
Data=server-final-data

Properties

MQTTVersion: select which MQTT version (3.1.1 or 5.0) will use to connect to server.

Authentication: disabled by default, if True a UserName and Password are sent to the server to try user authen-
tication.

COMPONENTS

HeartBeat: enabled by default, if True, send a ping every X seconds (set by Interval property) to keep alive con-
nection. You can set a Timeout too, so if after X seconds, the client doesn't receive a response to a ping, the con-
nection will be closed automatically.

LastWillTestament: if there is a disconnection and is enabled, a message is sent to all connected clients to in-
form that connection has been closed.

+ Enabled: enable if you want activate last will testament.
» Text: is the message that the server will publish in the event of an ungraceful disconnection.
» Topic: is the topic that the server will publish the message to in the event of an ungraceful disconnection. Is
mandatory if LastWillTestament is enabled.
» Retain: enable if server must retain message after publish it.
» WillProperties: (New in MQTT 5.0)
» WillDelayInterval: The Server delays publishing the Client’s Will Message until the Will Delay Interval
has passed or the Session ends, whichever happens first.
+ PayloadFormat: select payload format from: mqpfUnspecified (which is equivalent to not sending a
Payload Format Indicator) or mqpfUTF8 (Message s UTF-8 Encoded Character Data).
+ MessageExpirylnterval: Length of time after which the server must stop delivery of the will message
to a subscriber if not yet processed.
+ ContentType: string describing content of will message.
* ResponseTopic: Used as a topic name for a response message.
» CorrelationData: binary string used by client to identify which request the response message is for
when received.
» UserProperties: can be used to send will related properties from the Client to the Server. The mean-
ing of these properties is not defined by MQTT specification.

ConnectProperties: (New in MQTT 5.0) are connection properties sent with packet connect.

« Enabled: if True, connect properties will be sent to server.

» SessionExpirylnterval: if value is zero, session will end when network connection is closed.

* ReceiveMaximum: the Client uses this value to limit the number of QoS 1 and QoS 2 publications that it is
willing to process concurrently.

» MaximumPacketSize: the Client uses the Maximum Packet Size to inform the Server that it will not process
packets exceeding this limit.

» TopicAliasMaximum: the Client uses this value to limit the number of Topic Aliases that it is willing to hold
on this Connection.

* RequestResponselnformation: the Client uses this value to request the Server to return Response Infor-
mation in the CONNACK. If False indicates that the Server MUST NOT return Response Information, If True
the Server MAY return Response Information in the CONNACK packet.

* RequestProbleminformation: the Client uses this value to indicate whether the Reason String or User
Properties are sent in the case of failures. If the value of Request Problem Information is False, the Server
MAY return a Reason String or User Properties on a CONNACK or DISCONNECT packet but MUST NOT
send a Reason String or User Properties on any packet other than PUBLISH, CONNACK, or DISCONNECT.

» UserProperties: can be used to send connection related properties from the Client to the Server. The
meaning of these properties is not defined by MQTT specification.

» AuthenticationMethod: contains the name of the authentication method used for extended authentication.

COMPONENTS

TsgcWSPClient_ MQTT | Client MQTT Con-
nect

In order to connect to a MQTT Server, you must create first a TsgcWebSocketClient and a TsgcWSPClient_ MQTT.
Then you must attach MQTT Component to WebSocket Client.

Basic Usage

Connect to Mosquitto MQTT server using websocket protocol. Subscribe to topic: "topic1" after connect.

oClient = new TsgcWebSocketClient();
oClient.Host = "test.mosquitto.org";
oClient.Port = 8080;

OMQTT = TsgcWSPClient_MQTT.Create(nil);
oMQTT.Client = oClient;

oClient.Active = true;

void OnMQTTConnect(TsgcWSConnection Connection, bool Session, int ReasonCode,
string ReasonName, TsgcWSMQTTCONNACKProperties ConnectProperties);

OMQTT.Subscribe("topic1");
}

Client Identifier

MQTT requires a Client Identifier to identify client connection. Component sets a random value automatically but
you can set your own Client Identifier if required, to do this, just handle OnBeforeConnect event and set your val-
ue on aClientldentifier parameter.

void OnMQTTBeforeConnect(TsgcWSConnection Connection, ref bool aCleanSession,
ref string aClientIdentifier)

aClientIdentifier = "your client id";

}

Authentication

Somes servers require an user and password to authorize MQTT connections. Use Authentication property to
set the value for username and password before connect to server.

OMQTT = new TsgcWSPClient_MQTT();
OMQTT.Authentication.Enabled = true;
OMQTT.Authentication.UserName = "your user";
OMQTT.Authentication.Password = "your passwrd";

137

COMPONENTS

TsgcWSPClient_ MQTT | Connect MQTT

Mosquitto

Use the following sample configurations to connect to a Mosquitto MQTT Server.

MOSQUITTO MQTT WebSockets

oClient = new TsgcWebSocketClient();
oClient.Host = "test.mosquitto.org";
oClient.Port = 8080;

OMQTT = TsgcWSPClient_MQTT.Create(nil);
oMQTT.Client = oClient;

oClient.Active = true;

MOSQUITTO MQTT WebSockets TLS

oClient = new TsgcWebSocketClient();

oClient.Host = "test.mosquitto.org";

oClient.Port = 8081;

oClient.TLS = true;

oClient.TLSOptions.Version = TwsTLSVersions.tlsl_ 2;
OMQTT = TsgcWSPClient_ MQTT.Create(nil);
OMQTT.Client = oClient;

oClient.Active = true;

MOSQUITTO MQTT Plain TCP

oClient = new TsgcWebSocketClient();
oClient.Host = "test.mosquitto.org";
oClient.Port = 1883;
oClient.Specifications.RFC6455 := False;
OMQTT = TsgcWSPClient_MQTT.Create(nil);
OoMQTT.Client = oClient;

oClient.Active = true;

MOSQUITTO MQTT Plain TCP TLS

oClient = new TsgcWebSocketClient();

oClient.Host = "test.mosquitto.org";

oClient.Port = 8083;

oClient.Specifications.RFC6455 := False;
oClient.TLS = true;

oClient.TLSOptions.Version = TwsTLSVersions.tlsl 2;
OMQTT = TsgcWSPClient_MQTT.Create(nil);
OoMQTT.Client = oClient;

oClient.Active = true;

COMPONENTS

TsgcWSPClient_ MQTT | Client MQTT Ses-
sions

Clean Start

OnMQTTBeforeConnect event, there is a parameter called aCleanSession. If the value of this parameter is True,
means that client want start a new session, so if server has any session stored, it must discard it. So, when On-
MQTTConnect event is fired, aSession parameter will be false. If the value of this parameter is False and there is a
session associated to this client identifier, the server must resume communications with the client on state with the
existing session.

So, if client has an unexpected disconnection, and you want to recover the session where was disconnected, in
OnMQTTBeforeConnect set aCleanSession = True and aClientldentifier = Client ID of Session.

Session

Once successful connection, check OnMQTTConnect event, the value of Session parameter.

Session = true, means session has been resumed.
Session = false, means it's a new session.

void OnMQTTBeforeConnect(TsgcwWSConnection Connection, ref bool aCleanSession,
ref string aClientIdentifier)

aCleanSession = false;
aClientIdentifier = "previous client id";

}

void OnMQTTConnect(TsgcWSConnection Connection, bool Session, int ReasonCode,
string ReasonName, TsgcWSMQTTCONNACKProperties ConnectProperties);

if (Session == true)
Console.WriteLine("Session resumed");
}

else

Console.WriteLine("New Session");

3

}

COMPONENTS

TsgcWSPClient_ MQTT | Client MQTT Ver-
sion

Currently, MQTT Client supports the following specifications:

. MQTT 3.1.1: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-0s.html
. MQTT 5.0: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

You can select which is the version which will use the MQTT Client component using MQTTVersion property.

MQTT 3.1.1: TsgcWSPClient_ MQTT.Version = mqtt311
MQTT 5.0: sgcWSPClient MQTT.Version = mqtt5

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

COMPONENTS

TsgcWSPClient MQTT | MQTT Publish Sub-

scribe

The publish/subscribe pattern (also known as pub/sub) provides an alternative to traditional client-server architec-
ture. In the client-sever model, a client communicates directly with an endpoint.The pub/sub model decouples the
client that sends a message (the publisher) from the client or clients that receive the messages (the sub-
scribers). The publishers and subscribers never contact each other directly. In fact, they are not even aware that
the other exists. The connection between them is handled by a third component (the broker). The job of the
broker is to filter all incoming messages and distribute them correctly to subscribers.

With TsgcWSPClient_MQTT you can Publish messages and Subscribe to Topics.

Subscribe Topic

Subscribe to Topic "topic1" after a successful connection.

oClient = new TsgcWebSocketClient();
oClient.Host = "test.mosquitto.org";
oClient.Port = 8080;

OMQTT = TsgcWSPClient_MQTT.Create(nil);
OMQTT.Client = oClient;

oClient.Active = true;

void OnMQTTConnect(TsgcWSConnection Connection, bool Session,
TsgcWSMQTTCONNACKProperties ConnectProperties);

OMQTT->Subscribe("topic1");
}

Publish Message

Publish a message to all subscribers of "topic1"

oClient = new TsgcWebSocketClient();
oClient.Host = "test.mosquitto.org";
oClient.Port = 8080;

OMQTT = TsgcWSPClient_MQTT.Create(nil);
oMQTT.Client = oClient;

oClient.Active = true;

void OnMQTTConnect(TsgcWSConnection Connection, bool Session,
TsgcWSMQTTCONNACKProperties ConnectProperties);

OMQTT.Publish("topic1", "Hello Subscribers topic1i");

}

int ReasonCode, string ReasonName,

int ReasonCode, string ReasonName,

COMPONENTS

TsgcWSPClient_MQTT | MQTT Topics

Topics

In MQTT, the word topic refers to an UTF-8 string that the broker uses to filter messages for each connected client.
The topic consists of one or more topic levels. Each topic level is separated by a forward slash (topic level separa-
tor)

myHome / groundfloor / livingroom / temperature

In comparison to a message queue, MQTT topics are very lightweight. The client does not need to create the de-
sired topic before they publish or subscribe to it. The broker accepts each valid topic without any prior initialization.
Note that each topic must contain at least 1 character and that the topic string permits empty spaces. Topics are
case-sensitive.

WildCards

When a client subscribes to a topic, it can subscribe to the exact topic of a published message or it can use wild-
cards to subscribe to multiple topics simultaneously. A wildcard can only be used to subscribe to topics, not to pub-
lish a message. There are two different kinds of wildcards: _single-level and _multi-level.

Single Level: +

As the name suggests, a single-level wildcard replaces one topic level. The plus symbol represents a single-level
wildcard in a topic.

myHome / groundfloor / + / temperature

Any topic matches a topic with single-level wildcard if it contains an arbitrary string instead of the wildcard. For ex-
ample a subscription to _myhome/groundfloor/+/temperature can produce the following results:

YES => myHome / groundfloor / livingroom / temperature
YES => myHome / groundfloor / kitchen / temperature

NO =>myHome / groundfloor / livingroom / brightness

NO => myHome / firstfloor / livingroom / temperature

NO => myHome / groundfloor / kitchen / fridge / temperature

Multi Level: #

The multi-level wildcard covers many topic levels. The hash symbol represents the multi-level wild card in the topic.
For the broker to determine which topics match, the multi-level wildcard must be placed as the last character in the
topic and preceded by a forward slash.

myHome / groundfloor / #

YES => myHome / groundfloor / livingroom / temperature
YES => myHome / groundfloor / kitchen / temperature
YES => myHome / groundfloor / kitchen / brightness

NO => myHome / firstfloor / kitchen / temperature

When a client subscribes to a topic with a multi-level wildcard, it receives all messages of a topic that begins with

the pattern before the wildcard character, no matter how long or deep the topic is. If you specify only the multi-level
wildcard as a topic (_#), you receive all messages that are sent to the MQTT broker.

COMPONENTS

TsgcWSPClient MQTT | MQTT Subscribe

You can Subscribe to a Topic using method Subscribe from TsgcWSPClient. MQTT. This method has the following
parameters:

Topic: is the name of the topic to be subscribed.

QoS: one of the 3 QoS levels (not all brokers support all 3 levels). If not specificed uses mtgsAtMostOnce.
Read more about QoS Levels.

SubscribeProperties: if MQTT 5.0, are additional properties about subscriptions.

Subscribe QoS = At Least Once

MQTT.Subscribe("topicl", TmgqttQoS.mtgsAtLeastOnce);

Subscribe MQTT 5.0

oProperties = new TsgcWSMQTTSubscribe_Properties();
oProperties.SubscriptionIdentifier = 1234;
oProperties.UserProperties = "name=value";

MQTT->Subscribe("topicl", TmqttQoS.mtgsAtMostOnce, oProperties);

COMPONENTS

TsgcWSPClient MQTT | MQTT Publish Mes-
sage

You can publish messages to all subscribers of a Topic using Publish method, which has the following parameters:

Topic: is the name of the topic where the message will be published.
Text: is the text of the message.

QoS: one of the 3 QoS levels (not all brokers support all 3 levels). If not specificed uses mtgsAtMostOnce.
Read more about QoS Levels.

Retain: if true, this message will be retained. And every time a new client subscribes to this topic, this mes-
sage will be sent to this client.
PublishProperties: if MQTT 5.0, these are the properties of the message.

Publish a simple message

MQTT.Publish("topic1l", "Hello Subscribers topici");

Publish QoS = At Least Once

MQTT.Publish("topic1l", "Hello Subscribers topic1", TmqttQoS.mtgsAtLeastOnce);

Publish Retained message

MQTT.Publish("topicl", "Hello Subscribers topicl", TmqttQoS.mtgsAtMostOnce, true);

144

COMPONENTS

TsgcWSPClient MQTT | MQTT Receive Mes-
sages

Messages sent by server, are received OnMQTTPublish event. This event has the following parameters:
Topic: is the name of the topic associated to this message.

Text: is the text of the message.
PublishProperties: if MQTT 5.0, these are the properties of the published message.

Read published Messages

void OnMQTTPublish(TsgcwWSConnection Connection, string aTopic, string aText,
TsgcWSMQTTPublishProperties PublishProperties)

WriteLn("Topic: " + aTopic + ". Message: " + aText);

}

COMPONENTS

TsgcWSPClient_MQTT | Publish and Wait
Response

MQTT client allows the use of some type of QoS levels, any of those levels works in a different level to be sure that
messages have been processed as expected.

There are the following QoS levels:

. mtgsAtMostOnce: (by default) the message is delivered according to the best efforts of the un-
derlying TCP/IP network. A response is not expected and no retry semantics are defined in the
protocol. The message arrives at the server either once or not at all.

. mtgsAtLeastOnce: the receipt of a message by the server is acknowledged by an ACKNOWL-
EDGMENT message. If there is an identified failure of either the communications link or the send-
ing device or the acknowledgement message is not received after a specified period of time, the
sender resends the message. The message arrives at the server at least once. A message with
QoS level 1 has an ID param in the message.

. mtgsExactlyOnce: where message are assured to arrive exactly once. This level could be used,
for example, with billing systems where duplicate or lost messages could lead to incorrect charges
being applied. If there is an identified failure of either the communications link or the sending de-
vice, or the acknowledgement message is not received after a specified period of time, the sender
resends the message.

You can handle the events OnPubAck or OnPubComp to know if message has been processed by server or you
can use the method PublishAndWait to know if the message has been processed by the server.

The use of PublishAndWait is the same that normal Publish method, now you have a new parameter called Time-
out, where method will return with value false if after certain period of time, there is no response from server. By de-
fault this value is 10 seconds.

if mqtt->PublishAndwait("topic", "text")
{

MessageBox.Show("Message processed")

}

else

{

MessageBox.Show("Message error");

}

COMPONENTS

TsgcWSPClient MQTT | MQTT Clear Re-
tained Messages

By default, every MQTT topic can have a retained message. The standard MQTT mechanism to clean up retained
messages is sending a retained message with an empty payload to a topic. This will remove the retained message.

MQTT.Publish("topic1", "", TmqttQoS.mtgsAtMostOnce, true);

147

COMPONENTS

Protocol AppRTC

WebRTC (Web Real-Time Communication) is an API definition being drafted by the World Wide Web Consortium
(W3C) to enable browser to browser applications for voice calling, video chat and P2P file sharing without plugins.
The RTC in WebRTC stands for Real-Time Communications, a technology that enables audio/video streaming and
data sharing between browser clients (peers). As a set of standards, WebRTC provides any browser with the ability
to share application data and perform teleconferencing peer to peer, without the need to install plug-ins or third-par-
ty software.

WebRTC components are accessed with JavaScript APIs. Currently, in development are the Network Stream API,
which represents an audio or video data stream, and the PeerConnection API, which allows two or more users to
communicate browser-to-browser. Also under development is a DataChannel API that enables communication of
other types of data for real-time gaming, text chat, file transfer, and so forth.

appr.tc is a WebRTC demo application developed by Google and Mozilla, it enables both browsers to “talk” to each
other using the WebRTC API.

Components

TsgcWSPServer_AppRTC: Server Protocol AppRTC VCL Component.

https://appr.tc

COMPONENTS

TsgcWSPServer AppRTC

This is Server Protocol AppRTC Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property.

Parameters

» IceServers: here you can configure turn/stun servers for WebRTC connections.
* RoomLink: URL base to access room. Example: https://mydemo.com/r/
* WebSocketURL: URL to WebSocket server. Example: wss://mydemo.com

WebRTC Protocol requires STUN/TURN server, demos use public STUN/TURN servers for testing purposes. In or-
der to put in a production system, a dedicated STUN/TURN server is required.

Registered users can download compiled binaries of Coturn server for Windows. Read more about COTURN
STUN/TURN.

IceServers Configuration

If you are running your STUN/TURN server in the following IP Address: 51.122.4.88 and is listening port 3478. User
to connect is "apprtc" and credential is "secret". Configure the IceServers as follows:

"lifetimeDuration": "86400s",
"iceServers": [{
"urls": "stun:51.122.4.88:3478",
"username": "apprtc",

"credential": "secret"

oA
"urls": "turn:51.122.4.88:3478",
"username": "apprtc",
"credential": "secret"

1,
"blockStatus": "NOT_BLOCKED",
"iceTransportPolicy": "all"

COMPONENTS

Protocol WebRTC

WebRTC (Web Real-Time Communication) is an API definition being drafted by the World Wide Web Consortium
(W3C) to enable the browser to browser applications for voice calling, video chat and P2P file sharing without plug-
ins. The RTC in WebRTC stands for Real-Time Communications, a technology that enables audio/video streaming
and data sharing between browser clients (peers). As a set of standards, WebRTC provides any browser with the
ability to share application data and perform teleconferencing peer to peer, without the need to install plug-ins or
third-party software.

WebRTC components are accessed with JavaScript APIs. Currently, in development are the Network Stream API,
which represents an audio or video data stream, and the PeerConnection API, which allows two or more users to
communicate browser-to-browser. Also under development is a DataChannel API that enables communication of
other types of data for real-time gaming, text chat, file transfer, and so forth.

Components

TsgcWSPServer WebRTC: Server Protocol WebRTC VCL Component.

Parameters

* IceServers: here you can configure turn/stun servers for WebRTC connections. By default uses the follow-
ing public STUN servers

{"iceServers": [{"url": "stun:stun.l.google.com:19302"}]}

Browser Test

If you want to test this protocol with your favourite Web Browser, please type this url (you need to define your cus-
tom host and port)

http://host:port/webrtc.esegece.com.html

COMPONENTS

TsgcWSPServer WebRTC

This is Server Protocol WebRTC Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property.

WebRTC Protocol requires STUN/TURN server, demos use public STUN/TURN servers for testing purposes. In or-
der to put in a production system, a dedicated STUN/TURN server is required.

Registered users can download compiled binaries of Coturn server for Windows. Read more about COTURN
STUN/TURN.

Properties

» ICEServers: define here the ICE Servers you want to use in the WebRTC sessions. Example:

{"iceServers": [{"url": "stun:stun.l.google.com:19302"}]}

+ CloseSessionOnHangup: by default true, if enabled when a remote peer closes the connection, the other
peer is disconnected too. If you want maintain the other peer connection when the peer disconnects, set this
property to false.

COMPONENTS

Protocol WebRTC Javascript

Here you can find available methods, you need to replace {%host%} and {%port%} variables as needed, example:
if you have configured your sgcWebSocket server to listen port 80 on www.example.com website you need to con-
figure:

<script src="http://www.example.com:80/sgcWebSockets.js"></script>
<script src="http://www.example.com:80/webrtc.esegece.com.js"></script>

Open Connection

When a WebSocket connection is opened, browser request access to local camera and microphone,
you need to allow access.

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/webrtc.esegece.com.js"></script>
<script>

var socket = new sgcws_webrtc('ws://{%host%}:{%port%}');
</script>

Open WebRTC Channel

When a browser has access to local camera and microphone, 'sgcmediastart' event is fired and then
you can attempts to connect to another client using webrtc_connect procedure

<script src="http://{%host%}: {%port%}/sgcwWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/webrtc.esegece.com.js"></script>
<script>
var socket = new sgcws_webrtc('ws://{%host%}:{%port%}');
socket.on('sgcmediastart', function(event)

socket .webrtc_connect('custom channel');

}

</script>

Close WebRTC channel

<script src="http://{%host%}:{%port%}/sgcWebSockets.js"></script>
<script src="http://{%host%}: {%port%}/webrtc.esegece.com.js"></script>
<script>

socket.webrtc_disconnect('custom channel');
</script>

COMPONENTS

Protocol Files

This protocol allows sending files using binary WebSocket transport. It can handle big files with a low memory us-
age.
Features

e Publish/subscribe message pattern to provide one-to-many message distribution and decou-
pling of applications.

¢ Acknowledgment of messages sent.
e Implements QoS (Quality of Service) for file delivery.
e Optionally can request Authorization for files received.
¢ Low memory usage.
Components

TsgcWSPServer_Files: Server Protocol Files VCL Component.

TsgcWSPClient_Files: Client Protocol Files VCL Component.

Classes

TsgcWSMessageFile: the object which encapsulates file packet information.

Most common uses

¢ Send Files
* How Send Files To Server
* How Send Files To Clients
* Big Files
» How Send Big Files

COMPONENTS

TsgcWSPServer Files

This is the Server Files Protocol Component, you need to drop this component in the form and select a TsgcWeb-
SocketServer Component using Server Property.

Methods

SendFile: sends a file to a client, you can set the following parameters
aSize: size of every packet in bytes.
aData: user custom data, here you can write any text you think is useful for client.
aChannel: if you only want to send data to all clients subscribed to this channel.
aQoS: type of quality of service.
aFileld: if empty, will be set automatically.

BroadcastFile: sends a file to all connected clients. You can set several parameters:
aSize: size of every packet in bytes.
aData: user custom data, here you can write any text you think is useful for client.
aChannel: if you only want to send data to all clients subscribed to this channel.
aExclude: connection guids separated by a comma, which you don't want to send this file.
alnclude: connection guids separated by a comma, which you want to send this file.

aQoS: type of quality of service.
aFileld: if empty, will be set automatically.

Properties

Files: files properties.
BufferSize: default size of every packet sent, in bytes.
SaveDirectory: the directory where all files will be stored.
QoS: quality of service
Interval: interval to check if a qosLevel2 message has been sent.
Level: level of quality of service.
qoslLevel0: the message is sent.

qoslLevell: the message is sent and you get an acknowledgment if the message has been
processed.

qoslLevel2: the message is sent, you get an acknowledgment if the message has been processed
and packets are requested by the receiver.

Timeout: maximum wait time.

ClearReceivedStreamsOnDisconnect: if disabled, when reconnects, try to resume file download for qosLevel2,
by default is enabled.

ClearSentStreamsOnDisconnect: tif disabled, when reconnects, try to resume file upload for qosLevel2, by de-
fault is enabled.

154

COMPONENTS

Events

OnFileBeforeSent: fired before a file is sent. You can use this event to check file data before is sent.
OnFileReceived: fired when a file is successfully received.

OnFileReceivedAuthorization: fired to check if a file can be received.

OnFileReceivedError: fired when an error occurs receiving a file.

OnFileReceivedFragment: fired when a fragment file is received. Useful to show progress.
OnFileSent: fired when a file is successfully sent.

OnFileSentAcknowledgment: fired when a fragment is sent and the receiver has processed.

OnFileSentError: fired when an error occurs sending a file.

OnFileSentFragment: fired when a fragment file is sent. Useful to show progress.

COMPONENTS

TsgcWSPClient Files

This is the Server Files Protocol Component, you need to drop this component in the form and select a TsgcWeb-
SocketClient Component using Client Property.

Methods

SendFile: sends a file to the server, you can set the following parameters
aSize: size of every packet in bytes.
aData: user custom data, here you can write any text you think is useful for the server.
aQosS: type of quality of service.
aFileld: if empty, will be set automatically.

Properties
Files: files properties
BufferSize: default size of every packet sent, in bytes.
SaveDirectory: the directory where all files will be stored.
QoS: quality of service
Interval: interval to check if a qosLevel2 message has been sent.
Level: level of quality of service.
qoslLevel0: the message is sent.

qoslLevell: the message is sent and you get an acknowledgment if the message has been
processed.

qoslLevel2: the message is sent, you get an acknowledgment if the message has been processed
and packets are requested by the receiver.

Timeout: maximum wait time.

ClearReceivedStreamsOnDisconnect: if disabled, when reconnects, try to resume file download for qosLevel2,
by default is enabled.

ClearSentStreamsOnDisconnect: tif disabled, when reconnects, try to resume file upload for qosLevel2, by de-
fault is enabled.

Events

OnFileBeforeSent: fired before a file is sent. You can use this event to check file data before is sent.
OnFileReceived: fired when a file is successfully received.

OnFileReceivedAuthorization: fired to check if a file can be received.

OnFileReceivedError: fired when an error occurs receiving a file.

OnFileReceivedFragment: fired when a fragment file is received. Useful to show progress.

OnFileSent: fired when a file is successfully sent.

COMPONENTS

OnFileSentAcknowledgment: fired when a fragment is sent and the receiver has processed.
OnFileSentError: fired when an error occurs sending a file.

OnFileSentFragment: fired when a fragment file is sent. Useful to show progress.

157

COMPONENTS

TsgcWSMessageFile

This object is passed as a parameter every time a file protocol event is raised.

Properties

BufferSize: default size of the packet.

Channel: if specified, this file only will be sent to clients subscribed to specific channel.
Method: internal method.

Fileld: identifier of a file, is unique for all files received/sent.
Data: user custom data. Here the user can set whatever text.
FileName: name of the file.

FilePosition: file position in bytes.

FileSize: Total file size in bytes.

Id: identifier of a packet, is unique for every packet.

QoS: quality of service of the message.

Streaming: for internal use.

Text: for internal use.

COMPONENTS

Protocol Files | How Send Files To Server

To send a File to Server, just call the method SendFile of Files Protocol and pass the full FileName as argument.
The file received by server, will be saved by default in the same directory where is the server executable or in the
Path set in the Files.SaveDirectory property.

// ... Create Server

TsgcWebSocketServer oServer = new TsgcWebSocketServer();
TsgcwWSPServer_Files oServer_Files = new TsgcWSPServer_Files();
oServer_Files.Server = oServer;

oServer.Host = "127.0.0.1";
oServer.Port = 8080;
// ... Create Client

TsgcWebSocketClient oClient = new TsgcWebSocketClient();
oClient.URL = "ws://127.0.0.1:8080";

// ... Create Protocol
TsgcwWSPClient_Files oClient_Files = new TsgcWSPClient_Files();
oClient_Files.Client = oClient;

// ... Start Server
oServer.Active = true;

// ... Connect client and Send File
if oClient.Connect() then
oClient_Files.SendFile("c:\Documents\yourfile.txt");

COMPONENTS

Protocol Files | How Send Files To Clients

To send a File to a Client, just call the method SendFile of Files Protocol and pass the Guid of the Connection and
the full FileName as argument. The Guid of the client connection can be captured OnConnect event of Server Pro-

tocol Files.

The file received by client, will be saved by default in the same directory where is the client executable or in the

Path set in the Files.SaveDirectory property.

// ... capture the guid of the client connection to send later
void OnConnectEvent(TsgcWSConnection *Connection)

FGuid = Connection.Guid;

}

// ... Create Server

TsgcwWebSocketServer oServer = new TsgcWebSocketServer();
TsgcWSPServer_Files oServer_Files = new TsgcWSPServer_Files();
oServer_Files.Server = oServer;

oServer_Files.OnConnect += OnConnectEvent;

oServer.Host "127.0.0.1";

oServer.Port 8080;

// ... Create Client
TsgcwWebSocketClient oClient = new TsgcWebSocketClient();
oClient.URL = "ws://127.0.0.1:8080";

// ... Create Protocol
TsgcWSPClient_Files oClient_Files =
oClient_Files.Client = oClient;

new TsgcWSPClient_Files();

// ... Start Server
oServer .Active = true;
oClient.Connect();

// ... Send File to the client connected

"c:\Documents\yourfile.txt");

oServer_Files.SendFile(FGuid,

the file

COMPONENTS

Protocol Files | How Send Big Files

When you want to send big files to Server or Client, for example a File of some Gigabytes, you can experience
some memory problems trying to load the full file. The Protocol Files allows you to send the files in smaller packets
that when received by other peer are reassembled in a single file. Just use the Size parameter of SendFile method
to set the Size in Bytes of every single packet.

// ... Create Server

TsgcWebSocketServer oServer = new TsgcWebSocketServer();
TsgcWSPServer_Files oServer_Files = new TsgcWSPServer_Files();
oServer_Files.Server = oServer;

oServer.Host = "127.0.0.1";

oServer.Port = 8080;

// ... Create Client
TsgcWebSocketClient oClient = new TsgcWebSocketClient();
oClient.URL = "ws://127.0.0.1:8080";

// ... Create Protocol
TsgcWSPClient_Files oClient_Files = new TsgcWSPClient_ Files();
oClient_Files.Client = oClient;

// ... Start Server
oServer.Active = true;

// ... Connect client and Send File in packets of 100000 bytes
if oClient.Connect() then
oClient_Files.SendFile("c:\Documents\yourfile.txt", 100000, TwsQoS.qosLevel@, "");

COMPONENTS

APl Binance

Binance

Binance is an international multi-language cryptocurrency exchange. It offers some APIs to access Binance data.
The following APls are supported:

1.

2.

3.

4.

WebSocket streams: allows you to subscribe to some methods and get data in real-time. Events are
pushed to clients by server to subscribers. Uses WebSocket as protocol.
UserData stream: subscribed clients get account details. Requires an API key to authenticate and uses
WebSocket as protocol.
REST API: Requires an API Key and Secret to authenticate and uses HTTPs as protocol.

1. Market Data

2. Account and Trading Data
Fut@ires: WebSocket Futures Market Data Streams are supported through the Binance Futures Client API.

The client supports Binance.us too, the following APIs are supported:

1.

2.

3.

WebSocket streams: allows you to subscribe to some methods and get data in real-time. Events are
pushed to clients by server to subscribers. Uses WebSocket as protocol.

UserData stream: subscribed clients get account details. Requires an API key to authenticate and uses
WebSocket as protocol.

REST API: clients can request to server market and account data. Requires an API Key and Secret to au-
thenticate and uses HTTPs as protocol.

Properties

Binance API has 2 types of methods: public and private. Public methods can be accessed without authentication,
example: get ticker prices. Only are only private and related to user data, those methods requires the use of Bi-
nance API keys.

ApiKey: you can request a new api key in your binance account, just copy the value to this property.
ApiSecret: API secret is only required for REST_API, websocket api only requires ApiKey for some meth-
ods.
TestNet: if enabled it will connect to Binance Demo Account (by default false).
* HTTPLogOptions: stores in a text file a log of HTTP requests
» Enabled): if enabled, will store all HTTP requests of WebSocket API.
» FileName: full path of filename where logs will be stored
» REST: stores in a text file a log of REST API requests
« Enabled: if enabled, will store all HTTP Requests of REST API.
» FileName: full path of filename where logs will be stored.
UserStream: if enabled the client will receive notifications on Account, Orders or Balance Updates (by de-
fault true).
BinanceUS: if enabled, will connect to Binance.us Servers (instead of Binance.com servers which is the de-
fault).
ListenKeyOnDisconnect: this property specifies what to do when the client disconnect from Binance
servers with an Active ListenKey.
> blkodDeleteListenKey: Delete the Active ListenKey doing an HTTP Request to Binance Servers
(this is the default).
o blkodClearListenKey: Doesn't deletes the ListenKey from Binance Servers and just clear the value
of the field.
> blkodDoNothing: does nothing, so the next time that connects to Binance will try to use the same
ListenKey.
UseCombinedStreams: if enabled, will combine streams as
follows: {"stream":"<streamName>","data":<rawPayload>} (by default disabled)

https://www.binance.com/
https://binance-docs.github.io/apidocs/spot/en/#market-data-endpoints
https://binance-docs.github.io/apidocs/spot/en/#spot-account-trade

COMPONENTS

Most common uses

e WebSockets API

* How Connect WebSocket API

 How Subscribe WebSocket Channel
e REST API

* How Get Market Data

 How Use Private REST API

¢ How Trade Spot

* Private Requests Time

WebSocket Stream API

Base endpoint is wss://stream.binance.com:9443, client can subscribe / unsubscribe from events after a successful
connection.
The following Subscription / Unsubscription methods are supported.

Parame-

Method Description
ters
AggregateTrades Symbol push trade information that is aggregated for a single taker order
Trades Symbol push raw trade information; each trade has a unique buyer and seller
I, In-
KLine tS(a);\r:;l:I)o o push updates to the current klines/candlestick every second, minute, hour...
MiniTicker Svmbol 24hr rolling window mini-ticker statistics. These are NOT the statistics of the
y UTC day, but a 24hr rolling window for the previous 24hrs.
24hr rolling window mini-ticker statistics for all symbols that changed in an
AllMiniTickers array. These are NOT the statistics of the UTC day, but a 24hr rolling win-
dow for the previous 24hrs. Note that only tickers that have changed will be
present in the array.
Ticker Svmbol 24hr rolling window ticker statistics for a single symbol. These are NOT the
y statistics of the UTC day, but a 24hr rolling window for the previous 24hrs.
24hr rolling window ticker statistics for all symbols that changed in an array.
AllMarketTickers These are NOT the statistics of the UTC day, but a 24hr rolling window for
the previous 24hrs. Note that only tickers that have changed will be present
in the array.
BookTicker Symbol Pushgs any update to the best bid or ask's price or quantity in real-time for a
specified symbol.
AllBookTickers Pushes any update to the best bid or ask's price or quantity in real-time for
all symbols.
< > bi id < >
PartialBookDepth Symbol, Top <levels> bids and asks, pushed every second. Valid <levels> are 5, 10,
Depth or 20.
k pri tit th t to locall -
DiffDepth Syl (?;?ELEEO price and quantity depth updates used to locally manage an or

After a successful subcription / unsubscription, client receives a message about it, where id is the result of Sub-
scribed / Unsubscribed method.

"result": null,
"id": 1
}

COMPONENTS

User Data Stream API

Requires a valid ApiKey obtained from your binance account, and ApiKey must be set in Binance.ApiKey property
of component.

The following data is pushed to client every time there is a change. There is no need to subscribe to any method,
this is done automatically if you set a valid ApiKey.

Method Description

Account Update Account state is updated with the outboundAccountinfo event.
Balance Update occurs during the following:

Balance Update » Deposits or withdrawals from the account

+ Transfer of funds between accounts (e.g. Spot to Margin)
Order Update Orders are updated with the executionReport event.

REST API

The base endpoint is: https://api.binance.com. All endpoints return either a JSON object or array. Data is returned
in ascending order. Oldest first, newest last.

Access to the REST API Options, using the property REST_API.BinanceOptions.

Public APl EndPoints

These endpoints can be accessed without any authorization.

General EndPoints

Method Parameters Description
Ping Test connectivity to the Rest API.
GetServerTime ;Ii'fns; connectivity to the Rest API and get the current server

GetExchangeln-

. Current exchange trading rules and symbol information
formation

Market Data EndPoints

Method Parameters Description

GetOrderBook Symbol Get Order Book.

GetTrades Symbol Get recent trades

GetHistorical- Symbol Get older trades.

Trades
Get compressed, aggregate trades. Trades that fill at the time,

GetAggregate- . . : .

Trades Symbol from the same order, with the same price will have the quantity
aggregated.

GetKLines Gyl (e P.(Ilne/cand.lestlck b.ars for a symbol. Klines are uniquely identi-
fied by their open time.

GetAver- Symbol Current average price for a symbol

agePrice y gep y '

164

COMPONENTS

24 hour rolling window price change statistics. Careful when ac-
cessing this with no symbol.

GetPriceTicker Symbol Latest price for a symbol.

Latest price for an array of symbols.

Example: ['BTCUSDT","BNBUSDT"]

GetBookTicker Symbol Best price/qty on the order book for a symbol or symbols.

Get24hrTicker Symbol

GetPriceTickers Symbols

Private APl EndPoints

Requires an APIKey and APISecret to get authorized by server.

Account Data EndPoints

Method Parameters Description

NewOrder Symbol, Side, Type Send in a new order.

PlaceMarke- Side, Symbol, Quantity Places a New Market Order

tOrder

PlaceMar- Side, Symbol, QuoteOrderQt Places a New Market Quote Order

ketQuoteOrder id ’ Y

PlaceLimitOrder g::e Symbol, Quantity, Limit- Places a New Limit Order

PlaceStopOrder S|(.1e, S).lm.b0|,. Quantity, Stop- Places a New Stop Order

Price, LimitPrice

PlaceStop- Side, Symbol, Quantity, Trail- .

TrailingOrder ingDelta, LimitPrice Places a New Stop Trailing Order

Place TakeProfi- Slfie, Sym'bol,. Quantity, Stop- Places a New Take Profit Order

tOrder Price, LimitPrice

PlaceTakeProf- Side, Symbol, Quantity, Trail- L

itTrailingOrder ingDelta, LimitPrice Places a New Take ProfitTrailing Order

PlaceLimit- . . .

MakerOrder Side, Symbol, Quantity Places a New Limit Market Order
Test new order creation and signature/recvWindow long. Cre-

TestNewOrder Symbol, Side, Type ates and validates a new order but does not send it into the
matching engine.

QueryOrder Symbol Check an order's status.

CancelOrder Svmbol Cancel an active order. Cancel an active order. Either Orderld or

y OrigClientOrderld must be sent.

CancelAl- .

e Symbol (optional)

GetOpenOrders th all open orders on a symbol. Careful when accessing this
with no symbol.

GetAllOrders Symbol Get all account orders; active, canceled, or filled.

NewOCO Symbo!, Side, Quantity, Price, Send in a new OCO

StopPrice

CancelOCO Symbol Cancel an entire Order List

QueryOCO Symbol tF:irleves a specific OCO based on provided optional parame-

GetAlIOCO Retrieves all OCO based on provided optional parameters

GetOpenOCO Get All Open OCO.

GetAcF;ountIn- Get current account information.

formation

COMPONENTS

GetAccount- o
TradeList Symbol Get trades for a specific account and symbol. ’

Convert EndPoints

Method Parameters Description
Ge.tAIIConvert- FromAsset, ToAsset Query for all .co'nvertlble token pairs and the tokens’ respective
Pairs upper/lower limits
GetC rtAsset-
In?o onveriasse Query for supported asset’s precision information
SendCon- :
e R UEE FromAsset, ToAsset Request a quote for the requested token pairs
AcceptCon-
vertQuote Quoteld Accept the offered quote by quote ID.
t rt -
S;tiznve Order Orderld or Quoteld Query order status by order ID.

Enable users to place a limit order.

PlaceConvertLim- BaseAsset, QuoteAsset, Side, baseAsset or quoteAsset can be determined via exchangelnfo

. N endpoint.
itOrder LimitPrice Limit price is defined from baseAsset to quoteAsset.
Either baseAmount or quoteAmount is used.
Canc_el(_)on- Orderld Enable users to cancel a limit order
vertLimitOrder
GetC rtLimi-
tOepe:g\r/gerslml Enable users to query for all existing limit orders
(HBieSttgl?ynvertTrade- StartTime, EndTime The max interval between startTime and endTime is 30 days.

Wallet EndPoints

(*wallet endpoints only work with production server, not demo)

Method Description

GetWalletSystemStatus Fetch system status.
GetWalletAllCoinslInfor-

Get information of coins (available for deposit and withdraw) for user.

mation

Type: "SPOT", "MARGIN", "FUTURES"
GetWalletDailyAc- + The query time period must be less then 30 days
countSnapshot » Support query within the last one month only

« |f startTimeand endTime not sent, return records of the last 7 days by default

SetWalletDisableFast- This request will disable fastwithdraw switch under your account.
WithdrawSwitch You need to enable "trade" option for the api key which requests this endpoint.

This request will enable fastwithdraw switch under your account.
SetWalletEnableFast- You need to enable "trade" option for the api key which requests this endpoint.
WithdrawSwitch When Fast Withdraw Switch is on, transferring funds to a Binance account will be done in-

stantly. There is no on-chain transaction, no transaction ID and no withdrawal fee.
Submit a withdraw request.

WalletWithdraw

GetWalletDepositHistory ~ Fetch deposit history.
GetWalletWithdrawHisto-
ry

Fetch Withdraw history.

COMPONENTS

GetWalletDepositAd-
dress

Fetch deposit address with network.

GetWalletAccountStatus

Fetch account status detail.

GetWalletAccountAPI-
TradingStatus

Fetch account api trading status detail.

GetWalletDustlLog

Only return last 100 records
Only return records after 2020/12/01

GetWalletAssetsCon-
vertedBNB

WalletDustTransfer

Convert dust assets to BNB.
You need to openEnable Spot & Margin Trading permission for the API Key which requests
this endpoint.

GetWalletAssetDividen-
dRecord

Query asset dividend record.

GetWalletAssetDetail

Fetch details of assets supported on Binance.

GetWalletTradeFee

Fetch trade fee

WalletUserUniver-
salTransfer

You need to enable Permits Universal Transfer option for the APl Key which requests this
endpoint. MAIN_UMFUTURE Spot account transfer to USD®-M Futures account
ENUM of Type:

* MAIN_CMFUTURE Spot account transfer to COIN-M Futures account

« MAIN_MARGIN Spot account transfer to Margin (cross) account

+ UMFUTURE_MAIN USD®-M Futures account transfer to Spot account

+ UMFUTURE_MARGIN USD®-M Futures account transfer to Margin (cross) -
account
CMFUTURE_MAIN COIN-M Futures account transfer to Spot account
CMFUTURE_MARGIN COIN-M Futures account transfer to Margin(cross) account
MARGIN_MAIN Margin (cross) account transfer to Spot account
MARGIN_UMFUTURE Margin (cross) account transfer to USD®-M Futures
MARGIN_CMFUTURE Margin (cross) account transfer to COIN-M Futures
ISOLATEDMARGIN_MARGIN lIsolated margin account transfer to Margin(cross) ac-
count
*+ MARGIN_ISOLATEDMARGIN Margin(cross) account transfer to Isolated margin ac-

count

» ISOLATEDMARGIN_ISOLATEDMARGIN lIsolated margin account transfer to Isolat-
ed margin account
MAIN_FUNDING Spot account transfer to Funding account
FUNDING_MAIN Funding account transfer to Spot account
FUNDING_UMFUTURE Funding account transfer to UMFUTURE account
UMFUTURE_FUNDING UMFUTURE account transfer to Funding account
MARGIN_FUNDING MARGIN account transfer to Funding account
FUNDING_MARGIN Funding account transfer to Margin account
FUNDING_CMFUTURE Funding account transfer to CMFUTURE account
CMFUTURE_FUNDING CMFUTURE account transfer to Funding account

GetWalletQueryUserUni-
versalTransferHistory

fromSymbol must be sent when type are ISOLATEDMARGIN_MARGIN and

ISOLATEDMARGIN_ISOLATEDMARGIN

» toSymbol must be sent when type are MARGIN_ISOLATEDMARGIN and
ISOLATEDMARGIN_ISOLATEDMARGIN

» Support query within the last 6 months only

« |f startTimeand endTime not sent, return records of the last 7 days by default

GetWalletFundingWallet

Currently supports querying the following business assets : Binance Pay, Binance Card, Bi-
nance Gift Card, Stock Token

GetWalletUserAsset

Get user assets, just for positive data.

GetWalletApiKeyPermis-
sion

Events

Binance Messages are received in TsgcWebSocketClient component, you can use the following events:

167

COMPONENTS

OnConnect

After a successful connection to Binance server.
OnDisconnect

After a disconnection from Binance server
OnMessage

Messages sent by server to client are handled in this event.
OnError

If there is any error in protocol, this event will be called.
OnException

If there is an unhandled exception, this event will be called.

Additionally, there is a specific event in Binance APl Component, called OnBinanceHTTPException, which is
raised every time there is an error calling an HTTP Request (REST API or WebSocket User Stream).

(*) Due to changes in Binance Servers, Indy versions before Rad Studio 10.1, won't be able to connect to
Test Servers. This issue doesn't affect to Enterprise Edition or if the Indy version has been upgraded to lat-
est.

COMPONENTS

Binance | Connect WebSocket API

In order to connect to Binance WebSocket API, just create a new Binance API client and attach to TsgcWebSocket-
Client.

See below an example:

TsgcWebSocketClient oClient = new TsgcWebSocketClient();
TsgcWSAPI_Binance oBinance = new TsgcWSAPI_Binance();
oBinance.Client = oClient;

oClient.Active = true;

COMPONENTS

Binance | Subscribe WebSocket Channel

Binance offers a variety of channels where you can subscribe to get real-time updates of market data, orders...
Find below a sample of how subscribe to a Ticker:

TsgcWebSocketClient oClient = new TsgcWebSocketClient();
TsgCWSAPI_Binance oBinance = new TsgcWSAPI_Binance();
oBinance.Client = oClient;

oBinance.SubscribeTicker ("bnbbtc");

void OnMessage(TsgcWSConnection Connection, const string aText)

// here you will receive the ticker updates

}

170

COMPONENTS

Binance | Get Market Data

Binance offers public Market Data through REST Endpoints, when you call one of these endpoints, you will get an

snapshot of the market data requested.
The Market Data Endpoints doesn't require authentication, so are freely available to all users.

Example: to get an snapshot of the ticker BNBBTC, do the following call

TsgcWSAPI_Binance oBinance = new TsSgcWSAPI_Binance();
MessageBox.Show(oBinance.REST_API.GetPriceTicker ("BNBBTC"));

171

COMPONENTS

Binance | Private REST API

The Binance REST API offer public and private endpoints. The Private endpoints requires that messages signed to
increase the security of transactions.
First you must login to your Binance account and create a new API, you will get the following values:

* ApiKey
» ApiSecret

These fields must be configured in the Binance property of the Binance API client component.
Once configured, you can start to do private requests to the Binance Pro REST API

*Private Requests, require that your local machine has the local time synchronized, if not, the requests will be re-
jected by Binance server. Check the following article about this, Binance Private Requests Time.

TsgcWSAPI_Binance oBinance = new TsgcWSAPI_Binance();
oBinance.Binance.ApiKey = "<your api key>";
oBinance.Binance.ApiSecret = '"<your api secret>";
MessageBox.Show(oBinance.REST_API.GetAccountInformation());

172

COMPONENTS

Binance | Trade Spot

Binance allows you to trade with spot using his REST API.

Configuration

First you must create an APl Key in your binance account and add privileges to trading with Spot.

Once this is done, you can start spot trading.

First, set your ApiKey and your ApiSecret in the Binance Client Component, this will be used to sign the re-
quests sent to Binance server.

Place an Order

To place a new order, just call to method REST_APIL.NewOrder of Binance Client Component.
Depending of the type of the order (market, limit...) the APl requires more or less fields.
Mandatory Fields

» Symbol: the product id symbol, example: BNBBTC
» Side: BUY or SELL
+ type: the order type
« LIMIT
* MARKET
+ STOP_LOSS
+ STOP_LOSS_LIMIT
+ TAKE_PROFIT
+ TAKE_PROFIT_LIMIT
* LIMIT_MAKER

Additional Mandatory Fields based on Type

* LIMIT: timelnForce, quantity, price

MARKET: quantity or quoteOrderQty

STOP_LOSS / TAKE_PROFIT: quantity, stopPrice

STOP_LOSS_LIMIT / TAKE_PROFIT_LIMIT: timelnForce, quantity, price, stopPrice
LIMIT_MAKER: quantity, price

When you send an order, there are 2 possibilities:
1. Successful: the function NewOrder returns the message sent by binance server.

2. Error: the exception is returned in the event OnBinanceHT TPException.

Place Market Order 1 BNBBTC

TsgcWSAPI_Binance oBinance = new TsgcWSAPI_Binance();

oBinance.Binance.ApiKey = "<api key>";

oBinance.Binance.ApiSecret = "<api secret>";
MessageBox.Show(oBinance.REST_API.NewOrder ("BNBBTC", "BUY", "MARKET", "", 1)),

Place Limit Order 1 BNBBTC at 0.009260

TSsgCcWSAPI_Binance oBinance = new TSgCcWSAPI_Binance();
oBinance.Binance.ApiKey = "<api key>";

173

COMPONENTS

oBinance.Binance.ApiSecret = "<api secret>";
MessageBox.Show(oBinance.REST_API.NewOrder ("BNBBTC", "BUY", "LIMIT", "GTC", 1, 0, 0.009260));

174

COMPONENTS

Binance | Private Requests Time

When you do a private request to Binance, the message is signed so increase the security of requests. The mes-
sage takes the local time and sends inside the signed message, if the local time has a difference greater than 5
seconds with Binance servers, the request will be rejected. So, it's important verify that your local time is synchro-
nized, you can do this using the synchronization time method for your OS.

The logic is as follows:

if (timestamp < (serverTime + 1000) && (serverTime - timestamp) <= recvWindow) {
/I process request

}else {
/I reject request

}
It is recommended to use a small recvWindow of 5000 or less! The max cannot go beyond 60000 milliseconds.

You can check the Binance server time, calling method GetServerTime, which will return the time of the Binance
server

The RecvWindow defaults to 5000, this value can be increased using the property
REST_API.BinanceOptions.RecvWindow.

175

COMPONENTS

APl Binance Futures

Binance

Binance is an international multi-language cryptocurrency exchange. It offers some APIs to access Binance data.
This component allows you to get Binance Futures WebSocket Market Streams.

https://binance-docs.github.io/apidocs/futures/en
https://binance-docs.github.io/apidocs/delivery/en

Futures Contracts

Binance API has 2 types of methods: public and private. Public methods can be accessed without authentication,
example: get ticker prices. Only are only private and related to user data, those methods requires the use of Bi-
nance API keys.

» ApiKey: you can request a new api key in your binance account, just copy the value to this property.
» ApiSecret: API secret is only required for REST_API, websocket api only requires ApiKey for some meth-
ods.
» TestNet: if enabled it will connect to Binance Demo Account (by default false).
* HTTPLogOptions: stores in a text file a log of HTTP requests
+ Enabled): if enabled, will store all HTTP requests of WebSocket API.
+ FileName: full path of filename where logs will be stored
* REST: stores in a text file a log of REST API requests
» Enabled: if enabled, will store all HTTP Requests of REST API.
» FileName: full path of filename where logs will be stored.
» UserStream: if enabled the client will receive notifications on Account, Orders or Balance Updates (by de-
fault true).
» ListenKeyOnDisconnect: this property specifies what to do when the client disconnect from Binance
servers with an Active ListenKey.
o blkodDeleteListenKey: Delete the Active ListenKey doing an HTTP Request to Binance Servers
(this is the default).
o blkodClearListenKey: Doesn't deletes the ListenKey from Binance Servers and just clear the value
of the field.
> blkodDoNothing: does nothing, so the next time that connects to Binance will try to use the same
ListenKey.
+ UseCombinedStreams: if enabled, will combine streams as
follows: {"stream":"<streamName>","data":<rawPayload>} (by default disabled)

Client can connect to USDT or COIN Binance Futures, set which contract you want to trade using FuturesCon-
tracts property:

* bfcUSDT: connects to USD-M Futures API.
* bfcCOIN: connects to COIN-M Futures API.

Client can connect to Production or Demo Binance accounts. If TestNet property is enabled, it will connect to Demo
account, otherwise will connect to production Binance Servers.

WebSocket Stream API

Client can subscribe / unsubscribe from events after a successful connection.
The following Subscription / Unsubscription methods are supported.

Parame-

ters Description

The Aggregate Trade Streams push trade information that is aggregated for a

AggregateTrades Symbol single taker order every 100 milliseconds.

176

https://www.binance.com/
https://binance-docs.github.io/apidocs/futures/en
https://binance-docs.github.io/apidocs/delivery/en
https://binance-docs.github.io/apidocs/futures/en
https://binance-docs.github.io/apidocs/delivery/en

COMPONENTS

. Symbol, Up- Mark price and funding rate for a single symbol pushed every 3 seconds or
MarkPrice
dateSpeed every second.
AllMarkPrice Update- Mark price and funding rate for all symbols pushed every 3 seconds or every
Speed second.
KLine Symbol, In- The Kline/Candlestick Stream push updates to the current klines/candlestick
terval every 250 milliseconds (if existing).
24hr rolling window mini-ticker statistics for a single symbol. These are NOT
MiniTicker Symbol the statistics of the UTC day, but a 24hr rolling window from requestTime to
24hrs before.
24hr rolling window mini-ticker statistics for all symbols. These are NOT the
AllMiniTicker statistics of the UTC day, but a 24hr rolling window from requestTime to
24hrs before. Note that only tickers that have changed will be present in the
array.
24hr rolling window ticker statistics for a single symbol. These are NOT the
Ticker Symbol statistics of the UTC day, but a 24hr rolling window from requestTime to

24hrs before.

24hr rolling window ticker statistics for all symbols. These are NOT the statis-
AllMarketTickers tics of the UTC day, but a 24hr rolling window from requestTime to 24hrs be-
fore. Note that only tickers that have changed will be present in the array.
Pushes any update to the best bid or ask's price or quantity in real-time for a
specified symbol.
Pushes any update to the best bid or ask's price or quantity in real-time for all
symbols.
The Liquidation Order Streams push force liquidation order information for
specific symbol
The All Liquidation Order Streams push force liquidation order information for
all symbols in the market.

BookTicker Symbol

AllBookTickers

LiquidationOrders Symbol

AllLiquidationOrders

PartialBookDepth gi’;&o" Top bids and asks, Valid are 5, 10, or 20.
DiffDepth Symbol Bids and asks, pushed every 250 milliseconds, 500 milliseconds, 100 mil-

liseconds or in real time(if existing)

After a successful subcription / unsubscription, client receives a message about it, where id is the result of Sub-
scribed / Unsubscribed method.

"result": null,
"id": 1
}

User Data Stream API

Requires a valid ApiKey obtained from your binance account, and ApiKey must be set in Binance.ApiKey property
of component.

The following data is pushed to client every time there is a change. There is no need to subscribe to any method,
this is done automatically if you set a valid ApiKey.

Method Description

When the user's position risk ratio is too high, this stream will be pushed. This message
is only used as risk guidance information and is not recommended for investment strate-
gies. In the case of a highly volatile market, there may be the possibility that the user's
position has been liquidated at the same time when this stream is pushed out.

Margin Call

177

COMPONENTS

Balance Update occurs during the following:

Balance and Position Up- » When balance or position get updated, this event will be pushed.

date « When "FUNDING FEE" changes to the user's balance.
Order Update When new order created, order status changed will push such event.
REST API

All endpoints return either a JSON object or array. Data is returned in ascending order. Oldest first, newest last.

Public APl EndPoints

These endpoints can be accessed without any authorization.

General EndPoints

Method Parameters Description
Ping Test connectivity to the Rest API.
GetServerTime :[Ii'trenset connectivity to the Rest API and get the current server

GetExchangeln-

. Current exchange trading rules and symbol information
formation

Market Data EndPoints

Method Parameters Description
GetOrderBook Symbol Get Order Book.
GetTrades Symbol Get recent trades
GetHistorical- Symbol Get older trades.
Trades
Get compressed, aggregate trades. Trades that fill at the time,
GetAggregate-
Trades Symbol from the same order, with the same price will have the quantity
aggregated.
GetKLines Syl [ame Kline/candlestick bars for a symbol. Klines are uniquely identi-

fied by their open time.
24 hour rolling window price change statistics. Careful when ac-
cessing this with no symbol.

Get24hrTicker Symbol

GetPriceTicker Symbol Latest price for a symbol or symbols.
GetBookTicker Symbol Best price/qty on the order book for a symbol or symbols.
GetMarkPrice Symbol Mark Price and Funding Rate
GetFundin-
Symbol
gRateHistory ymbo
GetOpenlnterest Symbol Get present open interest of a specific symbol.
GetOpenlinter- .
estStatistics Symbol, Period
GetTopTrader- .
AccountRatio Symbol, Period
GetTopTrader- .
PositionRatio Symbol, Period
GetGlobalAc-

countRatio Symbol, Period

COMPONENTS

GetTakerVolume Symbol, Period |

Private APl EndPoints

Requires an APIKey and APISecret to get authorized by server.

Account and Trades EndPoints

Method ~ Parameters Description
ChangePosition- " Change user's position mode (Hedge Mode or One-way Mode)
Mode DualPosition on EVERY symbol
GetCurrentPosi- Get user's position mode (Hedge Mode or One-way Mode) on
tionMode EVERY symbol
NewOrder PR, Sy [FeE TR Send in a new order.
Type
PlaceMarke- . .
{Order Side, Symbol, Quantity

PlaceLimitOrder

Side, Symbol, Quantity, Limit-
Price

Side, Symbol, Quantity, Stop-

PlaceStopOrder Price, LimitPrice
PlaceTrail- Side, Symbol, Quantity, aActi-
ingStopOrder vationPrice, aCallbackRate
QueryOrder Symbol Check an order's status.
CancelOrder Gyl Cancel an active order. Either Orderld or OrigClientOrderld
must be sent.
CancelAl-
IOpenOrders Symbol
AutoCancelAl- Gl Co BenE e Canc?efl all open orders of the specified symbol at the end of the
IOpenOrders specified countdown.
QueryCurren-
tOpenOrder Symbol
E@enOEeE Symbol th all open orders on a symbol. Careful when accessing this
with no symbol.
GetAllOrders Symbol Get all account orders; active, canceled, or filled.
GetAccountBal-
ance
GetAcF;ountIn- Get current account information.
formation
Changelnitial- e e
Symbol, Leverage Change user's initial leverage of specific symbol market.
Leverage
ChangeMargin- .
I, M T
Type Symbol, MarginType
Modifylsolated-
SRt Symbol, Amount, Type
GetPositionMar-
ginChangeHis- Symbol
tory
GetPo§|t|onIn- Gyl
formation
GetAccount- Symbol

TradeList

COMPONENTS

GetlncomeHis-
tory
GetNotional-
LeverageBrack- Symbol
et

Symbol

Events

Binance Futures Messages are received in TsgcWebSocketClient component, you can use the following events:

OnConnect

After a successful connection to Binance server.
OnDisconnect

After a disconnection from Binance server
OnMessage

Messages sent by server to client are handled in this event.
OnError

If there is any error in protocol, this event will be called.
OnException

If there is an unhandled exception, this event will be called.

Additionally, there is a specific event in Binance APl Component, called OnBinanceHTTPException, which is
raised every time there is an error calling an HTTP Request (REST API or WebSocket User Stream).

(*) Due to changes in Binance Servers, Indy versions before Rad Studio 10.1, won't be able to connect to
Test Servers. This issue doesn't affect to Enterprise Edition or if the Indy version has been upgraded to the
latest.

COMPONENTS

API Binance Futures | Trade

Binance allows you to trade with futures using his REST API.

Configuration

First you must create an API Key in your binance account and add privileges to trading with Futures.

Once this is done, you can start to trading with futures.

First you must select if you want to trade with USDT or COIN futures, there is a property called FuturesContracts
where you can set which future contract you want to trade

Then, set your ApiKey and your ApiSecret in the Binance Futures Client Component, this will be used to sign the
requests sent to Binance server.

Place an Order

To place a new order, just call to method REST_APIL.NewOrder of Binance Futures Client Component.
Depending of the type of the order (market, limit...) the API requires more or less fields.
Mandatory Fields

* Symbol: the product id symbol, example: BTCUSD_210326
+ Side: BUY or SELL
+ type: the order type
« LIMIT
+ MARKET
+ STOP
+ TAKE_PROFIT
+ STOP_MARKET
+ TAKE_PROFIT_MARKET
* TRAILING_STOP_MARKET

Additional Mandatory Fields based on Type

LIMIT: timelnForce, quantity, price

MARKET: quantity

STOP/TAKE_PROFIT: quantity, price, stopPrice
STOP_MARKET/TAKE_PROFIT_MARKET: stopPrice
TRAILING_STOP_MARKET: callbackRate

When you send an order, there are 2 possibilities:

1. Successful: the function NewOrder returns the message sent by binance server.
2. Error: the exception is returned in the event OnBinanceHT TPException.

COMPONENTS

API SocketlO

SocketlO

Socket.lO is a JavaScript library for real-time web applications. It enables real-time, bi-directional communication
between web clients and servers. It has two parts: a client-side library that runs in the browser, and a server-side li-
brary for Node.js. Both components have a nearly identical API. Like Node.js, it is event-driven.

Messages Types

0: open (Sent from the server when a new transport is opened (recheck))
1: close (Request the close of this transport but does not shut down the connection itself.)
2: ping (Sent by the client. The server should answer with a pong packet containing the same data)
example
client sends: 2probe
server sends: 3probe
3: pong (Sent by the server to respond to ping packets.)
4: string message (actual message, client and server should call their callbacks with the data.)
example:
42/chat,[*join”,”{room:1}"]
4 is the message packet type in the engine.io protocol
2 is the EVENT type in the socket.io protocol
/chat is the data which is processed by socket.io
socket.io will fire the “join” event
will pass "room: 1" data. It is possible to omit namespace only when it is /.
5: upgrade (Before engine.io switches a transport, it tests, if server and client can communicate over this trans-
port. If this test succeeds, the client sends an upgrade packets which requests the server to flush its cache on the
old transport and switch to the new transport.)

6: noop (A noop packet. Used primarily to force a poll cycle when an incoming WebSocket connection is re-
ceived.)

Properties

API: specifies SocketlO version:

ioAPIO: supports socket.io 0.* servers (selected by default)

ioAPI1: supports socket.io 1.* servers

ioAPI2: supports socket.io 2.* servers

ioAPI3: supports socket.io 3.* servers

ioAPI4: supports socket.io 4.* servers
Base64: if enabled, binary messages are received as base64.
HandShakeCustomURL: allows customizing URLI to get socket.io session.

HandShakeTimestamp: only enable if you want to send timestamp as a parameter when a new session is re-
quested (enable this property if you try to access a gevent-socketio python server).

https://socket.io

COMPONENTS

HandShakeAuthToken: if the server requires to send a token for authentication, set here the authentication to-
ken.

Namespace: allows setting a namespace when connects to the server.
Polling: disabling this property, client will connect directly to server using websocket as transport.
Parameters: allows you to set connection parameters.

EncodeParameters: if enabled, parameters are encoded.

Methods

Use WriteData method to send messages to socket.io server (following Message Types sections)
1. call method add user and one parameter with John as user name

WriteData("42[\"add user\", \"John\"]");

Events

OnHTTPRequest

Before a new websocket connection is established, socket.io server requires client open a new HTTP connection to
get a new session id. In some cases, socket.io server requires authentication using HTTP headers, you can use
this event to add custom HTTP headers, like Basic authorization or Bearer token authentication.

OnAfterConnect

This event is called after socket.io connection is successful and client can send messages to server. Here you can
subscribe to namespaces for example.

COMPONENTS

WhatsApp Cloud API

Whatsapp

Send and receive messages using a cloud-hosted version of the WhatsApp Business Platform. The Cloud API
allows you to implement WhatsApp Business APIs without the cost of hosting of your own servers and also allows
you to more easily scale your business messaging. The Cloud API supports up to 80 messages per second of com-

bined sending and receiving (inclusive of text and media messages).

The WhatsApp Business API allows medium and large businesses to communicate with their customers at scale.
Using the API, businesses can build systems that connect thousands of customers with agents or bots, enabling
both programmatic and manual communication. Additionally, you can integrate the API with nhumerous backend

systems, such as CRM and marketing platforms.

Features

Businesses will get all the new features faster on Cloud API. Right now, WhatsApp Business Cloud API comes with

all the features that are available with WhatsApp Business API.

Useful features of WhatsApp Cloud API:

Integrate WhatsApp messaging with tools like CRM, analytics, and third-party apps
Green Tick, verified WhatsApp Business profile

WhatsApp Broadcast & Bulk Messaging

No app or interface, use via BSPs or CRM

WhatsApp Chatbot & chat automation using third-party apps

Schedule WhatsApp messages at a large scale

Interactive messaging features include List messages, reply buttons, CTA messages

Most common uses

» Configuration

WhatsApp Create App
WhatsApp Phone Number Id
WhatsApp Token

WhatsApp Webhook
WhatsApp Security

+ Messages

o

o
o
[
o
[

WhatsApp Send Messages

WhatsApp Send Interactive Messages

WhatsApp Send Template Messages

WhatsApp Receive Messages and Status Notifications
WhatsApp Send Files

WhatsApp Download Media

Get Started

To send and receive a first message using a test number, complete the following steps:

1. Set up Developer Assets and Platform Access

» Register as a Meta Developer
» Enable two-factor authentication for your account

184

https://www.whatsapp.com/

COMPONENTS

» Create a Meta App: Go to developers.facebook.com > My Apps > Create App. Select the "Business" type
and follow the prompts on your screen.

From the App Dashboard, click on the app you would like to connect to WhatsApp. Scroll down to find the "What-
sApp" product and click Set up.

Next, you will see the option to select an existing Business Manager (if you have one) or, if you would like, the on-
boarding process can create one automatically for you (you can customize your business later, if needed). Make a
selection and click Continue.

When you click Continue, the onboarding process performs the following actions:

* Your App is associated with the Business Manager that you chose, or that was created automatically.

* A WhatsApp test phone number is added to your business. You can use this test phone number to explore
the WhatsApp Business Platform without registering or migrating a real phone number. Test phone numbers
can send unlimited messages to up to 5 recipients (which can be anywhere in the world).

2. Send a Test Message

Now, you can open your IDE and create a new project. Drop a TsgcWhatsapp_Client component and fill the follow-
ing properties:

+ WhatsappOptions.PhoneNumberld: is the ID of the Phone Number used to send messages.
+ WhatsappOptions.Token: is the Temporary Access Token valid for 24 hours.

Once those 2 properties have been property configured, call the method SendTest to send your First message to
a phone number using the Whatsapp Business Platform.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendTest("34605889421");

3. Configure a Webhook

To get alerted when you receive a message or when a message’s status has changed, you need to set up a Web-
hooks endpoint for your app. Setting up Webhooks doesn’t affect the status of your phone number and does inter-
fere with you sending or receiving messages.

To get started, first you need to create the endpoint, so first configure the ServerOptions property of WhatsApp
Client component and configure the following properties:

» ServerOptions: here you can configure the IP Address to bind, the Listening Port, if it's using SSL (the Web-
Hook must run in a secure server, you can configure your server to use SSL or Proxy the WebHook requests
to a none HTTPs server). The server is based on TsgcWebSocketHTTPServer.

> WebhookOptions: this property allows you to set the Webhook properties that later will be config-
ured in your developer facebook account.
= Endpoint: it's the name of the endpoint, by default is /webhook. Example: if your server is lis-
tening on https://www.esegece.com, the endpoint will be "https://www.esegece.com/webhook"
= Token: it's a security string that can contain any value defined by you. It's used to verify the
Webhook registration is correct.

After configuring the server, you can use the method StartServer to start the server and accept the incoming re-
quests.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.ServerOptions.WebhookOptions.PhoneNumberId = "/webhook";
oClient.ServerOptions.WebhookOptions.Token = "MySecretToken";
oClient.StartServer();

Once your endpoint is ready, go to your App Dashboard.

COMPONENTS

In your App Dashboard, find the WhatsApp product and click Configuration. Then, find the webhooks section and
click Configure a webhook. After the click, a dialog appears on your screen and asks you for two items:

» Callback URL: This is the URL Meta will be sending the events to.
+ Verify Token: This string is set up by you, when you create your webhook endpoint.

After adding the information, click Verify and Save.

Back in the App Dashboard, click WhatsApp > Configuration in the left-side panel. Under Webhooks, click Man-
age. A dialog box will open with all the objects you can get notified about. To receive messages from your users,
click Subscribe for messages.

4. Receive a test message

Every time a new message is received, the client event OnMessageReceived will be called.

void OnMessageReceived(TsgcWhatsApp_Client Sender, TsgcWhatsApp_Receive_Message Message, ref bool MarkAsRead)

DoLog("Received: " + Message.Text);

Now that your Webhook is set up, send a message to the test number you have used. You should immediately get
a Webhooks notification with the content of your message!

The WhatsApp API does not allow sending free text messages to phones that have not contacted you before (with-
in the latest 24 hours). The only way to send a text message to a phone that has never texted your developer ac-
count number is by sending a Template (previously approved by Meta). To override this limitation for testing free
text messages, first send a WhatsApp message from the destination number to your developer account number,
and then you will be able to send free text messages for 24 hours.

Events

OnBeforeSendMessage

The event is called before the message is sent to the WhatsApp servers, you can access to the internal message
accessing to the RawMessage paramenter.

OnBeforeSubscribe

The event is called before the server subscribes to a topic, use the parameter Accept to subscribe or not, by de-
fault, the server will subscribe to all events requested.

OnRawMessage

This event is called when the server receives a new message and still is not parsed, so you get access to the raw
message.

OnMessageReceived

This event is called after the server receives a new message and is parsed. If you set the parameter MarkAsRead
to True, the sender will receive a double check.

OnMessageSent

This event is called every time the server receives a new status message about the message previously sent. Read
the Status property to know if the message has been sent, delivered or read.

COMPONENTS

187

COMPONENTS

WhatsApp Create App

Go to developers.facebook.com and Create App.

Select Business Type as the app type and proceed.
Create an App X Cancel

(D Type Select an app type
The app type can't be changed after your app is created. Learn more
O Details

Business Y

[~ Create or manage business assets such as Pages, events, groups, ads, Messenger and Instagram Graph API
using the available business permissions, features and products.

Consumer
Connect consumer products and permissions, like Facebook Login and Instagram Basic Display to your app.

a None
Create an app with combinations of consumer and business permissions and products.

Provide a name for your app (avoid using trademarked names such as “WhatsApp” or “Facebook”).

Create an App ¥ Cancel
@ Type Provide basic information
(\'. Details Display name

This ks the app name assccintod with your app 1D, You can change this later,

App contact email
This email addeess is used to comact you about potential policy violalions, app restriclions o shisps 16 recover the app if i's been deleted or
campramised.

Business Account « Opticnal
To access certain permissions or features, apps need 1o be connected to a Business Account

HNo Business Manager account selected -
By proceeding, you agree to the Facebook Platform Terms and Developer Policies Previous

Once the app has been created, click the WhatsApp button on the next screen to add WhatsApp sending capabili-
ties to your app.

—

On the next screen, you will be required to link your WhatsApp app to your Facebook business account. You will al-
so have the option to create a new business account if you don’t have one yet.

188

COMPONENTS

COMPONENTS

WhatsApp Phone Number Id

When you register with WhatsApp Cloud API, Facebook provides a Test WhatsApp phone number that will be the
default sending address of your Application. For recipients, you will have the option to add a maximum of 5 phone
numbers during the development phase without having to make any payment.

Later you can register your own Phone Number to avoid the limitation of 5 phone numbers.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";

COMPONENTS

WhatsApp Token

WhatApp Cloud API requires a valid token to send any message using the Cloud API.

Facebook provides a Test WhatsApp phone number that allows you to send messages up to 5 phone numbers.
You can override later this limitation registering your own phone number.

The WhatsApp API provides a Temporary Access Token that will be valid for 23 hours. This token must be config-
ured in the TsgcWhatsApp_Client component to allow sending messages.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr. . .ZB2t8mmLB2LRXJkte2Y5PMNh2";

If you need a long-valid token, you can create (or update) a system user and generate a new token with
the whatsapp_business_messaging permission. This will allow you to send and receive WhatsApp messages
without updating the token every 23 hours.

COMPONENTS

WhatsApp Webhook

Subscribe to Webhooks to get notifications about messages your business receives and customer profile updates.

Create Endpoint

Before you can start receiving notifications you will need to create an endpoint on your server to receive notifica-
tions.

Your endpoint must be able to process two types of HTTPS requests: Verification Requests and Event Notifications.
Since both requests use HTTPs, your server must have a valid TLS or SSL certificate correctly configured and in-
stalled. Self-signed certificates are not supported.

When you configure the Webhook in the WhatsApp Settings, you must define the endpoint where is listening your
server and a Token that can be any value, this token is used when registering the webhook endpoint and verify the
subscriber is valid.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.ServerOptions.WebhookOptions.PhoneNumberId = "/webhook";
oClient.ServerOptions.WebhookOptions.Token = "MySecretToken";
oClient.StartServer();

Once the Webhook is configured, subscribe to Messages Webhook Fields to be notified every time a new mes-
sage is received.

You can read more about configuring SSL Server.

COMPONENTS

WhatsApp Security

Every time a new message is received or there is a new status of a message, the server receives a notification in
the endpoint confrigured in the Webhook. To be sure the request comes from WhatsApp Cloud API Servers, the re-
quest contains a header with a signature, you can configure the WhatsApp client to verify the signatures before
process the message.

To do this, first you need to set the Application Secret in the property ServerOptions.Application.Secret and en-
able VerifySignature property.

Once configured, every time a new message is received, first the signature is verified, and if it's wrong, returns an
error 500 and the message is not processed.

COMPONENTS

WhatsApp Send Messages

All API calls must be authenticated with an Acccess Token. Developers can authenticate their API calls with the

access token generated in App Dashboard > WhatsApp > Getting Started

The API calls return the Message Id as a string.

Text Messages

Call the method SendMessageText and pass the following parameters:

» aTo: phone number
+ aText: text of the message.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessageText("34605889421", "Hello from sgcWebSockets!!!");

Image Messages

Call the method SendMessagelmage and pass the following parameters:

+ aTo: phone number
+ aLink: url where is the image to send
» aCaption: title of the image (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessageImage("34605889421", "Hello from sgcWebSockets!!!", "logo");

Document Messages

Call the method SendMessageDocument and pass the following parameters:

» aTo: phone number

+ aLink: url where is the document to send
+ aCaption: title of the document (optional).
» aFileName: name of the file (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";

oClient.SendMessageDocument ("34605889421", "https://www.documents.com/file.txt", "Document",

Audio Messages

Call the method SendMessageAudio and pass the following parameters:

"file.txt");

194

COMPONENTS

+ aTo: phone number
 aLink: url where is the audio to send

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAG]j3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessageAudio("34605889421", "https://www.audio.com/audio.mp3");

Video Messages

Call the method SendMessageVideo and pass the following parameters:

» aTo: phone number
 aLink: url where is the video to send

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessageVideo("34605889421", "https://www.video.com/audio.mp4");

Sticker Messages

Call the method SendMessageSticker and pass the following parameters:

» aTo: phone number
» aLink: url where is the sticker to send

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessageSticker ("34605889421", "https://www.stickers.com/sticker");

Location Messages

Call the method SendMessageLocation and pass the following parameters:

» aTo: phone number

» alLongitude: Longitude of the location.

+ alLatitude: Latitude of the location.

+ aName: Name of the location.

» aAddress: Address of the location. Only displayed if aName is set.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient.WhatsappOptions.PhoneNumberId = "107809351952205";

oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessagelLocation("34605889421", "50.159305", "9.762686", "My Location", "My Address");

COMPONENTS

Contact Messages

Call the method SendMessageContact and pass the following parameters:

» aTo: phone number

+ aName: Full name, as it normally appears (required).
» aPhone: the phone number (optional).

+ aEmail: the email (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";

oClient.WhatsappOptions.Token = "EAA040pgZAs98BAG]j3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessagelLocation("34605889421", "John Smith", "15550386570", "john@mail.com");

COMPONENTS

WhatsApp Send Interactive Messages

Interactive messages give your users a simpler way to find and select what they want from your business on What-
sApp. During testing, chatbots using interactive messaging features achieved significantly higher response rates
and conversions compared to those that are text-based.

The following messages are considered interactive:

+ List Messages: Messages including a menu of up to 10 options. This type of message offers a simpler and
more consistent way for users to make a selection when interacting with a business.

* Reply Buttons: Messages including up to 3 options —each option is a button. This type of message offers a

quicker way for users to make a selection from a menu when interacting with a business. Reply buttons have
the same user experience as interactive templates with buttons.

Interactive Message Specifications

* Interactive messages can be combined together in the same flow.

» Users cannot select more than one option at the same time from a list or button message, but they can go
back and re-open a previous message.

+ List or reply button messages cannot be used as notifications. Currently, they can only be sent within 24

hours of the last message sent by the user. If you try to send a message outside the 24-hour window, you
get an error message.

When You Should Use It

List Messages are best for presenting several options, such as:
» A customer care or FAQ menu
+ Atake-out menu
 Selection of nearby stores or locations
+ Available reservation times
» Choosing a recent order to repeat
Reply Buttons are best for offering quick responses from a limited set of options, such as:
+ Airtime recharge
» Changing personal details
* Reordering a previous order
* Requesting a return
» Adding optional extras to a food order
» Choosing a payment method

Reply buttons are particularly valuable for ‘personalized’ use cases where a generic response is not adequate.

197

COMPONENTS

Interactive List

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessageInteractivelList ("

34605889421

", "wWhat Would you like to do today?", "To begin, Tap Main Menu and choose from of the following options", "", "I

1:42

& @ Telecom Wireless #

online

TODAY

This chat is with a business account. Tap for more
info

Hi

42 A
What would you like to do today?
ek fread S PR
i= Main Menu Buy bundles
Buy airtime

Manage your account

FAQs

O O O 0O @

Get help with a problem

Reply Buttons

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();

oClient.WhatsappOptions.PhoneNumberId = "107809351952205";

oClient.WhatsappOptions.Token = "EAA040pgZAs98BAG]j3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessageInteractiveButtons("34605889421", "Select an option", "Which number would you like to add airt

COMPONENTS

1:42

- @ Telecom Wireless #

online

This chat is with a business account. Tap for more
info

What would you like to do today?

To begin, tap Main Menu and choose
from one of the following options

= Main Menu

Telecom Wireless

Buy airtime 1:42 W/

Which number would you like to add
airtime to?

0123456789

Add new number

@ |-.‘;r"[]'l:? d Messdge % @ o

COMPONENTS

1:42

- @ Telecom Wireless #

online

To begin, tap Main Menu and choose
from one of the following options

i= Main Menu

Telecom Wireless

What would you like to do today?

Buy airtime 1:42 ¥/

Which number would you like to add
airtime 10?

0123456789

Add new number

Telecom Wireless
Which number would you like to add
airtime to?

0123456789 1:42 W

@ | ¥YPpe a message % @ o

COMPONENTS

WhatsApp Send Template Messages

Call the method SendMessageTemplate and pass the following parameters:

» aTo: phone number
+ aTemplate: template identifier.
+ aLanguageCode: template language.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendMessageTemplate("34605889421", "hello_world", "en_us");

COMPONENTS

WhatsApp Receive Messages and Status
Notifications

Subscribe to Webhooks to get notifications about messages your business receives and customer profile updates.

Whenever a trigger event occurs, the WhatsApp Business Platform sees the event and sends a notification to a
Webhook URL you have previously specified. You can get two types of notifications:

* Received messages: This alert lets you know when you have received a message.

+ Message status and pricing notifications: This alert lets you know when the status of a message has
changed —for example, the message has been read or delivered.

Received Messages

Every time a new message is received the event OnMessageReceived is called, where you can access to the
content of the Message and mark the message as read.

Find below an example, when a new text message is received, it's echoed to user who sent it.

void OnWhatsAppMessageReceived(TsgcWhatsApp_Client Sender, TsgcWhatsApp_Receive_Message Message, ref bool MarkAsF

DoLog("Message Received: [" + Message.From + "] " + Message.Text);
MarkAsRead = true;

}

Sent Messages

The WhatsApp Business Platform sends notifications to inform you of the status of the messages between you and
users. When a message is sent successfully, you receive a notification when the message is sent, delivered, and
read. The order of these notifications in your app may not reflect the actual timing of the message status. View the
timestamp to determine the timing, if necessary.

» sent: The following notification is received when a business sends a message as part of a user-initiated con-
versation (if that conversation did not originate in a free entry point):

+ delivered: The following notification is received when a business’ message is delivered and that message is
part of a user-initiated conversation (if that conversation did not originate in a free entry point):

 read: The following notification is received when the user reads the message.

Every time a new status is received, the event OnMessageSent is called.

void OnWhatsAppMessageSent (TsgcWhatsApp_Client Sender, TsgcWhatsApp_Receive_Message Message, TsgcWhatsAppSendMess
{

string status = "unknown";
if (Status == TsgcWhatsAppSendMessageStatusType.wapsmstRead)
{

status = "read";

else if (Status == TsgcWhatsAppSendMessageStatusType.wapsmstSent)
{

status = "sent";

}
else if (Status == TsgcWhatsAppSendMessageStatusType.wapsmstDelivered)
{

COMPONENTS

status = "delivered";

DoLog("Message Sent: " + Message.Id + " [" + status + "]");

COMPONENTS

WhatsApp Send Files

All API calls must be authenticated with an Acccess Token. Developers can authenticate their API calls with the
access token generated in App Dashboard > WhatsApp > Getting Started

The API calls return the Message Id as a string.

When you send a File using the WhatsApp API, first the message is uploaded to WhatsApp servers and then a new
message is sent with the object id returned after upload the file.

Image Messages

Call the method SendMessagelmage and pass the following parameters:

* aTo: phone number
» aFileName: full filename (with path) of the image file to send.
+ aFileType:
> image/jpeg
° image/png
+ aCaption: title of the image (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAG]j3nCFGr. . .ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendFileImage("34605889421", "c:\images\image.png", "image/png");

Document Messages

Call the method SendMessageDocument and pass the following parameters:

» aTo: phone number
+ aFileName: full filename (with path) of the document file to send.
+ aFileType:
o text/plain
o application/pdf
o application/vnd.ms-powerpoint
o application/msword
o application/vnd.ms-excel
o application/vnd.openxmlformats-officedocument.wordprocessingml.document
o application/vnd.openxmlformats-officedocument.presentationml.presentation
o application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
+ aCaption: title of the document (optional).

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";

oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendFileDocument ("34605889421", "c:\MyDocuments\invoice.pdf", "application/pdf");

Audio Messages

Call the method SendMessageAudio and pass the following parameters:

+ aTo: phone number

204

COMPONENTS

+ aFileName: full filename (with path) of the audio file to send.
+ aFileType:

° audio/aac

o audio/mp4

o audio/mpeg

° audio/amr

o audio/ogg

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendFileAudio("34605889421", "c:\Music\audio.mp3", "audio/mp4");

Video Messages

Call the method SendMessageVideo and pass the following parameters:

+ aTo: phone number
+ aFileName: full filename (with path) of the video file to send.
+ aFileType:

o video/mp4

o video/3gp

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAG]j3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendFilevVideo("34605889421", "c:\Videos\video.mp4", "video/mp4");

Sticker Messages

Call the method SendMessageSticker and pass the following parameters:

» aTo: phone number
+ aFileName: full filename (with path) of the sticker file to send.
+ aFileType:

> image/webp

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.SendFileSticker("34605889421", "c:\Stickers\MySicker.webp", "image/webp");

COMPONENTS

WhatsApp Download Media

If you receive a message with a media file link, you can download the media file using the method DownloadMedia.

TsgcWhatsapp_Client oClient = new TsgcWhatsapp_Client();
oClient.WhatsappOptions.PhoneNumberId = "107809351952205";
oClient.WhatsappOptions.Token = "EAA040pgZAs98BAGj3nCFGr...ZB2t8mmLB2LRXJkte2Y5PMNh2";
oClient.DownloadMedia("38923878928822", "c:\whatsapp\media\image.png");

To delete a previously uploaded media file, just call DeleteMedia and pass the object id as argument.

COMPONENTS

API Telegram

Telegram

Telegram offers two kinds of APlIs, one is Bot API which allows you to create programs that use Bots and HTTPs
as protocol. Telegram API and TDLib allows you to build customized Telegram clients and is much more powerful
than Bot API.

sgcWebSockets supports TDLib through tdjson library, which means that you can build your own telegram client.
TDLib takes care of all network implementation details, encryption and local data storage. TDLib supports all
Telegram features.

TDLib (Telegram Database Library) Advantages

Cross-platform: can be used on Windows, Android, iOS, MacOS, Linux...

Easy to use: uses json messages to communicate between application and telegram.

High-performance: In the Telegram Bot API, each TDLib instance handles more than 24000 bots.
Consistent: TDLib guarantees that all updates will be delivered in the right order.

Reliable: TDLib remains stable on slow and unreliable internet connections.

Secure: All local data is encrypted using a user-provided encryption key.

Fully Asynchronous: Requests to TDLib don't block each other. Responses will be sent when they are
available.

Configuration

Windows

TDLib requires other third-parties libraries: OpenSSL and ZLib. These libraries must be deployed with tdjson library.
* Windows versions requires VCRuntime which can be download from microsoft: https://www.microsoft.com/en-us/
download/details.aspx?id=52685, If after installing, the problem persist, try to copy the following dll in the same
folder where your application is: VCRUNTIME140.dIl and VCRUNTIME140_1.dll.

Copy the following libraries in the same directory where is your application:

Windows 32 Windows 64

tdjson.dll tdjson.dll
libcrypto-1_1.di hecrypto-1_1-

1Al 64l
libssl-1_1.dl libssl-1_1-x64 dil
Zlib1 di Zlib1 di

Creating your Telegram Application

In order to obtain an API id and develop your own application using the Telegram API you need to do the following:

+ Sign up for Telegram using any application.

* Log in to your Telegram core: https://my.telegram.org.

* Go to API development tools and fill out the form.

* You will get basic addresses as well as the api_id and api_hash parameters required for user authorization.
* For the moment each number can only have one api_id connected to it.

These values must be set in Telegram.API property of Telegram component. In order to authenticate, you can au-
thenticate as an user or as a bot, there are 2 properties which you can set to login to Telegram:

207

https://www.telegram.org/
https://www.microsoft.com/en-us/download/details.aspx?id=52685
https://my.telegram.org

COMPONENTS

* PhoneNumber: if you login as an user, you must set your phone number (with international code), exam-
ple: +34699123456

» BotToken: if you login as a bot, set your token in this property (as provided by telegram).

+ DatabaseDirectory: allows you to specify where is the tdlib database. Leave empty and will take the default
configuration.

The following parameters can be configured:

» ApplicationVersion: application version, example: 1.0

* DeviceModel: device model, example: desktop

» LanguageCode: user language code, example: en.

» SystemVersion: verison of operating system, example: windows.

Optionally, you can configure the path where is located tdjson library using SetTDJsonPath method. Just pass the
path before start a new telegram session.

Once you have configured Telegram Component, you can set Active property to true and program will attempts to
connect to Telegram.

Sample Code

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();
oTelegram.Telegram.API.ApiHash = "your api hash";
oTelegram.Telegram.API.ApiId = "your api id";
oTelegram.PhoneNumber = "your phone number";
oTelegram.ApplicationVersion = "1.0";
oTelegram.DeviceModel = "Desktop";
oTelegram.LanguageCode = "en";

oTelegram.SystemVersion = "Windows";

oTelegram.Active = true;

Authorization

There are two events which can be called by library in order to get an Authentication Code (delivered in Telegram
Application, not SMS) or to provide a password.

OnAuthenticationCode

This event is called when Telegram sends an Authorization Code to Telegram Application and user must copy this
code and set in Code argument of this event.

void OnAuthenticationCode(TObject Sender, ref string Code)

Code = "telegram code here";

}

OnAuthenticationPassword

This event is called when Telegram requires that user set a password.

Authorization Status

Once authorization has started, you can check the status of authorization OnAuthorizationStatus event, this event
is called every time there is a change in status of authorization. Some values of Status are:

 authorizationStateWaitTdlibParameters
+ authorizationStateWaitEncryptionKey

COMPONENTS

authorizationStateWaitPhoneNumber
authorizationStateWaitCode
authorizationStateLoggingOut
authorizationStateClosed
authorizationStateReady

Connection Status

Once connection has started, you can check the status of connection OnConnectionStatus event, this event is

called every time there is a change in status of connection. Some values of Status are:

» connectionStateConnecting
» connectionStateUpdating
» connectionStateReady

Main Methods

TsgcTDLib_Telegram API Component support several Telegram methods, find below the most used.

Method Parameters Description
Send- aChatld: Id of Chat which message
will be sent aText: Text of Message.
TextMes- InlineKeyboard: Optional _Buttons Sends a Text Message to a Chat
sage (only bots).
Sends a Rich Text Message to a
SendRich- aChatld: Id of Chat which message Chat. Markc_ji)l/vn s;g:tax:
TextMes- will be sent aText: Text of Message. * BO',d-_ bold
InlineKeyboard: Optional Buttons * ltalic: __italic__
sage (only bots). Strike: --strike--
+ Underline: ~~underline~~
» Code: ##code##
aChatld: Id of Chat which message
SEEILEES will be sent aFilePath: full file path of
mentMes- . . Sends a Document to a Chat.
R document alnlineKeyboard: Optional
9 Buttons (only bots).
aChatld: Id of Chat which message
will be sent aFilePath: full file path of
ndPho- P
tSeMd o Width: witdh of photo. Sends a Photo to a Chat.
oliessage Height: width of photo.
InlineKeyboard: Optional Buttons
(only bots).
aChatld: Id of Chat which message
will be sent aFilePath: full file path of
Send- video aWidth: witdh of video.
q Height: width of video. .
VideoMes- aDuration: duration of video in sec- SendsiaivideoitoiaiChat,
sage onds.
alnlineKeyboard: Optional Buttons
(only bots).
aChatld: Id of Chat which message
Sendin- will be sent alnvoice: Text of Mes- Sends an Invoice (only available
voiceMes- sage. when is a Bot and in Private Chan-
sage alnlineKeyboard: Optional Buttons pgg),
(only bots).
Edit- aChatld: Id of Chat which message
TextM will be sent Edits the text of a message (or a
DAk aMessageld: Id of Message to modify text of a game message)
sage Text: Text of Message.

COMPONENTS

InlineKeyboard: Optional Buttons
(only bots).
ShowKeyboard: Optional Buttons
(only bots).

aChatld: Id of Chat which message
will be sent aUserld: Identifier of the
user. aForwardLimit: The number of

Adds a new member to a chat.
Members can't be added to private

azz%Z?t- earlier messages from the chat to be or secret chats. Members will not be
forwarded to the new member; up to added until the chat state has been
100. Ignored for supergroups and synchronized with the server.
channels.
Adds multiple new members to a
chat. Currently this option is only
available for supergroups and chan-
AddChat- aChatld: Id of Chat which message nels. This option can't be used to
Members will be sent aUserlds: Identifiers of the join a chat. Members can't be added
users to be added to the chat. to a channel if it has more than 200
members. Members will not be
added until the chat state has been
synchronized with the server.
GetChat- aChatld: Chat Identifier. aUserld: Returns information about a single
Member User Identifier. member of a chat.
SIA=EE- . e Returns full information about a ba-
Group- aGroupld: Basic Group Identifier . Y o
Fullinfo sic group by its identifier.
aSuperGroupld: Identifier of the su-
pergroup or channel.
GetSuper- aSupergroupMembersFilter: The Returns information about members
groupMem- type of users to return. By default null or banned users in a supergroup or
bers aOffset: Number of users to skip. channel.
aLimit: The maximum number of
users be returned; up to 200.
Uses an invite link to add the cur-
JoinChat- rent user to the chat if possible. The
Byin- aLink: Invite link to import; new member will not be added until
viteLink the chat state has been synchro-
nized with the server.
Create-
NewSe- aUserld: Identifier of the user. Creates a new secret chat.
cretChat
CreateNew- aUserlds: Identifiers of the users to be
Basic- added to the chat. aTitle: Title of the Creates a new basic group
GroupChat new basic group
CreateNew- 2aTitle: Title of the new SuperGroup
Super- alsChannel: True, if a channe.l 9hat Creates a new supergroup or chan-
should be created. aDescription: nel.
groupChat Chat Description.
aUserld: Identifier of the user.
aForce: If true, the chat will be creat-
CreatePri- ed without network request. In this Returns an existing chat corre-
vateChat case all information about the chat ex- sponding to a given user
cept its type, title and photo can be in-
correct
aOffsetOrder: Chat order to return Eﬁtutrns an o:tdzre;d It|rs]t of cjhats(.j
GetChats chats from aOffsetChatld: Chat iden- ats are sorted by the pair (order,

tifier to return chats from aLimit: The

chat_id) in decreasing order (cannot
be used is logged as Bot)

COMPONENTS

maximum number of chats to be re-
turned.

Returns information about a chat by

GetChat aChatld: Chat identifier e
its identifier
aChatld: Chat identifier
aFromMessageld: Identifier of the
message starting from which history
must be fetched; use 0 to get results
GetChatHis- from the last message. Returns messages in a .chat. The
t aOffset: Specify 0 to get results from messages are returned in a reverse
ory exactly the from_message_id or a chronological order
negative offset up to 99 to get addi-
tionally some newer messages.
aLimit:The maximum number of mes-
sages to be returned
Ret inf i bout b
GetUser aUserld: User Identifier LS BRI LS el Satriey
their identifier.
aServer: Server name of proxy.
aPort: Number of proxy port.
aUserName: Username for logging in;
may be empty.
AddProxy- aPassword: Password for logging in; Adds a HTTP proxy server for net-
HTTP may be empty. . work requests. Can be called before
aHTTPOnly: Pass true, if the proxy guthorization.
supports only HTTP requests and
doesn't support transparent TCP con-
nections via HTTP CONNECT
method.
aServer: Server name of proxy. Adds a MTProto proxy server for
AddProx- aPort: Number of proxy port. aSecret: R . pC Y be called b
MTProto The proxy's secret in hexadecimal en- network requests. L.an be called be-
y L
coding. fore authorization.
aServer: Server name of proxy.
aPort: Number of proxy port. Adds a Socks5 proxy server for net-
AddProx- aUserName: Username for logging in; ") Cp Xz led bef
Socks5 may be empty. work requests. Can be called before
y .
aPassword: Password for logging in; authorization.
may be empty.
En- Enables a proxy. Only one proxy
ald: ID of proxy can be enabled at a time. Can be
ableProxy L
called before authorization.
. Disables the currently enabled
Dis-
proxy. Can be called before autho-
ableProxy o
rization.
Remove- Removes a proxy server. Can be
ald: ID of proxy o
Proxy called before authorization.
Returns list of proxies that are cur-
GetProxies rently set up. Can be called before
authorization.
getChat- Returns sponsored message to be
Spon- shown in a chat; for channel chats
soredMes- aChatld: ID of the chat only. Returns a 404 error if there is
sage no sponsored message in the chat.
Informs TDLib that messages are
ViewMes- aSponsorChatld: ID of the sponsor being vievygq by the user. Many
sage Chat useful activities depend on whether
g aMessageld: ID of the message the messages are currently being
viewed or not
Logout Logouts from Telegram.

COMPONENTS

. R i N -
TDLibSend aRequest: JSON Request. Send any Requestin JSON proto ‘

col.

Example How to send a Text Message

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();
oTelegram.Telegram.API.ApiHash = "your api hash";
oTelegram.Telegram.API.ApiId = "your api id";
oTelegram.PhoneNumber = "your phone number";
oTelegram.Active = true;

oTelegram.SendTextMessage("1234", "My First Message from sgcWebSockets");

Example How to send a method not implemented

You can Send Any JSON message using TDLibSend method, example: join a telegram chat.

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();
oTelegram.Telegram.API.ApiHash = "your api hash";
oTelegram.Telegram.API.ApiId = "your api id";
oTelegram.PhoneNumber = "your phone number";
oTelegram.Active = true;

6+élegram.TDLibSend("{\"@type\": \"joinChat\", \"chat_id\": \"1234\"}");

Events

OnBeforeReadEvent

This event is called when JSON message is received by Telegram API component and is still not processed. Set
Handled property to True if you process this event manually or don't want that event is processed by component.
You can use this event to log all messages too.

OnMessageText
This event is called when a New Message Text has been received, read MessageText parameter to access to mes-
sage text properties.

» Chatld: Chat Identifier.

+ Messageld: Message Identifier.
+ SenderUserld: Sender Identifier.
» Text: Text of message.

OnMessageDocument
This event is called when a New Document Message is received. Access to MessageDocument to get access to
Document properties.

+ Chatld: Chat Identifier.

* Messageld: Message Identifier.

» SenderUserld: Sender Identifier (read SenderChat and SenderUser from tdlib 1.7.+).
» FileName: Name of Document.

» Documentld: Document Identifier.

» LocalPath: full path to local file if exists.

* MimeType: Mime-type of document.

+ Size: Size of Document.

* RemoteDocumentld: Remote Document Identifier.

OnMessagePhoto
This event is called when a New Photo Message is received. Access to MessagePhoto to get access to Photo
properties.

» Chatld: Chat Identifier.
+ Messageld: Message Identifier.

COMPONENTS

» SenderUserld: Sender Identifier (read SenderChat and SenderUser from tdlib 1.7.+).
» Photold: Photo Identifier.

» LocalPath: full path to local file if exists.

+ Size: Size of Photo.

+ RemotePhotold: Remote Photo Identifier.

OnVideoPhoto
This event is called when a New Video Message is received. Access to MessageVideo to get access to Video prop-
erties.

» Chatld: Chat Identifier.

» Messageld: Message Identifier.

» SenderUserld: Sender Identifier (read SenderChat and SenderUser from tdlib 1.7.+).
* Videold: Photo Identifier.

LocalPath: full path to local file if exists.

Width: width of video.

Height: height of video.

Duration: duration in seconds of video.

Size: Size of Video.

RemoteVideold: Remote Photo Identifier.

OnMessageSponsored
This event is called when a New Sponsored Message has been received (after calling the method getChatSpon-
soredMessage)

» SponsorChatld: Sponsor Chat Identifier.
* Messageld: Message Identifier.
» Text: Text of message.

OnNewChat
This event is called when a new chat is received.

» Chatld: Chat Identifier.

» ChatType: Chat Type (chatTypeSupergroup, chatTypePrivate...)
+ Title: Chat name.

» SuperGroupld: Group Id if is a SuperGroup.

 IsChannel: returns if is channel or not.

OnNewcCallbackQuery
This event is called when a new incoming callback query is received; for bots only.

+ Id: Unique query identifier.
+ SenderUserld: |dentifier of the user who sent the query.
+ Chatld: Identifier of the chat, in which que query was sent.
* Messageld: Identifier of the message, from which the query originated.
» Chatinstance: Identifier that uniquely corresponds to the chat to which the message was sent.
» PayloadData: the payload from a general callback button.
+ Data: Data that was attached to the callback button.

OnEvent
This event is called when a new Event is received by APl Component. Can be used to process some events not
implemented by APl Component.

+ Event: Event name (events like: updateOption, updateUser...)
+ Text: full JSON message

OnException
This event is called if there is any exception when processing Telegram API Data.

Properties

Myld: returns the User Identifier of current user.

COMPONENTS

Full Code Sample

Check the following code sample which shows how connect to Telegram API, ask user to introduce a Code (if re-
quired by Telegram API), send a message when connection is ready and Log Text Messages received.

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();
oTelegram.Telegram.API.ApiHash = "your api hash";
oTelegram.Telegram.API.ApiId = "your api id";

oTelegram.PhoneNumber = "your phone number";
oTelegram.ApplicationVersion = "1.0";
oTelegram.DeviceModel = "Desktop";
oTelegram.LanguageCode = "en";
oTelegram.SystemVersion = "Windows";

oTelegram.Active = true;
void OnAuthenticationCode(TObject Sender, ref string Code)

Code = InputBox("Telegram Code", "Introduce code", "");

}
void OnMessageText(TObject Sender, TsgcTelegramMessageText MessageText)

Log("Message Received: " + MessageText.Text);

}
void OnConnectionStatus(TObject Sender, const string Status)
if (Status == "connectionStateReady")
oTelegram.SendTextMessage("1234", "Hello Telegram!");

3
}

214

COMPONENTS

Telegram | Send Telegram Message With In-
line Buttons

Telegram API allows you to send messages with inline buttons to select options as an answer (this option is only
available for bots).

Before you send a message create an instance of the class TsgcTelegramReplyMarkuplinlineKeyboard and call
the method AddButtonTypeCallback or AddButtonTypeUrl for every button you want to create.

Example

Create a new message asking the user if likes or not the message and a link to answer a poll. Process the re-
sponse using OnNewCallbackQuery event.

TsgcTelegramReplyMarkupInlineKeyboard oReplyMarkup = new TsgcTelegramReplyMarkupInlineKeyboard();
oReplyMarkup.AddButtonTypeCallback("Yes", "I like it");

oReplyMarkup.AddButtonTypeCallback("No", "I hate it");

oReplyMarkup.AddButtonTypeUrl("Poll", "https://www.yoursite.com/telegram/poll");
sgcTelegram.SendTextMessage("123456", "Do you like the message?", oReplyMarkup);

void OnNewCallbackQuery(TObject Sender, TsgcTelegramCallbackQuery CallbackQuery)

if (CallbackQuery.PayloadData.Data == "I like it") then
{

MessageBox.Show("yes")

}

else

{

MessageBox.Show("no");

3

}

COMPONENTS

Telegram | Send Bot Message With Buttons

Telegram API allows you to send messages with buttons to request data from the user (this option is only available
for bots).

Before you send a message create an instance of the class TsgcTelegramReplyMarkupShowKeyboard and call
the method AddButtonTypeRequestLocation, AddButtonTypeRequestPhoneNumber or AddButtonTypeText
for every button you want to create.

Example

Create a new message asking the user to provide the PhoneNumber

oReplyMarkup = new TsgcTelegramReplyMarkupShowKeyboard();
oReplyMarkup.AddButtonTypeRequestPhoneNumber ("Give me your phone");
sgcTelegram.SendTextMessage('"123456", "Please provide the information below", null, oReplyMarkup);

COMPONENTS

Telegram | Send Telegram Message Bold

You can highlight text messages using bold, italic and more styles. Use the method SendRichTextMessage, to
send a Text message with style capabilities, this method parses the text message and adds the entities required
automatically to the APl Telegram.

Markdown Syntax

- Bold [*]

This is Bold

* ltalic[_]

__This is Italic__

» Strike [-]

--This is Strike--

* Underline [~]

~~This is Underline~~

* Code[#]

##This is Monospace##

217

COMPONENTS

Telegram | Chat not found as Bot

When you log as bot, the GetChats method cannot be used, so you don't get All available chats. If it's the first
time you login as Bot and you try to send a message to a known Chat, you will get this error:

{"@type":"error","code":5, "message" :"Chat not found"}

The solution is before send a telegram message, call GetChat method and pass the Chatld as a parameter. Once
you get the Chat data, you can send telegram messages as usual.

As a note, you only must call GetChat the FIRST TIME before send a message if you never receive any bot mes-
sage from this chat. If you close the application and start again, there is no need to call first GetChat because the
Chat is already saved on telegram database.

COMPONENTS

Telegram | Sponsored Messages

Each time the user opens a channel, channels.getSponsoredMessages must be called to receive sponsored mes-
sages available for this channel. The result must be cached for 5 minutes.

Displaying sponsored messages

Sponsored messages must be displayed below all other posts in the channel, after the user scrolls futher down,
past the last message. The promoted channel or bot specified in the from_id field must be displayed as the author
of the message. The message should also contain one of the following buttons at the bottom:

» View Bot: if a bot is being promoted. Tapping the button must open the chat with the bot. If start_param is
specified, the app must use the deep linking mechanism to open the bot.

» View Channel: if a channel is being promoted. Tapping the button must open the channel.

» View Post: if a channel is being promoted and channel_post is specified. Tapping the button must open the
particular channel post.

Once the entire text is shown on the screen (excluding the button), ViewMessage method must be called with the
random_id of this sponsored message.

Get Sponsored Messages

Send a request to the channel asking if there are sponsored messages available, just call the method GetChat-
SponsoredMessage.

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();
oTelegram.Telegram.API.ApiHash = "ABCDEFGHIJKLMN";
oTelegram.Telegram.API.ApiId = "1234";
oTelegram.PhoneNumber = "008745744155";

oTelegram.Active = true;
oTelegram->getChatSponsoredMessage("100");

If the chat has sponsored messages, the event OnMessageSponsored is called with the content of the Sponsored
message. If there are no messages, a 404 error is returned.

private void(TObject Sender, TsgcTelegramMessageSponsored MessageSponsored)

DoLog(MessageSponsored.Text);

}

Call the method ViewMethod after the Sponsored Messages has been shown to the user.

oTelegram.ViewMessage("100", "54653256245");

COMPONENTS

Telegram | Send Telegram Invoice Message

If your bot supports inline mode, users can also send invoices to other chats via the bot, including to one-on-one
chats with other users.

Invoice messages feature a photo and description of the product along with a prominent Pay button. Tapping this
button opens a special payment interface in the Telegram app

The bots can send invoices as a message using the method SendinvoiceMessage.

private void SendInvoice()

{
TsgcTelegramSendInvoice oInvoice = new TsgcTelegramSendInvoice();
oInvoice.Title = 'Invoice Title Test';
oInvoice.Description = 'Description Invoice Test';
oInvoice.Invoice.Currency = "EUR';
oInvoice.Invoice.Total = 800;
oInvoice.Invoice.IsTest = True;

oInvoice.Invoice.Payload := "payload";
oInvoice.Invoice.ProviderToken := "provider_token";
oInvoice.Invoice.ProviderData := "provider_data";

sgcTelegram.SendInvoiceMessage("3284239872", oInvoice);

COMPONENTS

Telegram | Get SuperGroup Members

Telegram API allows you to get information about members of a SuperGroup. Use the method GetSuperGroup-
Members to get information about members or banned users in a supergroup or channel. Can be used only if
SupergroupFullinfo.can_get_members is true; additionally, administrator privileges may be required for some filters.

By default the method returns All members of the group, but you can filter the members returned using the Filter
parameter. There are the following parameters:

tsgmFilterNone
Default value, means members are not filtered.

tsgmFilterAdministrators
Returns the creator and administrators.

tsgmFilterBanned
Returns users banned from the supergroup or channel; can be used only by administrators.
You can use the argument aSuperGroupMembersQuery to search using a query.

tsgmFilterBots
Returns bot members of the supergroup or channel.

tsgmFilterContacts
Returns contacts of the user, which are members of the supergroup or channel.
You can use the argument aSuperGroupMembersQuery to search using a query.

tsgmFilterMention
Returns users which can be mentioned in the supergroup.

tsgmFilterRecent
Returns recently active users in reverse chronological order.

tsgmFilterRestricted
Returns restricted supergroup members; can be used only by administrators.
You can use the argument aSuperGroupMembersQuery to search using a query.

tsgmFilterSearch
Used to search for supergroup or channel members via a (string) query.
You can use the argument aSuperGroupMembersQuery to search using a query.

You can read the result of the result using OnEvent callback and filtering by event = "chatMembers".

Telegram.GetSupergroupMembers(1452979380);

private void OnTelegramEvent(TObject Sender, const string Event, const string Text)
if (Event == "chatMembers")
ReadJSON(Text);

3
}

COMPONENTS

Telegram | Add Telegram Proxy

Telegram Client can be configured to make of use of a proxy. Currently, Telegram supports 3 types of proxies:

1. HTTP
2. MTProto
3. Socks5

Add Proxy

In order to configure a HTTP Proxy, first you must add the proxy to telegram configuration, to do this, just call Ad-
dProxyHTTP and if successful, a message will be returned with the new proxy added. Once the proxy has been
added to the list, just call EnableProxy and pass the ID of the proxy received on the confirmation message.

Telegram.AddProxyHTTP("8.8.8.8", 8080, "", "", true);
// ... read the confirmation message and save the ID of the proxy.
Telegram.EnableProxy(2);

Remove Proxy

Call RemoveProxy method and pass the ID of the proxy you want remove.

COMPONENTS

Telegram | Register Telegram User

The process to register a new user in Telegram is very simple, you need your API Id and APl Hash, and the phone
number of the new account.

Configure the telegram client:
* APl Id
» API Hash
» Telephone Number of the new telegram account.

Start the client and a new code will be sent to the phone, the client will ask for the telegram code and if it's correct,
the event OnRegisterUser will be called. In this event set the First Name and Last Name of the user and the regis-
tration will be completed.

TsgcTDLib_Telegram oTelegram = new TsgcTDLib_Telegram();
oTelegram.Telegram.API.ApiHash = "ABCDEFGHIJKLMN";
oTelegram.Telegram.API.ApiId = "1234";
oTelegram.PhoneNumber = "008745744155";

oTelegram.Active = true;

void OnTelegramAuthenticationCode(TObject Sender, ref string Code)

Code = "code sent to phone";

}
void OnTelegramRegisterUser(TObject Sender, ref string FirstName, ref string LastName)

FirstName = "first name";
LastName = "last name";

}

COMPONENTS

RTCMultiConnection

RTCMultiConnection

RTCMultiConnection is a WebRTC JavaScript library for peer-to-peer applications (screen sharing, audio/video
conferencing, file sharing, media streaming etc.)

Configuration

The RTCMultiConnection requires a WebSocket server for Signaling, so link the server property of RTCMultiCon-
nection to a WebSocket Server (like TsgcWebSocketHTTTPServer). Find below the properties you must configure.

Server

Host: is the public IP address or DNS name of WebSocket server.
Port: is the listening port of WebSocket Server.

IceServers
Is the configuration of the ICE servers (STUN/TURN) to allow communicate between peers. Example:

[
{

"urls": "stun:www.yourstun.com"},
{

"urls": "turn:www.yourturn.com",

"username": "user",

"credential": "secret"

]
VideoResolution

Here you can configure the Video Resolution of Video Conferences, as higher is the resolution, more bandwidth is
required by the connection.

HTMLDocuments

Configure for every Application which is the name of the HTML page that servers this content.

Example: if the server is running on website www.webrtc.com on port 8443 and the
HTMLDocuments.VideoConferencing = /RTCMultiConnection-VideoConferencing.html, the url to access the Video-

Conferencing will be

https://www.webrtc.com:8443/RTCMultiConnection-VideoConferencing.html

WebRTC requires a secure connection (HTTPs) so requires the use of certificates, read more Server SSL.

Applications
Name Description
Video- . , .
Multi-user (many-to-many) video chat using
Confer- :
. mesh networking model.
encing
Screen- Multi-user (one-to-many) screen sharing using
Sharing star topology.

224

https://www.rtcmulticonnection.org/

COMPONENTS

Video-
Broad-

casting

Multi-user (one-to-many) video broadcasting
using star topology.

COMPONENTS

WebPush

RFC 8030
RFC 8291

The WebPush protocol is defined by the RFC 8030 (Delivery using HTTP Push) and RFC 8291 (Message Encryp-
tion).

Web Push is a standardized protocol for delivering push notifications to web browsers. It uses the Push API,
which is a standard web API that enables websites to register and receive push messages. The Push API allows a
website to send push messages to a user's browser, even when the user is not actively browsing the website.

To use Web Push, a website first needs to obtain a push subscription from the user's browser. The subscrip-
tion consists of a unique endpoint URL and an encryption key. The endpoint URL is a URL that the website can use
to send push messages to the user's browser, and the encryption key is used to encrypt and decrypt the push mes-
sages.

Once the website has obtained a push subscription, it can send push messages to the user's browser by mak-
ing an HTTP request to the endpoint URL. The push message is sent in a special format called the Web Push Pro-
tocol Message, which consists of a set of headers and a payload. The headers contain information such as the en-
cryption key and the TTL (time-to-live) of the message, while the payload contains the actual content of the mes-
sage.

When the user's browser receives a push message, it first decrypts the message using the encryption key. It
then displays the notification to the user, along with any additional actions that the user can take, such as dis-
missing the notification or opening the website.

To ensure the security and privacy of push messages, Web Push uses end-to-end encryption and requires that
push subscriptions be obtained over a secure connection (e.g., HTTPS). Additionally, the protocol provides mecha-
nisms for authenticating the sender of a push message and preventing abuse (e.g., by limiting the number of push
messages that a website can send to a user).

Components

There are 2 components which support WebPush:

+ TsgcWSAPIServer_WebPush: implements the WebPush protocol on the server side, allowing you to ask
users for permission, register subscriptions, send notifications, and more. This component already encapsu-
lates a WebPush client to send notifications.

+ TsgcWebPush_Client: implements the WebPush protocol on the client side, allowing you to send notifica-
tions to users via desktop and mobile web. This is useful if you already have the keys and endpoint and only
want to publish WebPush messages to the subscribed clients.

https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc8291

COMPONENTS

TsgcWSAPIServer WebPush

TsgcWSServer_API_WebPush is a component that provides functionality for handling WebPush subscriptions.
WebPush is a protocol for delivering real-time notifications to web applications that run in the browser. This compo-
nent can be used to manage subscriptions and send notifications to subscribed clients. Find below the properties,
events, and methods provided by TsgcWSServer API_WebPush class, along with code examples that demon-
strate how to use them.

Configuration

—_

. Attach a TsgcWSServer_API_WebPush to a WebSocket server using the Server property.

2. Configure the public and private keys in the WebPush.VAPID property. (Registered users can download
an executable that generates the VAPID keys for windows).

3. Requires deploying the OpenSSL 3.0.0 version

4. In the WebPush.Endpoints property you can define your own endpoints to handle the WebPush subscrip-
tions; by default, accessing the "/sgcWebPush.html" endpoint will show a simple webpage that allows you to
subscribe to the WebPush notifications.

5. Start the server and access to the endpoint configured to test it.

Properties

» VAPID: This property is used to set the VAPID (Voluntary Application Server Identification) details for send-
ing WebPush notifications. VAPID is a method for identifying who is sending the push notifications. It is
mandatory for all push notifications to have VAPID credentials. The
TsgcHTTP_API_WebPush_VAPID_Options object has two properties, PublicKey and PrivateKey, which are
used to identify the application server that sends the notification.

o DER: the public and private keys in DER format
o PEM: the private key in PEM PKCS8 format.
o Details: currently only the mailto used for signing the HTTP request.
» ClientOptions: This property is used to set the client-side options for sending WebPush notifications.
o Log: enable if you want to save the client HTTP requests to a text log.
> LogOptions: here you can set the filename.
o TLSOptions: currently only OpenSSL 3.0.0 supports sending WebPush notifications.

* EndPoints: This property is used to set the endpoints for various WebPush operations, such as subscrip-
tion, unsubscription, and notification. The TsgcWSWebPushEndpoints_Options object has several proper-
ties, including Subscription, Unsubscription, ServiceWorker, Home, WebPush, and VAPIDPublicKey. Each of
these properties is an instance of the TsgcWSWebPushEndpoint class, which contains the endpoint URL
and other details.

o Home: the default HTML page.

o WebPush: the default webpush javascript code.

o ServiceWorker: the javascript code that handles the push notifications.
o VAPIDublicKey: the endpoint that returns the public key in DER format.
> Subscription: the endpoint that notifies the webpush subscriptions.

> Unsubscription: the endpoint that notifies the webpush unsubscriptions.

Methods

Find below the most important methods.
SendNotification

Use this method to send a notification given a subscription object. The subscription object is just a class with the
following properties

227

COMPONENTS

» Endpoint: the url where the client must POST a message.
* PublicKey: the public key used to encrypt the message.

» AuthSecret: the secret used to encrypt the message.

+ RawText: contains the full JSON string of the subscription.

The message can be a string or an object of TsgcWebPushMessage

void SendNotification(TsgcWebPushSubscription aSubscription)

{

TsgcwWebPushMessage oMessage = new TsgcWebPushMessage();

oMessage.Title = "eSeGeCe Notification";

oMessage.Body = "Subscription Successfully Registered!!!";

oMessage.Icon = "https://www.esegece.com/images/esegece_logo_small.png";
oMessage.Url = "https://www.esegece.com";
SgCWSAPIServer_WebPushil.SendNotification(aSubscription, oMessage);

BroadcastNotification

Use this method to send a Notification to all the clients registered using the Subscriptions property (every time a
new client is subscribed, it's added to an internal list. And when the client unsubscribed it's deleted). You can Add
or Remove subscription manually using the method Subscriptions.AddSubscription and
Subscription.RemoveSubscription.

void BroadcastNotification()

{
TsgcWebPushMessage oMessage = new TsgcWebPushMessage();
oMessage.Title = "eSeGeCe Notification";
oMessage.Body = "New version released!!!";
oMessage.Icon = "https://www.esegece.com/images/esegece_logo_small.png";
oMessage.Url = "https://www.esegece.com";
SgCWSAPIServer_WebPushl.BroadcastNotification(oMessage);

}

Events

OnWebPushSubscription

This event is fired when a client subscribes to WebPush notifications. The event handler can be used to store the
subscription details on the server-side.

OnWebPushUnsubscription

This event is fired when a client unsubscribes from WebPush notifications. The event handler can be used to re-
move the subscription details from the server-side.

OnWebPushSendNotificationException

This event is fired when an exception occurs while sending a WebPush notification using the BroadcastNotification
method. The event handler can be used to handle the exception and remove the subscription details if required.

COMPONENTS

TsgcWebPush_ Client

The TsgcWebPush_Client is a class that allows you to send a notification once you obtain the subscription details.

Find below an example of using the WebPush client to send a notification given an endpoint, public key and au-
thentication secret from a WebPush subscription.

public void SendwWebPushNotification()

{
var oSubscription = new TsgcHTTP_API_WebPush_PushSubscription();
oSubscription.Endpoint = "endpoint";
oSubscription.PublicKey = "public key";
oSubscription.AuthSecret = "authentication secret";
var owWebPush = new TsgcWebPush_Client();
owWebPush.VAPID.PEM.PrivateKey.Text = "private_key_pem";
oWebPush.VAPID.DER.PrivateKey = "private_key";
owWebPush.VAPID.DER.PublicKey = "public_key";
oWebPush.SendNotification(oSubscription, "{\"title\": \"eSeGeCe Notification\", \"body\": \"Hello from eSeGe(

COMPONENTS

Extensions

WebSocket protocol is designed to be extended. WebSocket Clients may request extensions and WebSocket
Servers may accept some or all extensions requested by clients.

Extensions supported:

1. Deflate-Frame: compress WebSocket frames.

2. PerMessage-Deflate: compress WebSocket messages.

COMPONENTS

Extensions | PerMessage-Deflate

PerMessage is a WebSocket protocol extension, if the extension is supported by Server and Client, both can com-
press transmitted messages:

» Uses Deflate as the compression method.

» Compression only applies to Application data (control frames and headers are not affected).
» Server and client can select which messages will be compressed.

Max Window Bits

This extension allows customizing Server and Client size of the sliding window used by LZ77 algorithm (between 8
- 15). As greater is this value, more probably will find and eliminate duplicates but consumes more memory and
CPU cycles. 15 is the default value.

No Context Take Over

By default, previous messages are used to compression and decompression, if messages are similar, this improves
the compression ratio. If Enabled, then each message is compressed using only its message data. By default is
disabled.

MemLevel

This value is not negotiated between Server and Client. when set to 1, it uses the least memory, but slows down
the compression algorithm and reduces the compression ratio; when set to 9, it uses the most memory and delivers
the best performance. By default is set to 1.

COMPONENTS

Extensions | Deflate-Frame

Is a WebSocket protocol extension which allows the compression of frames sent using WebSocket protocol, sup-
ported by WebKit browsers like chrome or safari. This extension is supported on Server and Client Components.

This extension has been deprecated.

COMPONENTS

HTTP | OAuth2

OAuth2 allows third-party applications to receive a limited access to an HTTP service which is either on behalf of a
resource owner or by allowing a third-party application obtain access on its own behalf. Thanks to OAuth2, service
providers and consumer applications can interact with each other in a secure way.

In OAuth2, there are 4 roles:

* Resource Owner: the user.

* Resource Server: the server that hosts the protected resources and provides access to it based on the ac-
cess token.

 Client: the external application that seeks permission.

» Authorization Server: issues the access token after having authenticated the user.

fmmmmm + fmmmm et
	--(a)- Authorization Request -3»	Resource
		Owner
	<-({By-- Authorization Grant ---	
	oo et	
	Fommm o4	
	--(Cy-- Avthorization Grant --»	Authorization
Client		Server
	<-(D)----- Access Token -------	
	o e	
	oo et	
	--(Ey----- Access Token ------3	Resource
		Server
	<-(F)--- Protected Resource ---	
fmmmm - + Fmmmm et
Components

* TsgcHTTP_OAuth2_Client: is a client with support for OAuth2, so it can connect to OAuth2 servers to re-
quest an authentication like Google, Facebook...

» TsgcHTTP_OAuth2_Server: is the server implementation of OAuth2 protocol, allows you to protect the re-
sources of the Server.

Server and Client OAuth2 components supports PKCE (Proof Key for Code Exchange), which is an extension to
the Authorization Code flow to prevent CSRF and authorization code injection attacks (RFC 7636).

COMPONENTS

OAuth2 | TsgcHTTP_ OAuth2_ Client

This component allows you to handle flow between client and the other roles, basically, when you set Active :=
True, opens a new Web Browser and requests user grant authorization, if successful, authorization server sends a
token to application which is processed and with this token, client can connect to resource server. This component,
starts a simple HTTP server which handles authorization server responses and uses an HTTP client to request Ac-
cess Tokens.

GrantType
Client supports 2 types of Authorization:

auth2Code: It's used to perform authentication and authorization in the majority of application types, including sin-
gle page applications, web applications, and natively installed applications. The flow enables apps to securely ac-
quire access_tokens that can be used to access resources secured, as well as refresh tokens to get additional
access_tokens, and ID tokens for the signed in user.

Native foauthZ/v2.0/authorize foauth2/v2 Oftoken
App ; Y Web API

E Pops up a browser dialog, @

Requests an authorization code,
indicating the policy to execute

User completes palicy

Returns an authorization code

r

Requests an Qauth bearer token providing the
authorization_code, the app's client_id, etc.

Returns an access token and a refresh_token

-

Ca-lls ‘Web APl with access token in Authorization header

. "
g Validates token
Returns secure data to app : !

Reguests a new token, providing the
refresh_token, the app's client_id, etc.

Returns a new token and a new refresh_token

Calls Web AP| with new token in Authorization header

auth2CodePKCE: it's the same authentication flow than auth2Code with PKCE enabled. PKCE (Proof Key for
Code Exchange) is a security extension for OAuth 2.0, designed to enhance the security of authorization flows for
native and single-page applications. It mitigates the risk of interception attacks, especially in public clients where
the authorization code might be exposed to interception in transit. Usually this option is used in native and mobile

apps.

auth2ClientCredentials: This type of grant is commonly used for server-to-server interactions that must run in the
background, without immediate interaction with a user. These types of applications are often referred to as dae-
mons or service accounts.

234

COMPONENTS

Web Jfoauth2 /w2 0ftoken

Server Web API

Requast token, providing
client_secret as credentials

L

Returns token

Calls Web APl with token in Authorization header

Validates toker
Returns secure data to web server app

Request token, providing
client_secret as credentials

L

Returns token

Calls Web APl with token in Authorization header

Validates toker
Returns secure data to web server app

LocalServerOptions

When a client needs a new Access Token, automatically starts an HTTP server to process response from Autho-
rization server. This server is transparent for user and usually works in localhost. By default uses port 8080 but you
can change if needed.

 IP: IP server listening, example: 127.0.0.1

» Port: by default 8080. When using GrantType = auth2CodePKCE (for desktop and native application), you
can set the value of the port to zero and the server will choose a random port.

* RedirectURL: (optional) allows customizingd redirect url, example: http://localhost:8080/oauth/.

» SSL: enable this property if local server runs on a secure port (*only supported by Professional and Enter-
prise Editions).

+ SSLOptions: allows customizing the SSL properties of server (*only supported by Professional and Enter-
prise Editions).

AuthorizationServerOptions

Here you must set URL for Authorization and Acces Token, usually these are provided in API specification. Scope
is a list of all scopes requested by client. Example:

+ AuthURL: https://accounts.google.com/o/oauth2/auth
+ TokenURL: https://accounts.google.com/o/oauth2/token
» Scope: https://mail.google.com/

OAuth20ptions

Clientld is a mandatory field which informs server which is the identification of client. Check your API specification
to know how get a Clientld. The same applies for client secret.

Sometimes, server requires a user and password to connect using Basic Authentication, if this is the case, you can
setup this in Username/Password fields. Example:

» GrantType: Authorization flow type
o auth2Code: trusted apps, like a web-server.
o auth2CodePKCE: untrusted native or mobile apps.
> auth2ClientCredentials: automated apps without user interaction.
o auth2ResourceOwnerPassword: allows an application to sign in the user by directly handling their
password
+ Clientld: 180803918307-eqjtm20gqgfhcs6gjklbbrreng022mqqc.apps.googleusercontent.com
* ClientSecret: by1iYYrvWHxC2Z8TbtNEYJN
» Username:

COMPONENTS

* Password:
HTTPClientOptions
Here you can customize the Client Options when connects to HTTP Server to request a new token.
TLSOptions: if TLS enabled, here you can customize some TLS properties.

ALPNProtocols: list of the ALPN protocols which will be sent to server.
RootCertFile: path to root certificate file.
CertFile: path to certificate file.
KeyFile: path to certificate key file.
Password: if certificate is secured with a password, set here.
VerifyCertificate: if certificate must be verified, enable this property.
VerifyDepth: is an Integer property that represents the maximum number of links permitted when verifica-
tion is performed for the X.509 certificate.
Version: by default uses TLS 1.0, if server requires a higher TLS version, here can be selected.
IOHandler: select which library you will use to connection using TLS.
iohOpenSSL: uses OpenSSL library and is the default for Indy components. Requires to deploy
openssl libraries for win32/win64.
iohSChannel: uses Secure Channel which is a security protocol implemented by Microsoft for Win-
dows, doesn't require to deploy openssl libraries. Only works in Windows 32/64 bits.
OpenSSL_Options: allows defining which OpenSSL API will be used.
APIVersion: allows defining which OpenSSL API will be used.
oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses APl 1.1 OpenSSL, requires our custom Indy library and allows using
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses APl 3.0 OpenSSL, requires our custom Indy library and allows using
OpenSSL 3.0.0 libraries (with TLS 1.3 support).
LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath-
Custom.
LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the
openSSL libraries.
UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en-
abled, except under OSX64):
oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.
SChannel_Options: allows you to use a certificate from Windows Certificate Store.
CertHash: is the certificate Hash. You can find the certificate Hash running a dir command in power-
shell.
CertStoreName: the store name where is stored the certificate. Select one of below:
scsnMY (the default)
scsnCA
scshRoot
scsnTrust
CertStorePath: the store path where is stored the certificate. Select one of below:
scspStoreCurrentUser (the default)
scspStoreLocalMachine

LogOptions: if a flename is set, it will save a log of HTTP requests/responses of the HTTP client

COMPONENTS

OnBeforeAuthorizeCode

This is the first event, it's called before client opens a new Web Browser session. URL parameter can be modified if
needed (usually not necessary).

void OnOAuth2BeforeAuthorizeCode(TObject Sender, ref string URL, ref bool Handled)

DoLog("BeforeAuthorizeCode: " + URL);

OnAfterAuthorizeCode

After a successful Authorization, server redirects the response to internal HTTP server, this response informs to
client about Authorization code (which will be use later to get Access Token), state, scope...

void OnOAuth2AfterAuthorizeCode(TObject Sender, const string Code, const string State, const string Scope,
const string RawParams, ref bool Handled)

DoLog("AfterAuthorizeCode: " + Code);

OnErrorAuthorizeCode

If there is an error, this event will be raised with information about error.

void OnOAuth2ErrorAuthorizeCode(TObject Sender, const string Error, const string Error_Description,
const string Error_URI, const string State, const string RawParams)

DoLog("ErrorAuthorizeCode: " + Error + " " + Error_Description);

OnBeforeAccessToken

After get an Authorization Code, client connects to Authorization Server to request a new Access Token. Before
client connects, this event is called where you can modify URL and parameters (usually not needed).

void OnOAuth2BeforeAccessToken(TObject Sender, ref string URL, ref string Parameters,
ref bool Handled);

DoLog("BeforeAccesToken: " + URL + " " + Parameters);
OnAfterAccessToken

If server accepts client requests, it releases a new Access Token which will be used by client to get access to re-
sources server.

void OnOAuth2AfterAccessToken(TObject Sender, const string Access_Token, const string Token_Type,
const string Expires_In, const string Refresh_Token, const string Scope, const string RawParams, ref bool Handl

DoLog("AfterAccessToken: " + Access_Token + " " + Refresh_Token + " " + Expires_In);

OnErrorAccessToken

If there is an error, this event will be raised with information about error.

void OnOAuth2ErrorAccessToken(TObject Sender, const string Error, const string Error_Description,
const string Error_URI, const string RawParams)
{

237

COMPONENTS

DoLog("ErrorAccessToken: " + Error + " " + Error_Description);

OnBeforeRefreshToken

Access token expire after some certain time. If Authorization server releases a refresh token plus access token,
client can connect after token has expires with a refresh token to request a new access token without the need of
user Authenticates again with own credentials. This event is called before client requests a new access token.

void ONOAuth2BeforeRefreshToken(TObject Sender, ref string URL, ref string Parameters, ref bool Handled)

DoLog("BeforeRefreshToken: " + URL + " " + Parameters);

OnAfterRefreshToken

If server accepts client requests, it releases a new Access Token which will be used by client to get access to re-
sources server.

void OnOAuth2AfterRefreshToken(TObject Sender, const string Access_Token, const string Token_Type,
const string Expires_In, const string Refresh_Token, const string Scope, const string RawParams, ref bool Handl

DoLog("AfterRefreshToken: " + Access_Token + " " + Refresh_Token + " " + Expires_In)

OnErrorRefreshToken

If there is an error, this event will be raised with information about error.

void OnOAuth2ErrorRefreshToken(TObject Sender, const string Error, const string Error_Description,
const string Error_URI, const string RawParams)

DoLog("ErrorRefreshToken: " + Error + " " + Error_Description);

OnHTTPResponse

This event is called before HTTP response is sent after a successful Access Token.

void OnOAuth2HTTPResponse(TObject Sender, ref int Code, ref string Text, ref bool Handled)

Code = 200;
Text = "Successful Authorization";

}

OAuth2 Code Example

Example of use to connect to Google Gmail APl using OAuth2.

0Auth2 = new TsgcHTTP2_OAuth2.Create();

0Auth2.LocalServerOptions.Host = "127.0.0.1";

oAuth2.LocalServerOptions.Port = 8080;

0Auth2.AuthorizationServerOptions.AuthURL = "https://accounts.google.com/o/oauth2/auth";
oAuth2.AuthorizationServerOptions.Scope = "https://mail.google.com/";
0Auth2.AuthorizationServerOptions.TokenURL = "https://accounts.google.com/o/oauth2/token";
0Auth2.0Auth20ptions->ClientId = "180803918357-eqjtn20gqfhcs6gjkebbrrenh®22mqqc.apps.googleusercontent.com";
oAuth2.0Auth20ptions->ClientSecret = "_by0iYYrvVHXC2Z8TbtNEYQN";

void OnOAuth2AfterAccessToken(TObject Sender, const string Access_Token, const string Token_Type,
const string Expires_In, const string Refresh_Token, const string Scope, const string RawParams, ref bool Handl

// write your code here

}

COMPONENTS

0Auth2->0nAfterAccessToken = OnOAuth2AfterAccessToken;
0Auth2->Start();

COMPONENTS

OAuth2 Client for Web Applications

When the OAuth2 Client must to get an Authorized Token connecting to a Web Application, the Local Server (used
to get the authorized token) must be configured with the Web Application Parameters. Set the following Lo-
calServerOptions properties:

» IP: Address IP previously configured in the OAuth2 Configuration.
» Port: Listening Port previously configured in the OAuth2 Configuration.
» SSL: if the server is using a secure connection, enable this option.

COMPONENTS

OAuth2 Client for Desktop Applications

When the OAuth2 Client is a Desktop or native application, the Local Server (used to get the authorized token) can
be listening on a local ip address (example: 127.0.0.1) and the port can be choosen randomly. So, the Lo-
calServerOptions should be configured as follows

+ IP: 127.0.0.1
» Port: set to zero, and the server will choose automatically a random port.

When creating an OAuth2 Client for Desktop or Native applications, set the OAuth20ptions.GrantType to
auth2CodePKCE to add an extra security.

COMPONENTS

OAuth2 | TsgcHTTP_OAuth2_Server

This component provides the OAuth2 protocol implementation in Server Side Components.

The server components have a property called Authorization.OAuth.OAuth2 where you can assign an instance of
TsgcHTTP_OAuth2_Server, so if Authentication is enabled and OAuh2 property is attached to OAuth2 Server Com-
ponent, the WebSocket and HTTP Requests require a Bearer Token to be processed, if not the connection will be
closed automatically.

OAuth2 = new TsgcHTTP_OAuth2_Server();
Server.Authentication.Enabled = true;
Server.Authentication.OAuth.OAuth2 = OAuth2;

The server supports the following authorization types:

+ auth2Code: It's used to perform authentication and authorization in the majority of application types, includ-
ing single page applications, web applications, and natively installed applications. The flow enables apps to
securely acquire access_tokens that can be used to access resources secured, as well as refresh tokens to
get additional access_tokens, and ID tokens for the signed in user.

» auth2ClientCredentials: This type of grant is commonly used for server-to-server interactions that must run
in the background, without immediate interaction with a user. These types of applications are often referred
to as daemons or service accounts.

The Authorization type can be customized when registering the App, by default, all authorization types are support-
ed.

EndPoints

By default, the component is configured with the following endpoints to handle Authorization and Token request

Authorization: /sgc/oauth2/auth
Token: /sgc/oauth2/token

So if server is listening on port 443 and domain is www.esegece.com, the EndPoints will be:

Authorization: https://www.esegece.com/sgc/oauth2/auth
Token: https://www.esegece.com/sgc/oauth2/token

The endpoints can be configured in OAuth20ptions property.

By default, PKCE (is an extension to the Authorization Code flow to prevent CSRF and authorization code injection
attacks) is enabled.

Configuration

Before you can begin the OAuth2 process, you must register which Apps will be available, this is done using Apps
property of OAuth2 server component.

Register App

Use Apps.AddApp to add a new Application to OAuth2 server, you must set the following parameters:

» App Name: is the name of the Application. Example: MyApp

» RedirectURI: is where the responses will be redirected. Example: hittp://127.0.0.1:8080
+ Clientld: is public information and is the ID of the client.

» ClientSecret: must be kept confidential.

https://www.esegece.com/sgc/oauth2/auth
https://www.esegece.com/sgc/oauth2/token

COMPONENTS

Optionally you can set the following parameters:

+ Expiresin: by default is 3600 seconds, so the token will expire in 1 hour, you can set a greater value if you
need.

+ RefreshToken: by default refresh tokens are supported, if not, set this parameter to false.

+ AllowedGrantTypes: by default all grant types are supported (auth2Code and auth2ClientCredentials), but
the server can be configured to only allow Code Authorization or only Client Credentials.

Delete App

Use Apps.RemoveApp to delete an existing App.

AddToken

If the server has been restarted while there were some token issued, you can recover these tokens using the
method AddToken before starting the OAuth2 Server and after registering the Apps

+ AppName: the name of the application.
» Token: access token.

+ Expires: when the token expires.

+ RefreshToken: refresh token.

RemoveToken

Removes an already issued Token.

Most common uses

* QuickStart

OAuth2 Server Example

OAuth2 Customize Sign-in HTML
OAuth2 Server Endpoints
OAuth2 Register Apps

OAuth2 Recover Access Tokens

¢ Authenticate
* OAuth2 Server Autentication
* OAuth2 None Authenticate some URLs

Connections

While OAuth2 is enabled on Server-side, if a websocket client tries to connect without providing a valid Token, the
connection will be closed automatically. The same applies to HTTP requests.

TsgcWebSocketClient can be configured to request a OAuth2 token and sent when connects to server. You have 2
options in order to send a Bearer Token:

1. Use Authentication.Token property, this is usefull when you have a valid token obtained from an external third-
party and you only want to pass as a connection header to get Access to server.

Authorization.Enabled = true;
Authorization.Token.Enabled = true;
Authorization.Token.AuthName = "Bearer";
Authorization.Token.AuthToken = "your token here";

COMPONENTS

2. Attach a TsgcHTTP_OAuth2_Client and let the client request an Access Token and send it automatically when
websocket client connects to server.

Events

Some events are provided to handle the OAuth2 Flow Control.

OnOAuth2BeforeRequest

This event is called when a new HTTP connection is established with server and before checks if the connection
request is trying to do an Authorization or request a new token. If you don't need that this request is processed by
OAuth2 server, set Cancel parameter to true.

The event is called too when checks if the Token is valid.

OnOAuth2BeforeDispatchPage

The event is called before the Authorization web-page is showed to user, allows customizing the HTML code shown
to user.

OnOAuth2Authentication

When a client request Authorization, server shows a page were user can allow connection and requires to login to
server. This is the event where you can read the User/Password set by user and accept or not the connection.

OnOAuth2AfterAccessToken

After the server process successfully the Access Token, this event is called. Useful for log purposes.

OnOAuth2AfterRefreshToken

After the server process successfully the Refresh Token, this event is called. Useful for log purposes.

OnOAuth2AfterValidateAccessToken

When a client do a request with a Token, this token is processed by server to check if it's valid or not, if the token is
valid and not expired, this event is called. Useful for log purposes.

OnOAuth2Unauthorized

This event is called before the connection is closed because there is no authorization token or is invalid, by default,
the Disconnect parameter is true, you can set to false if you still want to accept the connection. This event can con-
figure which endpoints must implement OAuth2 Authorization or not.

244

COMPONENTS

OAuth2 | Server Example

Let's do a simple OAuth2 server example, using a TsgcWebSocketHTTPServer.

First, create a new TsgcWebSocketHTTPServer listening on port 443 and using a self-signed certificate in sgc.pem
file.

oServer = new TsgcWebSocketHTTPServer();
oServer.Port = 80;
oServer.SSLOptions.Port = 443;

oServer.SSLOptions.CertFile = "sgc.pem";
oServer.SSLOptions.KeyFile = "sgc.pem";
oServer.SSLOptions.RootCertFile = "sgc.pem";

oServer.SSL = true;

Then create a new instance of TsgcHTTP_OAuth2_Server and assign to previously created server.
Register a new Application with the following values:

Name: MyApp

RedirectURI: http://127.0.0.1:8080
Clientld: client-id

ClientSecret: client-secret

OAuth2 = new TsgcHTTP_OAuth2_Server.Create();

OAuth2.Apps.AddApp("MyApp", "http://127.0.0.1:8080", "client-id", "client-secret");
oServer.Authentication.Enabled = true;

oServer.Authentication.OAuth.OAuth2 = OAuth2;

Then handle OnOAuth2Authentication event of OAuth2 server component and implement your own method to login
users. | will use the pair "user/secret" to accept a login.

void OnOAuth2Authentication(TsgcWSConnection Connection, TsgcHTTPOAuth2Request OAuth2, string aUser,
string aPassword, ref bool Authenticated)

if ((aUser == "user") and (aPassword == "secret"))
Authenticated = true;

b
}

Finally start the server and use a OAuth2 client to login, example you can use the TsgcHTTP_OAuth2_Client in-
cluded with sgcWebSockets library.

COMPONENTS

W@ oAuth2 - ot
Configuration P Authorization Server Options
Auth, URL |htu:|s:H12?.U.U.lfsgcjuaumzfaum |
Token URL |htn:|s:H12}'.U.U. 1/sacfoauth2/token |
Scope |smpe
P |12?.u.u. 1 | Redirect URL | Local Server Options
Port |snan |
0Auth2 Options
Clientld |din.=-_r1t—id |
Seret |dient—se::ret |
Username | |
Password | |
Access Token |
Token Type
New | |
Access ExpiresIn | |
Token Refresh Token | Refresh Token
Scope |

Request a New Access Token, a new Web Browser session will be shown and user must Allow connection and

then login.

246

COMPONENTS

QOAuth2 Authorization

Sign in

Introduce your usename and password.

sansan

GO BACK

If login is successful a new Token will be returned to the client. Then all the requests must include this bearer token
in the HTTP Headers.

247

COMPONENTS

W@ oAuth2 - ot
Configuration | Gmail “ Authorization Server Options
Auth, URL |htu:|s:H12?.U.U.lfsgcjuaumzfaum |
Token URL |htn:|s:H12}'.U.U. 1/sacfoauth2/token |
Scope |smpe
P | 127.0.0.1 | Redirect URL | Local Server Options
Port (8080 |
0Auth2 Options
Clientld |din.=-_r1t—id |

Secret |dient—se::ret

Username | |
Passward | |
Access Token |be4d 115a%e6a440a859ch 303d 7f03890d3bf290fc4342c 1a08befa 5500 7380d
Token Type |Bearer
New | |
Access Expires In |SEUU |
Token Refresh Token |bSec418745ef4c9e34d30 18034324826 1520 7edbf040a6a!| | Refresh Token
Scope |scope

After Access To

ken:

After Authorize Code: code=4b387ffh4255412083057f29ca35933a
state =EB2FD5EE 116 346BFE9CE 14F 79 740BEE T

{token_type™: "Bearer”, "access_token”: be4d 1153226544053 55cb 30 3d 7038904 3bf290fc43420 1a08befa550b 738bd ™, "expires_in":3
600, refresh_token": "b5ec418745ef4c9e94d 3b 1a90b 343248 26 152b Fedbf040a6a552718 13aac5849 ", "scope™: "scope ™}

248

COMPONENTS

OAuth2 | Customize Sign-In HTML

When an OAuth2 client do a request to get a new Access Token, a Web-Page is shown in a web-browser to Allow
this connection and login with an User and Password.

The HTML page is included by default in Server component, but this code can be customized using
OnAuth2BeforeDispatchPage event.

void OnOAuth2BeforeDispatchPage(TObject Sender; TsgcHTTPOAuth2Request OAuth2; ref string HTML)

HTML = "your custom html";
}

If you customize your HTML with a completely new HTML code, at least you must maintain the form where the
Username and password are sent:

<form action="">

<input type="hidden" name="request type" value="sign-in" />
<input type="username" name="username" placeholder="Username" />
<input type="password" name="password" placeholder="Password" />

<input type="hidden" name="id" value="" />
<p></p>

<button>Sign In</button>

</form>

The id parameter, which is hidden, must maintain the same value of the original form to allow server identify the re-
quest.

COMPONENTS

OAuth2 | Server Endpoints

By default, the OAuth2 Server uses the following Endpoints:

Authorization: /sgc/oauth2/auth
Token: /sgc/oauth2/token

Which means that if your server listens on IP 80.54.41.30 and port 8443, the full OAuth2 Endpoints will be:

Authorization: https://80.54.41.30:8443/sgc/oauth2/auth
Token: https://80.54.41.30:8443/sgc/oauth2/token

This Endpoints can be modified easily, just access to OAuth20ptions property of component and modify Authoriza-
tion and Token URLSs.
Example: if your endpoints must be

Authorization: https://80.54.41.30:8443/authentication/auth
Token: https://80.54.41.30:8443/authentication/token

Set the OAuth20ptions property with the following values:

OAuth20ptions.Authorization.URL = /authentication/auth
OAuth20ptions.Token.URL = /authentication/token

COMPONENTS

OAuth2 | Register Apps

Before a new OAuth2 is requested by a client, the App must be registered in the server.
Register a new App requires the following information:

+ App Name: is the name of the Application. Example: MyApp

» RedirectURI: is where the responses will be redirected. Example: http://127.0.0.1:8080
+ Clientld: is public information and is the ID of the client.

» ClientSecret: must be kept confidential.

Optionally you can set the following parameters:

» Expiresin: by default is 3600 seconds, so the token will expire in 1 hour, you can set a greater value if you
need.
» RefreshToken: by default refresh tokens are supported, if not, set this parameter to false.

If a new client wants to authenticate using OAuth2, first the App requires to be registered in the server, you can
use:

1. RegisterApp
This method requires the App Name and RedirectURI, and will return a Clientld and ClientSecret.

2. Apps.AddApp
This method requires AppName, RedirectURI, Clientld and ClientSecret. Usually you can use this method when a
server has some already created Apps and you want to load them before is started.

Both methods do the same, register the Application in the server, but first is most useful when the App is registered
the first time and second method when you want to load all registered apps before start the server (because are
saved on database for example).

COMPONENTS

OAuth2 | Recover Access Tokens

If the OAuth2 Server is destroyed (because it's restarted) and there are valid Access Tokens issued, these are lost
by default. You can recover these Access Tokens using the method AddToken. This method stores the tokens in
the OAuth2 Server.

Add a Token requires the following information:
» AppName: the name of the app.
» Token: access token.
+ Expires: when the token expires.
+ RefreshToken: refresh token.

You can save the issued tokens handling the OAuth2AfterAccessToken event.

private void OnOAuth2AfterAccessToken(TObject Sender, TsgcWSConnection Connection, TsgcHTTPOAuth2Request OAuth2,
string aResponse)
{

}

// ... store OAuth2 Token data

OAuth2 = new TsgcHTTP_OAuth2_Server.Create();

OAuth2.Apps.AddApp("MyApp", "http://127.0.0.1:8080", "client-id", "client-secret");

OAuth2.AddToken("MyApp", "12146cel2b0e4813987f2794f768905cefc39da6fbd54f6d9b38387489280608", 1622796714,
"ef3e3dfa56ec44109c3d345b1541f08e539ce21432d9433099b48a3d08d34bco");

oServer.Authentication.Enabled = true;

oServer.Authentication.OAuth.OAuth2 = OAuth2;

COMPONENTS

OAuth2 | Server Authentication

When an OAuth2 client requests a new Authorization, the server shows a web page where the user must allow the
connection and then login. This page is provided by sgcWebSockets library and is dispatched automatically when a
client requests an Authorization.

OAuth2 Authorization

Authorization Allow MyApp
Access?

The app MyApp would like the ability to
connect to your account.

Scopes: Administrator

If the user Allows the access, a login form will be shown where the user must set the Username and Password.
This data will be received OnOAuth2Authentication event, so you must validate than the user/password is correct
and if it is, then set Authenticated parameter to true.

void OnOAuth2Authentication(TsgcWSConnection Connection, TsgcHTTPOAuth2Request OAuth2, string aUser,
string aPassword, ref bool Authenticated)

if ((auUser == "user") and (aPassword == "secret"))

Authenticated = true;

}
}

COMPONENTS

OAuth2 | None Authenticate URLs

By default, when OAuth2 is enabled on Server Side, all the HTTP Requests require Authentication using Bearer To-
kens.

If you want allow some URLs to be accessed without the need of use a Bearer Token, you can use the event
OnOAuth2BeforeRequest

procedure OnOAuth2BeforeRequest(TObject Sender; TsgcwWSConnection aConnection; TStringlList aHeaders;
ref bool Cancel)

if (DecodeGETFullPath(aHeaders) == "/Public.html")
{

Cancel = true;
}

}

254

COMPONENTS

HTTP | JWT

JWT (JSON Web Token) typically consists of a header + payload + signature.
Header
Contains the metadata information about JWT

+ alg: is the algorithm used to sign the token
+ typ: is the type of the token, always JWT

"alg": "HS256",
lltypll C M JWT"

}
You can find more headers but the previous will be always there.
Payload
The payload contains the claims of the JWT. The standard headers are the following:
+ iss: is the issuer, the entity who generates and issue the JWT.
+ sub: is the subject, the entity identified by this token.
+ aud: is the audience, the target audience for this JWT.

+ exp: is the expiry, is the timestamp in UNIX format after the token should not be accepted.
+ iat: is issued at, specifies the date when the token has been issued.

"sub": "1234567890",

"name": "John Doe",
"iat": 1516239022
}
Signature

The signature is created using the Encoded Header, Encoded Payload, a Secret and a Cryptographic Algorithm.

eyJhbGci0iJIUZIINIiISINR5cCI6IKPXVCJIY. eyJzdWIi0iIxMiMO

NTY30DkwIiwibmFtZSI6IkpvaG4gRG91IiwiaWFOIjoxNTE2MjM5M

DIyfQ.ST1KxwRJISMeKKF2QT4fwpMeJf36P0k6yJV_adQssw5c

Algorithms supported

The following algorithms are supported by both Client and Server JWT components.

+ HS256
+ HS384
+ HS512
+ RS256
+ RS384
+ RS512
+ ES256
+ ES384
+ ES512

COMPONENTS

OpenSSL libraries are required to sign and verify the JWT.

Components

* TsgcHTTP_JWT_Client: JWT client which allows you to encode and sign JWT and send as an Authoriza-
tion Header in HTTP and WebSocket protocols.

* TsgcHTTP_JWT_Server: JWT server which allows you to decode and validate JWT received as an Autho-
rization Header in HTTP and WebSocket protocols.

COMPONENTS

JWT | TsgcHTTP_JWT_Client

The TsgcHTTP_JWT_Client component allows you to encode and sign JWT Tokens, attached to a WebSocket
Client or HTTP/2 client, the token will be sent automatically as an Authorization Bearer Token Header.

Configuration

You can configure the JWT values in the JWTOptions properties, there are 2 main properties: Header and Pay-
load, just set the values for every required property.

If the Signature is encrypted using a Private Key (RS and ES algorithms), set the value in the PrivateKey property
of the Algorithm.
If the Signature is encrypted using a Secret (HS algorithms), set the value in the Secret property of the Algorithm.

OpenSSL Options

Configure which openSSL libraries you will use when using JWT client.

OpenSSL_Options: configuration of the openSSL libraries.

APIVersion: allows defining which OpenSSL API will be used.
oslAPI_1_0: uses API 1.0 OpenSSL, it's latest supported by Indy
oslAPI_1_1: uses API 1.1 OpenSSL, requires our custom Indy library and allows you to use
OpenSSL 1.1.1 libraries (with TLS 1.3 support).
oslAPI_3_0: uses API 3.0 OpenSSL, requires our custom Indy library and allows you to use
OpenSSL 3.0.0 libraries (with TLS 1.3 support).

LibPath: here you can configure where are located the openSSL libraries
oslpNone: this is the default, the openSSL libraries should be in the same folder where is the
binary or in a known path.
oslpDefaultFolder: sets automatically the openSSL path where the libraries should be located
for all IDE personalities.
oslpCustomFolder: if this is the option selected, define the full path in the property LibPath-
Custom.

LibPathCustom: when LibPath = oslpCustomFolder define here the full path where are located the

openSSL libraries.

UnixSymLinks: enable or disable the loading of SymLinks under Unix systems (by default is en-

abled, except under OSX64):
oslsSymLinksDefault: by default are enabled except under OSX64 (after MacOS Monterey
fails trying to load the library without version.).
oslsSymLinksLoadFirst: Load SymLinks and do before trying to load the version libraries.
oslsSymLinksLoad: Load SymLinks after trying to load the version libraries.
oslsSymLinksDontLoad: don't load the SymLinks.

Custom Headers

The Header and Payload properties contains the most common headers used to generate a JWT, but you can add
more headers calling the method AddKeyValue and passing the Key and Value as parameters.
Example: if you want add a new record in the JWT Header with your name, use the following method

Header .AddKeyValue("name", "John Smith");

After configuring the properties, to generate the JWT, just call the method Sign and will return the value of the JWT.

257

COMPONENTS

WebSocket Client and JWT

TsgcWebSocketClient allows the use of JWT when connecting to WebSocket servers, just create a new JWT client
and assign to Authentication.Token.JWT property.

TsgcWebSocketClient oClient = new TsgcWebSocketClient();
oClient.URL = "ws://www.esegece.com:2052";

TSgCHTTP_JWT_Client oJWT = new TsgcHTTP_JWT_Client();
0JWT.JWTOptions.Header.alg = jwtRS256;
0JWT.JWTOptions.Payload.sub = "1234567890";
0JWT.JWTOptions.Payload.iat = 1516239022;

oClient.Authentication->Enabled = true;
oClient.Authentication.URL.Enabled = false;
oClient.Authentication.Token.Enabled = true;
oClient.Authentication.Token.JWT = 0JWT;
oClient.Active = true;

HTTP Clients and JWT

TsgcHTTP2Client and TsgcHTTP1Client allows the use of JWT when connecting to HTTP/2 servers, just create a
new JWT client and assign to Authentication.Token.JWT property.

TsgcHTTP2Client oHTTP = new TsgcHTTP2Client();

TSgCHTTP_JWT_Client 0JWT = new TsgCHTTP_JWT_Client();
0JWT.JWTOptions.Header.alg = jwtRS256;
0JWT.JWTOptions.Payload.sub ""'1234567890";
0JWT.JWTOptions.Payload.iat 1516239022;

OHTTP.Authentication.Token.JWT = oOHTTP;
OHTTP.Get("https://your.api.com");

Expiration

The Authorization Token can be re-created every time you send an HTTP request using an HTTP client or can be
reused several times till it expires.

Example: calling Apple APNs using Tokens, requires that the token is reused at least during 20 minutes and at a
maximum of 1 hour. Use the Property RefreshTokenAfter to set the seconds when the token will expire, for exam-
ple after 30 minutes.

RefreshTokenAfter = 60 * 40.

Create JWT Signature

You can create JWT Signatures manually to use on applications that doesn't make use of WebSocket or HTTP
Protocol, or if you are using components from third-parties applications and you only need the JWT Token.

COMPONENTS

In order to obtain the JWT Signature, just create a new instance of the JWT Client and fill the properties manually,
when all properties are set, call the method Sign and it will return the JWT Token.

TSQCHTTP_JWT_Client 0JWT = new TsgCHTTP_JWT_Client();

// ... header

0JWT.JWTOptions.Header.alg = jwtHS256;

0JWT.JWTOptions.Algorithms.HS.Secret = "79F66F1E-E998-436B-8A0A-3E5DEFA4FDOE";
// ... payload

0JWT.JWTOptions.Payload.jti "9B66FB94-B761-42B1-A1AF-3C44233DBE87";

0JWT.JWTOptions.Payload.iat = 1630925658;
0JWT.JWTOptions.Payload.iss = "2886EC7547B7BA6A9009";
0JWT.JWTOptions.Payload.exp = 1630933158;

// ... custom payload values

0JWT.JWTOptions.Payload.ClearKeyValues;
0JWT.JWTOptions.Payload.AddKeyvalue("origin", "www.yourwebsite.com");
0JWT.JWTOptions.Payload.AddKeyvalue("ip", "69.39.46.178");

// ... get JWT Token

MessageBox.Show(0JWT.Sign());

COMPONENTS

JWT | TsgcHTTP_JWT Server

The TsgcHTTP_JWT_Server component allows you to decode and validate JWT tokens received in WebSocket
Handshake when using WebSocket protocol or as HTTP Header when using HTTP protocol.

Configuration

You can configure the following properties in the JWTOptions property of the component:

If the Signature is validated using a Public Key (RS and ES algorithms), set the value in the PublicKey property of
the Algorithm.
If the Signature is validated using a Secret (HS algorithms), set the value in the Secret property of the Algorithm.

To validate JWT tokens, just attach a TsgcHTTP_JWT_Server instance to Authentication.JWT.JWT property of
the WebSocket/HTTP Server.

TsgcwWebSocketHTTPServer oServer = new TsgcWebSocketHTTPServer();
oServer .Port = 80;

TSQCHTTP_JWT_Server 0JWT = new TsSgCHTTP_JWT_Server();
0JWT.JWTOptions.Algorithms.RS.PublicKey = "public key here";
oServer.Authorization.Enabled = true;
oServer.Authorization.JWT.JWT 0JWT;

oServer.Active = true;

Checks property allows you to enable some checks in the Payload of JWT, by default checks if the issued dates
are valid.

Events

Use the following events to control the flow of JWT Validating Token.
OnJWTBeforeRequest

The event is called when a new HTTP / WebSocket connection is detected and before any validation is done.
This connection can contain or not a JWT Token.

If you don't want to process this Connection using JWT Validation, just set the Cancel parameter to True (means
that this connection will bypass JWT validations).

By default, all connections continue the process of JWT validation.

OnJWTBeforeValidateToken

The event is called when the connection contains an Authorization token and before is validated.

If you don't want to validate this token, just set the Cancel parameter to True (means that this connection will by-
pass JWT validations).

By default, all connections continue the process of JWT validation.

OnJWTBeforeValidateSignature

This event is called after the token has been decoded, so using Header and Payload parameters you have ac-
cess to the content of JWT and before the signature is validated.

The parameter Secret is the secret that will be used to validate the signature and uses the PublicKey or Secret of
the JWTOptions property. If this Token must be validated with another secret, the new value can be set to Secret
parameter.

By default, all signatures are validated

COMPONENTS

OnJWTAfterValidateToken

The event is called after the signature has been validated, the parameter Valid shows if the signature is correct or
not. If it's not correct the connection will be closed, otherwise the connection will continue.

You can access to the content of Header and Payload of JWT using the arguments provided.

If there is any error validating the JWT, will be informed in the Error argument.

OnJWTEXxception

If there is any exception while processing the JWT Decoding and Validation, this event will be called with the con-
tent of error.

OnJWTUnauthorized

This event is called before the connection is closed because there is no authorization token or is invalid, by default,
the Disconnect parameter is true, you can set to false if you still want to accept the connection. This event can con-
figure which endpoints must implement JWT Authorization or not.

The error "Access to XmIHttpRequest at X from origin X has been blocked X by CORS policy: Response to preflight
request doesn't pass access control check" means the Web-browser is trying to send a Preflight request but the re-
quest is not authorized by your server. To allow do a Preflight request, check if the request is CORS and if true
don't disconnect it, find below an example:

public void OnJWTUnauthorized(object sender, TsgcWSConnection connection, ref bool disconnect)

if (IsCorsHeader (((TsgcWSConnectionServer)connection).HeadersRequest))

{
disconnect = false;
}
else
{
disconnect = true;
}
}
OnJWTResponseError

This event is called before the response error is sent to the client, allows customizing the Response Code, Text and
Headers of the HTTP response. By default the Response Code Error is "401" and the Response Text is "Unautho-
rized".

COMPONENTS

Webauthn | Javascript Client

WebAuthn (Web Authentication API) is a W3C standard that enables secure passwordless authentication using
public-key cryptography. Instead of passwords, users register and authenticate using hardware-based authenti-
cators (like fingerprint readers, Face ID, YubiKeys, etc.) or platform authenticators (built-in, like Touch ID).

Find below how to handle the Registration and Authentication using a Javascript client.

WebAuthn Registration

How WebAuthn Registration works

* User Initiates Registration:
o The user provides a username and clicks Register.
* Browser Requests Options from Server:
o The frontend makes a posT request to get registration options.
* Browser Creates Credentials:
o Using the navigator.credentials.create() APl via simplewebAuthnBrowser.startRegistration(), a cre-
dential is created.
» Server Verifies Registration:
> The browser sends back the credential to the server.
o The server verifies the registration and stores the public key for that user.

The TsgcWSAPIServer_WebAuthn component has an html file to test the WebAuthn protocol. This HTML file
contains a minimal Ul and JavaScript to interact with WebAuthn.

Walkthrough of sgcWebAuthn.html
Structure Overview:
» Username Input: Captures the user's identifier.
+ Buttons:
° Register — initiates WebAuthn registration.

° Authenticate — initiates login (handled similarly).
* Debug Console: Shows real-time debug information (JSON from WebAuthn).

1. HTML Ul for Input

<input type="text" id="username" name="username" autocomplete="username webauthn" />
<button id="btnRegBegin">Register</button>

2. JavaScript: Button Click Handler

document.querySelector('#btnRegBegin').addEventListener('click', async () => {
const username = document.getElementById("username").value;

if (username == "") {
document.getElementById('Error').innerText = 'Please enter a username to register';
return;

}
const resp = await fetch('<#webauthn_registration_options>', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ username, algorithms: [] })
1)
const options = await resp.json();
const attResp = await startRegistration(options); // WebAuthn API

3. Server Response (Fake Endpoint in HTML)

COMPONENTS

fetch('/sgcwWebAuthn/Registration/Options', ...)
fetch('/sgcwWebAuthn/Registration/verify', ...)

4. Finalizing Registration

const verificationResp = await fetch('/webauthn/register/verify', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(attResp)
1)
const verificationJSON = await verificationResp.json();
if (verificationJSON && verificationJSON.verified) {
document.getElementById('Success').innerHTML = "Authenticator registered!;

WebAuthn Authentication

How WebAuthn Authentication works

* User Initiates Authentication:
o The user provides a username and clicks Register.
* Browser Requests Options from Server:
o The frontend makes a posT request to get authentication options.
* Browser Creates Credentials:
o Using the navigator.credentials.get() APl via simplewebAuthnBrowser.startAuthentication().
» Server Verifies Authentication:
o The browser sends back the credential to the server.
o The server verifies the signed result.

1. HTML Ul Setup

<div class="container">
<hi>WebAuthn Authentication Sample</h1>
<section id="userdata">
<label for="username">Username:</label>
<input type="text" id="username" name="username" autocomplete="username webauthn" autofocus />
</section>
<button id="btnAuthBegin">Authenticate</button>
<p id="Success" class="success'"></p>
<p id="Error" class="error"></p>
<details open>
<summary>Console</summary>
<textarea id="Debug"></textarea>
</details>
</div>

2. Get Authentication Options
Before calling startAuthentication, you send the username to the server

const resp = await fetch('<#webauthn_authentication_options>', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
username: document.getElementById("username").value,
user_verification: 'preferred'
Ok
1)

The server responds with a JSON object that includes:

COMPONENTS

"challenge": "base64url-encoded-random-string",
"allowCredentials": [

{

"id": "base64url-credential-id",
"type": "public-key"
}
1,

"userVerification": "preferred",
"rpId": "yourdomain.com"

}

This is called the PublicKeyCredentialRequestOptions.

3. Receive the Authenticator Response

The asseResp looks like this (simplified):

"id": "credentialId",

"rawId": "base64url-encoded-id",

"response": {
"authenticatorData": "...",
"clientDataJSON": "...",
"signature": "...",
"userHandle": "..."

H

"type": "public-key",

"clientExtensionResults": {}

3

This response proves that the user:
» Possesses the private key stored on the authenticator
+ Signed the server’s challenge
» Was physically present (if required)

4. Send the Signed Authentication Response to the Server
After the user interacts with their authenticator (via startAuthentication()), you get a response object in JavaScript.
const verificationResp = await fetch('/webauthn/authenticate/verify', {

method: 'POST',

headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(asseResp), // this is the signed response

3

5. Get the Server's Response

The server will reply with a result like this:

{ "verified": true }

Or if something went wrong:

{ "verified": false, "error": "Invalid signature" }
And you handle it in your frontend code:

const result = await verificationResp.json();

264

COMPONENTS

if (result.verified) {

document.getElementById('Success').textContent = 'User authenticated!';
} else {
document.getElementById('Error').textContent = 'Authentication failed!';

COMPONENTS

STUN

STUN (Session Traversal Utilities for NAT) it's an IETF protocol used for real-time audio video in IP networks.
STUN is a server-client protocol, a STUN server usually operates on both UPD and TCP and listens on port 3478.

The main purpose of the STUN protocol is to enable a device running behind a NAT discover its public IP and what
type of NAT is.

STUN provides a mechanism to communicate between peers behind a NAT. The peers send a request to a STUN
server to know which is the public IP address and Port. The binding requests sent from client to server are used to
determine the IP and ports bindings allocated by NAT's. The STUN client sends a Binding request to the STUN
server, the server examines the source IP and Port used by client, and returns this information to the client.

Video Gateway

>

WebRTC

NAT 7 nar Peer

IP Address ~ STILN \
discovery _ Sarver

Peer

The STUN server basically sends 2 types of responses: successful or error, every response has a list of attributes
which contains information about binding IP address, error code, reason of error...

Components

+ TsgcSTUNCIient: it's the client component that implements the STUN protocol and allows you to send bind-
ing requests to STUN servers.

» TsgcSTUNServer: it's the server component that implements the STUN protocol.

COMPONENTS

STUN | TsgcSTUNCIient

TsgcSTUNCIient is the client that implements the STUN protocol and allows you to send binding requests to STUN
servers.

The components allows you to use UDP and TCP as transport, and when used UDP as transport implements a Re-
transmission mechanism to re-send requests if the response not arrived after a small time.

Basic usage

Usually stun servers runs on UDP port 3478 and don't require authentication, so in order to send a STUN request
binding, fill the server properties to allow the client know where connect and Handle the events where the compo-
nent will receive the response from server.

Configure the server
* Host: the IP or DNS name of the server, example: stun.sgcwebsockets.com
» Port: the listening Server port, example: 3478

Call the method SendRequest, to send a request binding to STUN server.

Handle the events
+ If the server returns a successful response, the event OnSTUNResponseSuccess will be called and you
can access to the Binding information reading the aBinding object.
* If the server returns an error, the event OnSTUNResponseError will be called and you can access the Error
Code and Reason reading the aError object.

TsgcSTUNClient oSTUN = new TsgcSTUNClient();
0STUN.Host = "stun.sgcwebsockets.com";
OSTUN.Port = 3478,

0STUN. SendRequest();

private void OnSTUNResponseSuccess(Component Sender, TsgcSocketConnection aSocket,
TsgcSTUN_Message aMessage, TsgcSTUN_ResponseBinding aBinding)

DoLog("Remote IP: " + aBinding.RemoteIP + ". Remote Port: " + IntToStr(aBinding.RemotePort));
private void OnSTUNResponseError(Component,Sender, TsgcSocketConnection aSocket,
TsgcSTUN_Message aMessage, TsgcSTUN_ResponseError aError)

DoLog("Error: " + Int32.Parse(aError.Code) + " " + aError.Reason);

Most common uses

* Bindings
+ UDP Retransmissions
* Long Term Credentials

Methods

There is a single method called SendRequest, which sends a request to STUN Server, requesting binding informa-
tion.

267

COMPONENTS

Properties

Host: it's the IP Address or DNS name of STUN server where the client will send a binding request.
Port: it's the listening port of STUN server, by default 3478.

IPVersion: it's the Family Address, by default IPv4.

Transport: it's the transport used to connect to STUN server, by default UDP.

STUNOptions: here are defined the specific STUN options of client component

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack-
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the client.

Authentication: some STUN servers requires that requests are authenticated.

. Credentials: there are 2 types of Authentication: LongTermCredentials and ShortTermCredentials.
By default the requests are not authenticated

. Username: the string that identifies the user.

. Password: the secret string.

RetransmissionOptions: when messages are sent using UDP as transport, UDP doesn't includes a mechanism
to know if a message has arrived or not to other peer. This property allows you to configure a mechanism to re-
send UDP messages if not arrived after a small time.

Enabled: if enabled, the message will be re-send until receives a confirmation or the maximum number of
retries has been reached.

RTO: retransmission time in milliseconds, by default 500ms. For example, assuming an RTO of 500 ms, re-
quests would be sent at times 0 ms, 500 ms, 1500 ms, 3500 ms, 7500 ms, 15500 ms, and 31500 ms.

MaxRetries: Max number of retries, by default 7.

LogFile: if enabled save stun messages to a specified log file, useful for debugging. The access to log file is not
thread safe if it's accessed from several threads.

Enabled: if enabled every time a message is received and sent by client it will be saved on a file.
FileName: full path to the filename.
NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro-
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.
Events

OnSTUNBeforeSend

This event is called before the stun client sends a message to the server. You can access to the message
properties through the aMessage parameter and modify if required.

COMPONENTS

OnSTUNResponseSuccess
When the server processes successfully a request binding, it sends a message with the binding properties
(IP Address, Port and family) and other attributes, this event is called when the client receives this success-
ful response.

OnSTUNResponseError

When there is any error in the response sent by server, this event is called with the error details.

OnSTUNEXxception

This event is called when there is any exception processing the STUN protocol messages.

COMPONENTS

STUN Client | UDP Retransmissions

When running STUN over UDP, it's possible that the STUN message might be dropped by the network. Reliability
of STUN request/response transactions is accomplished through retransmissions of the request message by the
client application itself.

A client should retransmit a STUN request message starting with an interval of RTO ("Retransmission TimeOut"),
doubling after each retransmission. The RTO is an estimate of the round-trip time.

By default, the sgcWebSockets STUN Client is already configured with a RTO of 500 ms and a Max Retries value
of 7.

For example, assuming an RTO of 500 ms, requests would be sent at times 0 ms, 500 ms, 1500 ms, 3500 ms,
7500 ms, 15500 ms, and 31500 ms. If the client has not received a response after 39500 ms, the client will consid-
er the transaction to have timed out.

TsgcSTUNClient oSTUN = new TsgcSTUNClient();
O0STUN.Host = "stun.sgcwebsockets.com";
OSTUN.Port = 3478;
0STUN.RetransmissionOptions.Enabled = true;
OSTUN.RetransmissionOptions.RTO = 500;
OSTUN.RetransmissionOptions.MaxRetries = 7;
O0STUN.SendRequest();

270

COMPONENTS

STUN Client | Long Term Credentials

The long-term credential mechanism relies on a long-term credential, in the form of a username and password that
are shared between client and server. The credential is considered long-term since it is assumed that it is provi-
sioned for a user and remains in effect until the user is no longer a subscriber of the system or until it is changed.

You can configure the Long-term credentials in the sgcWebSockets STUN client using the following code.

TsgcSTUNClient oSTUN = new TsgcSTUNClient();

OSTUN.
OSTUN.
OSTUN.

OSTUN
OSTUN

OSTUN.

Host = "stun.sgcwebsockets.com";

Port = 3478;

STUNOptions.Authentication.Credentials = TsgcStunCredentials.staulLongTermCredential;
.STUNOptions.Authentication.Username = "user_name";
.STUNOptions.Authentication.Password = "secret";

SendRequest();

If server requires long-term credentials and the credentials sent by the client are wrong, the will receive a 401
Unauthorized error as a response in the OnSTUNResponseError event.

271

COMPONENTS

STUN | TsgcSTUNServer

TsgcSTUNServer is the server that implements the STUN protocol and allows you to process binding requests
from STUN clients.

The STUN server can be configured with or without Authentication, can verify Fingerprint Attribute, send an alter-
nate server and more.

Basic usage

Usually stun servers runs on UDP port 3478 and don't require authentication, so in order to configure a STUN serv-
er, set the listening port (by default 3478) and start the server.

Configure the server
 Port: the listening Server port, example: 3478

Set the property Active = True to start the STUN server.

TsgcSTUNServer oSTUN = new TsgcSTUNServer();
OSTUN.Port = 3478;
OSTUN.Active = true;

Most common uses

» Configurations
* Long-Term Credentials
+ Alternate Server

Properties

Active: set the property to True to Start the STUN server and set to False to Stop the Server.
Host: it's the IP Address or DNS name of STUN server.

Port: it's the listening port of STUN server, by default 3478.

IPVersion: it's the Family Address, by default IPv4.

STUNOptions: here are defined the specific STUN options of server component

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack-
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the server.

Authentication: here you can configure if the server requires Authentication requests to send binding re-

sponses.
. Enabled: set to True if the server requires Authentication requests, by default false.
. LongTermCredentials: Enable if the server supports Long-Term credentials. The long-term creden-

tial mechanism relies on a long-term credential, in the form of a username and password that are
shared between client and server.

272

COMPONENTS

. Enabled: set to True if the server requires Long-Term credentials.
. Realm: the string of the realm sent to client.
. StaleNonce: time in seconds after the nonce is no longer valid.

BindingAttributes: when the server sends a successful response after a binding request, here you can cus-
tomize which attributes will be sent to the client.

. OtherAddress: if enabled and the server binds to more than one address, this attribute will be
sent with all other addresses except the default one.

. ResponseOrigin: is the Local IP of the server to send the response.

. SourceAddress: is the Local IP of the server to send the response.

LogFile: if enabled save stun messages to a specified log file, useful for debugging.
Enabled: if enabled every time a message is received and sent by server it will be saved on a file.
FileName: full path to the filename.

NotifyEvents: defines which mode to notify the events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro-
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Events

OnSTUNRequestAuthorization
This event is called when a binding request is received and requires authentication.
OnSTUNRequestSuccess

When the server processes successfully a request binding, it sends a message with the binding properties
(IP Address, Port and family) and other attributes, this event is called before the message is sent to client.

OnSTUNRequestError

When there is any error in the response sent by server, , this event is called before the message is sent to
client.

OnSTUNEXxception

This event is called when there is any exception processing the STUN protocol messages.

273

COMPONENTS

STUN Server | Long-Term Credentials

Usually STUN Servers are configured without Authentication, so any STUN client can send a binding request and
expect a response from server without Authentication.

sgcWebSockets STUN Server supports Long-Term Credentials, so you can configure TsgcSTUNServer to only al-
low binding requests with Long-Term credentials info.

To configure it, access to STUNOptions.Authorization property and enable it.
Then access to LongTermCredentials property and enabled it. By default, this type of authorization is already con-
figured with a Realm string and with a default StaleNonce value of 10 minutes (= 600 seconds).

TsgcSTUNServer oSTUN = new TsgcSTUNServer();

OSTUN.Port = 3478;

0STUN.STUNOptions.Authentication.Enabled := true;
OSTUN.STUNOptions.Authentication.LongTermCredentials.Enabled := true;
OSTUN.STUNOptions.Authentication.LongTermCredentials.Realm := "sgcWebSockets";
OSTUN.STUNOptions.Authentication.LongTermCredentials.StaleNonce := 600;
OSTUN.Active = true;

private void OnSTUNRequestAuthorization(Component Sender, TsgcSTUN_Message aRequest,
string aUsername, string aRealm, ref string Password)

if ((auUsername == "my-user") & (aRealm == "sgcWebSockets"))
Password = "my-password";

}
}

274

COMPONENTS

STUN Server | Alternate Server

The alternate server represents an alternate transport address identifying a different STUN server that the STUN
client should try.

The STUN Server can be configured to send an alternate server as a response to a binding request, to configure
this behaviour, just access to STUNOptions.BindingAttributes.AlternateServer property and configure here the val-
ues required.

TsgcSTUNServer oSTUN = new TsgcSTUNServer();

OSTUN.Port = 3478;
OSTUN.STUNOptions.BindingAttributes.AlternateServer.Enabled := true;
OSTUN.STUNOptions.BindingAttributes.AlternateServer.IPAddress := "80.54.54.1";
O0STUN.STUNOptions.BindingAttributes.AlternateServer.Port := 3478;
OSTUN.Active = true;

When the client receives the Alternate Server response attribute, it will try to send a request binding to the new
server.

275

COMPONENTS

TURN

Traversal Using Relays around NAT (TURN) protocol enables a server to relay data packets between devices.

If the public IP address of both the caller and callee is not discovered, TURN provides a fallback technique to relay
the call between endpoints.

Connecting a WebRTC session is an orchestrated effort done with the assistance of multiple WebRTC servers. The

NAT traversal servers in WebRTC are in charge of making sure the media gets properly connected. These servers
are STUN and TURN.

How WebRTC sessions connect

Directly

If both devices are on the local network, then there’s no special effort needed to be done to get them connected to
each other. If one device has the local IP address of the other device, then they can communicate with each other
directly.

Directly with public IP Address

Connecting WebRTC directly using public IP address obtained via STUN protocol.

Route through a TURN Server

When peers are behind a NAT and there are Firewalls, direct connection is not possible, so a TURN server is re-
quired to route the data between the peers.

Components

+ TsgcTURNCIient: it's the client component that implements the TURN protocol and allows you to Allocate,
create permissions, Send Indications... to TURN Server.

* TsgcTURNServer: it's the server component that implements the TURN protocol.

276

COMPONENTS

TURN | TsgcTURNCIient

TsgcTURNCIient is the client that implements the TURN protocol and allows you to send allocation requests to
TURN servers. The client inherits from STUN Client, so all methods supported by STUN client are already support-
ed by TURN Client.

Basic usage

Usually TURN servers runs on UDP port 3478 and don't require authentication, so in order to send a TURN re-
quest, fill the server properties to allow the client know where connect and Handle the events where the component
will receive the response from server.

Configure the server
» Host: the IP or DNS name of the server, example: turn.sgcwebsockets.com
» Port: the listening Server port, example: 3478

Call the method Allocate, to send a request to allocate an IP Address and a Port to the TURN server.

Handle the events
+ If the server returns a successful response, the event OnTURNAIllocateSuccess will be called and you can
access to the Allocation information reading the aAllocation object.
+ If the server returns an error, the event OnSTUNResponseError will be called and you can access the Error
Code and Reason reading the aError object.

TsgCcTURNClient oTURN = new TsgcTURNClient();
OTURN.Host = "turn.sgcwebsockets.com";
OTURN.Port = 3478;

OTURN.Allocate();

private void OnTURNAllocate(Component Sender, const TsgcSocketConnection aSocket,
const TsgcSTUN_Message aMessage, const TsgcTURN_ResponseAllocation aAllocation)

DoLog("Relayed IP: " + aAllocation.RelayedIP + ". Relayed Port: " + aAllocation.RelayedPort.ToString());
private void OnSTUNResponseError(Component Sender, const TsgcSTUN_Message aMessage,
const TsgcSTUN_ResponseError akError)

DoLog("Error: " + aError.Code.ToString() + " " + aError.Reason);

Most common uses

¢ Allocation
» Allocate IP Address
* Create Permissions
¢ Indications
« Send Indication
¢ Channels
* TURN Client Channels

TURN Relay Data

There are basically 2 ways to send data between peers:

277

COMPONENTS

1. Send Indications, which encapsulates the data in a STUN packet. Use the method SendIndication to send an
indication to other peer.

2. Use Channel Data, it's a more efficient way to send data between peers because the packet size is smaller than
indications. Use SendChannelData method to send a channel data to other peer.

When a TURN server receives a packet in a Relayed IP Address from an IP Address with an active permission, if

there is channel data bound to the peer IP Address, the TURN client will receive the data in the event OnTURN-
ChannelData. But if there is no channel, the TURN client will receive the data in the event OnTURNData.

Methods

Allocate

This method sends a request to the server to allocate an IP Address and a Port which will be used to relay date be-
tween the peers.

If the server can allocate successfully an IP Address and a Port, the event OnTURNAIlocate event will be called. If
not, the OnSTUNRequestError event will be called.

The client saves in the Allocation property of the client, the data returned by server about the allocated IP Ad-
dress.

Refresh

If there is an active allocation, the client can refresh it sending a Refresh request.

This method has a parameter called Lifetime, if the value is zero, the allocation will expire immediately. If the value
is greater of zero, it means the number of seconds to expiry.

If the result is successful, the event OnTURNRefresh will be called.

CreatePermission

This method creates a new permission fo the IP Address set as an argument of the CreatePermission method. If
the permission already exists for this IP, it will be refreshed by the server.

If the result is successful, the event OnCreatePermission will be called.

SendIndication

This method sends a data to the peer identified as PeerlP and PeerPort. This method requires there is an active
permission for this IP in the TURN server.

ChannelBind

This method sends a request to the server to create a new channel to communicate with the peer identified as
PeerlP and PeerPort.

if the result is successful, the event OnChannelBind will be called. You can access to the channel-id assigned,
reading the parameter aChannelBind of the event.

SendChannelData

This method sends data to a peer using a Channelld. This method requires the channel exists and is active.

278

Properties

Host: it's the IP Address or DNS name of TURN server where the client will send a binding request.
Port: it's the listening port of TURN server, by default 3478.

IPVersion: it's the Family Address, by default IPv4.

Transport: it's the transport used to connect to TURN server, by default UDP.

STUNOptions: here are defined the specific STUN options of client component

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack-
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the client.
Authentication: some STUN servers requires that requests are authenticated.
Credentials: there are 2 types of Authentication: LongTermCredentials and ShortTermCredentials.
By default the requests are not authenticated

Username: the string that identifies the user.
Password: the secret string.

TURNOptions: here are defined the specific TURN options of client component

Allocation: here are defined the Allocation properties
Lifetime: default lifetime in seconds, by default 600 seconds.
Authentication: usually TURN servers are user protected.
Credentials: by default Long-Term credentials is enabled
Username: the string that identifies the user.

Password: the secret string.

AutoRefresh: when a new allocation is created, requires to be refreshed in order to be used by the peers.
Here you can define which methods are automatically refreshed by the TURN Client Component.

Allocations
Channels
Permissions

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack-
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the client.

RetransmissionOptions: when messages are sent using UDP as transport, UDP doesn't includes a mechanism
to know if a message has arrived or not to other peer. This property allows you to configure a mechanism to re-
send UDP messages if not arrived after a small time.

Enabled: if enabled, the message will be re-send until receives a confirmation or the maximum number of
retries has been reached.

RTO: retransmission time in milliseconds, by default 500ms. For example, assuming an RTO of 500 ms, re-
quests would be sent at times 0 ms, 500 ms, 1500 ms, 3500 ms, 7500 ms, 15500 ms, and 31500 ms.

MaxRetries: Max number of retries, by default 7.

LogFile: if enabled save stun messages to a specified log file, useful for debugging. The access to log file is not
thread safe if it's accessed from several threads.

COMPONENTS

279

COMPONENTS

Enabled: if enabled every time a message is received and sent by client it will be saved on a file.
FileName: full path to the filename.
NotifyEvents: defines which mode to notify WebSocket events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro-
nize with the main thread to notify these events.

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Events

The TURN client inherits from STUN Client the events: OnSTUNResponseSuccess, OnSTUNResponseError, On-
STUNException and OnSTUNBeforeSend.

Additionally, includes the following events to handle all TURN messages.
OnTURNAIllocate

This event is called after a successful IP Address allocation in the TURN server.
OnTURNCreatePermission

This event is called after creating a new permission in the TURN server.
OnTURNRefresh

This event is called after receiving a successful refresh response from the TURN Server.
OnTURNDatalndication

The event is called when the client receives a DATA Indication from other peer.
OnTURNChannelBind

This event is called when the server creates a new channel. Returns the new channel-id created.

OnTURNChannelData

The event is called when the client receives new Data from a Channel previously created.

COMPONENTS

TURN Client | Allocate IP Address

TURN Protocol allows you to use a Relayed IP Address to exchange data between peers that are behind NATs.

To create a new Relayed IP Address on a TURN server, the client must first call the method Allocate, this method
sends a Request to the TURN server to create a new Relayed IP Address, if the TURN server can create a new
Relayed IP Address, the client will receive a successful response. The client will be able to communicate with other
peers during the time defined in the Allocation's lifetime.

TsgcTURNClient oTURN = new TsgcTURNClient();
OTURN.Host = "turn.sgcwebsockets.com";
OTURN.Port = 3478;

OTURN.Allocate();

private void OnTURNAllocate(Component Sender, TsgcSocketConnection aSocket, TsgcSTUN_Message aMessage,
const TsgcTURN_ResponseAllocation aAllocation)

DoLog("Relayed IP: " + aAllocation.RelayedIP + ". Relayed Port: " +
aAllocation.RelayedPort.ToString());
}

private void OnSTUNResponseError(Component Sender, TsgcSTUN_Message aMessage,
TsgcSTUN_ResponseError aError)

DoLog("Error: " + aError.Code.ToString() + " " + aError.Reason);

The lifetime can be updated to avoid expiration using the method Refresh. The Lifetime is the number of seconds
to expire. If the value is zero the Allocation will be deleted.

OTURN.Refresh(600);

COMPONENTS

TURN Client | Create Permissions

When a new Allocation is created in a TURN server, this allocation cannot process any incoming packet from other
peers if has no permissions. So, in order to allow other peers to communicate using a Relayed IP Address, first the
TURN Client must create permissions for the IP Addresses that are allowed to exchange Data.

To Create a new Permission, just call the method CreatePermission and pass as a parameter the IP Address of
the peer. If the Peer IP already exists on the TURN server, it will be refreshed, if not, it will be created. Permissions
expire after 5 minutes unless are refreshed.

The TURN client, only allows you to call the method CreatePermission if exists an active allocation.

If the permission is created successfully, the event OnTURNCreatePermission is called.

OTURN.CreatePermission("80.147.23.157");

void OnTURNCreatePermission(Component Sender; TsgcSocketConnection aSocket;
TsgcSTUN_Message aMessage; TsgCTURN_ResponseCreatePermission aCreatePermission)

DoLog("#Create Permission: " + aCreatePermission.IPAddresses);

COMPONENTS

TURN Client | Send Indication

TURN Protocol supports 2 mechanisms for sending and receiving data from peers, one of them is Send and Data
mechanisms.

The TURN client can use the SendIndication method to send data to the server for relaying to a peer. The TURN
client must ensure that there is a permission for the Peer IP Address where the Send Indication will be sent.

The responses to a SendIndication method, are received OnTURNDatalndication event.

OTURN.SendIndication("80.147.23.157", 5000, "random data");

void OnTURNDataIndication(Component Sender, TsgcSocketConnection aSocket,
TsgcSTUN_Message aMessage, TsgCTURN_ResponseDataIndication aDataIndication)

DoLog("#Data Indication: [" + aDataIndication.PeerIP + ":" + IntToStr(aDataIndication.PeerPort) + "] " +
aDataIndication.Data.ToString());

COMPONENTS

TURN Client | Channels

Channels provide a way for the TURN Client and Server to send application data using ChannelData messages,
which have less overhead than Send and Data Indications.

Before use ChannelData messages to exchange data between peers, the TURN client must create a new channel,
to do this, just call the method ChannelBind passing the Peer IP Address and Port as parameters.

If the TURN server can bind a new channel, the TURN client will receive a successful response OnTURNChannel-
Bind event.

OTURN.SendIndication("80.147.23.157", 5000);

void OnTURNChannelBind(Component Sender, TsgcSocketConnection aSocket,
TsgcSTUN_Message aMessage, TsgCTURN_ResponseChannelBind aChannelBind)

DoLog("#Channel Bind: " + aChannelBind.Channel.ToString());

A channel binding lasts for 10 minutes unless refreshed. To refresh a channel just call ChannelBind method again.

When the TURN client receives a new ChannelMessage, the event OnTURNChannelData is called.

void OnTURNChannelData(Component Sender, TsgcSocketConnection aSocket,
TsgcTURNChannelData aChannelData)

DoLog("#Channel Data: [" + aChannelData.ChannelID.ToString() + "] " +
aChannelData.Data.ToString());

284

COMPONENTS

TURN | TsgcTURNServer

TsgcTURNServer is the server that implements the TURN protocol and allows you to process requests from TURN
clients. The component inherits from TsgcSTUNServer, so all methods and properties are available on Tsgc-
TURNServer.

TURN Server supports Long-Term Authentication, Allocation, Permissions, Channel Data and more.

Basic usage

Usually TURN servers runs on UDP port 3478 and require Long-Term credentials, so in order to configure a TURN
server, set the listening port (by default 3478) and start the server.

Configure the server
» Port: the listening Server port, example: 3478
» Define the Long-Term Credentials properties in TURNOptions.Authentication.LongTermCredentials
» Handle the OnSTUNRequestAuthorization to set the password when a TURN client sends a request to
TURN Server.

Set the property Active = True to start the STUN server.

TsgcTURNServer oTURN = new TsgcTURNServer();

OTURN.Port := 3478;

OTURN.TURNOptions.Authentication.Enabled = true;

OTURN.TURNOptions.Authentication.LongTermCredentials.Enabled = true;

OTURN.TURNOptions.Authentication.LongTermCredentials.Realm = "esegece.com";

OTURN.Active = true;

void OnSTUNRequestAuthorization(TObject Sender, const TsgcSTUN_Message aRequest,
const string aUsername, const string aRealm, ref string Password)

if ((aUsername == "user") & (aRealm == "esegece.com"))

Password = "password";

3
}

Most common uses

¢ Configurations

* Long-Term Credentials
* Allocations

+ Allocations

Properties

Active: set the property to True to Start the TURN server and set to False to Stop the Server.
Host: it's the IP Address or DNS name of TURN server.

Port: it's the listening port of TURN server, by default 3478.

IPVersion: it's the Family Address, by default IPv4.

STUNOptions: here are defined the specific options for STUN Requests

Fingerprint: if enabled, the message includes a fingerprint that aids to identify STUN messages from pack-
ets of other protocols when the two are multiplexed on the same transport address.

COMPONENTS

Software: if enabled, sends an attribute with the name of the software being used by the server.

Authentication: here you can configure if the server requires Authentication requests to send binding re-

sponses.
. Enabled: set to True if the server requires Authentication requests, by default false.
. LongTermCredentials: Enable if the server supports Long-Term credentials. The long-term creden-

tial mechanism relies on a long-term credential, in the form of a username and password that are
shared between client and server.

. Enabled: set to True if the server requires Long-Term credentials.
. Realm: the string of the realm sent to client.
. StaleNonce: time in seconds after the nonce is no longer valid.

BindingAttributes: when the server sends a successful response after a binding request, here you can cus-
tomize which attributes will be sent to the client.

. OtherAddress: if enabled and the server binds to more than one address, this attribute will be
sent with all other addresses except the default one.

. ResponseOrigin: is the Local IP of the server to send the response.

. SourceAddress: is the Local IP of the server to send the response.

TURNOptions: here are defined the specific options for TURN Requests

Fingerprint: if enabled, the message includes a fingerprint that aids to identify TURN messages from pack-
ets of other protocols when the two are multiplexed on the same transport address.

Software: if enabled, sends an attribute with the name of the software being used by the server.
Allocation: when a new allocation is created, the server takes from this property the default values.

. DefaultLifeTime: value in seconds of default LifeTime.

. MaxLifeTime: max value of LifeTime, if a TURN client requests a value greater of this value, the val-
ue returned will be the MaxLifeTime.

MaxUserAllocations: max number of allocations.

MinPort: Minimum range port of allocations.

MaxPort: Maximum range port of allocations.

RelaylP: if defined, this will be the Relayed IP Address.

Authentication: usually TURN servers require Long-Term Credentials authentication.

. Enabled: set to True if the server requires Authentication requests, by default false.

. LongTermCredentials: Enable if the server supports Long-Term credentials. The long-term creden-
tial mechanism relies on a long-term credential, in the form of a username and password that are
shared between client and server.

. Enabled: set to True if the server requires Long-Term credentials.
. Realm: the string of the realm sent to client.
. StaleNonce: time in seconds after the nonce is no longer valid.

LogFile: if enabled save stun messages to a specified log file, useful for debugging.
Enabled: if enabled every time a message is received and sent by server it will be saved on a file.
FileName: full path to the filename.

NotifyEvents: defines which mode to notify the events.

neAsynchronous: this is the default mode, notify threaded events on asynchronous mode, adds events to a
queue that are synchronized with the main thread asynchronously.

neSynchronous: if this mode is selected, notify threaded events on synchronous mode, needs to synchro-
nize with the main thread to notify these events.

COMPONENTS

neNoSync: there is no synchronization with the main thread, if you need to access to controls that are not
thread-safe, you need to implement your own synchronization methods.

Events

The TURN server inherits from STUN Server the events: OnSTUNRequestAuthorization, OnSTUNRequestSuc-
cess, OnSTUNRequestError and OnSTUNEXxception.

Additionally, includes the following events to handle all TURN messages.
OnTURNBeforeAllocate

The event is called before create a new Allocation. It provides the IP Address and Port used to Relay Data,
you can reject if don't want to accept the Allocation.

OnTURNCreateAllocation

The event is called after creating successfully an Allocation.
OnTURNDeleteAllocation

The event is called after remove an already created Allocation.
OnTURNMessageDiscarded

The event is called when a message received by server is discarded.
OnTURNChannelDataDiscarded

The event is called when a Channel Data message is discarded.

287

COMPONENTS

TURN Server | Long Term Credentials

Usually TURN Servers are configured WITH Authentication for TURN requests and without Authentication for
STUN requests.

sgcWebSockets TURN Server supports Long-Term Credentials, so you can configure TsgcTURNServer to only al-
low requests with Long-Term credentials info.

To configure it, access to TURNOptions.Authorization property and enable it.
Then access to LongTermCredentials property and enabled it. By default, this type of authorization is already con-
figured with a Realm string and with a default StaleNonce value of 10 minutes (= 600 seconds).

TsgcTURNServer oTURN = new TsgcTURNServer();
OTURN.STUNOptions.Authentication.Enabled = false;
OTURN.TURNOptions.Authentication.Enabled = true;
OTURN.TURNOptions.Authentication.LongTermCredentials.Enabled = true;
OTURN.TURNOptions.Authentication.ongTermCredentials.Realm = "sgcWebSockets";
OTURN.TURNOptions.Authentication.LongTermCredentials.StaleNonce = 600;
OTURN.Port = 3478;

OTURN.Active = true;

private void OnSTUNRequestAuthorization(TObject Sender, const TsgcSTUN_Message aRequest,
const string aUsername, const string aRealm, ref string Password)

if ((aUsername == "my-user") & (aRealm == "sgcWebSockets"))

Password = "my-password";

3
}

288

COMPONENTS

TURN Server | Allocations

All TURN operations revolve around allocations and all TURN messages are associated with an Allocation. An allo-
cation consists of:

» The relayed transport address

» The 5-Tuple: client's IP Address, client's IP port, server IP address, server port and transport protocol.
» The authentication information.

» The time-to-expiry for each relayed transport address.

+ Alist of permissions for each relayed transport address.

+ Alist of channels bindings for each relayed transport address.

When a TURN client sends an Allocate request, this TURN message is processed by server and tries to create a
new Relayed Transport Address. By default, if there is any available UDP port, it will create a new Relayed Ad-
dress, but you can use OnTURNBeforeAllocate event to reject a new Allocation request.

void OnTURNBeforeAllocate(TObject Sender, const TsgcSocketConnection aSocket,
const string aIP, Word aPort, ref bool Reject)

if (your own rules) == false

Reject = false;

If the process continues, the server creates a new allocation and the event OnTURNCreateAllocation is called.
This event provides information about the Allocation through the class TsgcTURNAIllocationltem.

void OnTURNCreateAllocation(TObject Sender, const TsgcSocketConnection aSocket,
const TsgcTURNAllocationItem Allocation)

DoLog("New Allocation: " + Allocation.RelayIP + ":" + IntToStr(Allocation.RelayPort));

When the Allocation expires or is deleted receiving a Refresh Request from client with a lifetime of zero, the event
OnTURNDeleteAllocation event is fired.

void OnTURNDeleteAllocation(TObject Sender, const TsgcSocketConnection aSocket,
const TsgcTURNAllocationItem Allocation)

DoLog("Allocation Deleted: " + Allocation.RelayIP + ":" + IntToStr(Allocation.RelayPort));

Demos | Server Chat

This demo shows how build a Server Chat using TsgcWebSocketHTTPServer and WebSockets as communication
protocol.

Every time a new peer sends a message, the server reads the message and broadcast the message to all connect-
ed clients.

Start Server

Before start the server, you must configure it to set the listening port, if use a secure connection or not...

+ First | create a new instance of TsgcWebSocketHTTPServer.
* If Server will use secure connections, it needs a PEM certificate, just set where is located this certificate and
the listening port for SSL You can configure the TLS version and the OpenSSL API (if needed)

// ... ssl
switch (cboOpenSSLAPI.SelectedIndex)
{
case 0:
server.SSLOptions.OpenSSL_Options.APIVersion = TwsOpenSSLAPI.oslAPI_1 0;
break;
case 1:

server.SSLOptions.OpenSSL_Options.APIVersion = TwsOpenSSLAPI.oslAPI_1_1;
break;

switch (cboTLSVersion.SelectedIndex)

{
case 0:
server.SSLOptions.Version = TwsTLSVersions.tlsUndefined;
break;
case 1:
server.SSLOptions.Version = TwsTLSVersions.tlsl 0;
break;
case 2:
server.SSLOptions.Version = TwsTLSVersions.tlsl_ 1;
break;
case 3:
server.SSLOptions.Version = TwsTLSVersions.tlsl_ 2;
break;
case 4:
server.SSLOptions.Version = TwsTLSVersions.tlsl 3;
break;
default:
break;
}
» By default, if you start the server, it will listening on ALL IPs of listening port, so it's recommended use the
binding property to only listen on 1 specific IP.
server.Bindings = txtHost.Text + ":" + txtDefaultPort.Text;

» Once configured all options, call Server.Active = true to start the server.

Events Configuration

+ Use OnConnect and OnDisconnect events to know when a client connects to server.
+ Messages sent from client to server are received OnMessage event, so use this event handler to broad-
cast the message received to all clients

private void OnMessageEvent(TsgcwWSConnection Connection, string Text)

{

server .Broadcast(Text);

}

Dispatch HTTP Requests

WebSocket HTTP Server allows you to handle WebSocket and HTTP Protocols on the same listening port, so a
web-browser can request a web page to access your server. OnCommandGet is the event used to read the HTTP
Request and send the HTTP Responses.

Use ARequestinfo parameter to read the HTTP Request and AResponselnfo to write the HTTP Response.

Basically, use the ARequestinfo.Document to read which document is requesting the client and send a response
using the following properties: ResponseNo, ContentType and ContentText.

Example: a client request document '/jquery.js'

private void OnCommandGetEvent(TsgcWSConnection Connection, TsgcWSHTTPRequestInfo RequestInfo, ref TsgcWSHTTPResy
if (RequestInfo.Document == "/jquery.js")

ResponseInfo.ContentType = "text/javascript";
ResponseInfo.ContentText = File.ReadAllText(Application.StartupPath + "\\html\\jquery.js");

ResponseInfo.ResponseNo = 200;

Client Chat

This demo shows how build a client chat, using TsgcWebSocketClient, which connects to a WebSocket Server,

sends a message and this message is received by all connected clients.

Connect to Server

* First create a new instance of TsgcWebSocketClient.
* Then configure the server Host and Port.
+ If client uses a secure connection, configure the TLSOptions property of the component.

if (chkTLS.Checked)

{
client.Port = Int32.Parse(txtSSLPort.Text);
}
else
{ .
client.Port = Int32.Parse(txtDefaultPort.Text);
}

client.Host = txtHost.Text;
switch (cboTLSIOHandler.SelectedIndex)

{

case 0:
client.TLSOptions.IOHandler = TwsTLSIOHandler.iohOpenSSL;
break;

case 1:
client.TLSOptions.IOHandler = TwsTLSIOHandler.iohSChannel;
break;

default:
break;

}
switch (cboOpenSSLAPI.SelectedIndex)
{
case 0:
client.TLSOptions.OpenSSL_Options.APIVersion = TwsOpenSSLAPI.os1API_1_0;
break;
case 1:
client.TLSOptions.OpenSSL_Options.APIVersion = TwsOpenSSLAPI.oslAPI_1_1;
break;

switch (cboTLSVersion.SelectedIndex)

{

case 0:
client.TLSOptions.Version = TwsTLSVersions.tlsUndefined;
break;

case 1:
client.TLSOptions.Version = TwsTLSVersions.tlsl 0;
break;

case 2:
client.TLSOptions.Version = TwsTLSVersions.tlsl 1;
break;

case 3:
client.TLSOptions.Version = TwsTLSVersions.tlsl 2;
break;

case 4:
client.TLSOptions.Version = TwsTLSVersions.tlsl 3;
break;

default:
break;

}
client.TLS = chkTLS.Checked;

» Once all options can be configured, set Client.Active = true to connect to server.

Send Message To Server

» To send a message to server, use WriteData method, send any Text message and server will send as a re-
sponse the same message.

client.WriteData(txtName.Text + ": " + txtMessage.Text);

Receive Messages from Server

+ Every time a new Text message is received by client, OnMessage event is fired.

private void OnMessageEvent(TsgcWSConnection Connection, string Text)

{
DoLog(Text);

}

Demos | Client

This demo shows how build a websocket client, using TsgcWebSocketClient.

Connect to Server

* First create a new instance of TsgcWebSocketClient.
» Then configure the server Host and Port.

» By default the client will connect using WebSocket protocol. But you can configure the client to connect us-
ing plain TCP protocol. Just set Specifications.RFC6455 = false, and the client will use plain TCP protocol

instead of WebSocket protocol. You can read more about TCP Connections.

client.Host = txtHost.Text;
client.Port = Int32.Parse(txtPort.Text);
client.Options.Parameters = txtParameters.Text;
client.TLS = chkTLS.Checked;
client.TLSOptions.Version = TwsTLSVersions.tlsl 2;
client.TLSOptions.IOHandler = TwsTLSIOHandler.iohSChannel;
client.Specifications.RFC6455 = chkOverWebSocket.Checked;
client.Proxy.Enabled = chkProxy.Checked;
client.Proxy.Username = txtProxyUsername.Text;
client.Proxy.Password = txtProxyPassword.Text;
client.Proxy.Host = txtProxyHost.Text;
if (txtProxyPort.Text != "")
{

client.Proxy.Port = Int32.Parse(txtProxyPort.Text);

client.Extensions.PerMessage_Deflate.Enabled = chkCompressed.Checked;
client.Active = true;

Client Events

Use the following events to control the client flow: when connects, disconnects, receives a message, an error is de-

tected...

private void OnExceptionEvent(TsgcwWSConnection Connection, Exception E)

{

DoLog("#exception: " + E.Message);
}
private void OnConnectEvent(TsgcWSConnection Connection)
{
DoLog("#connected: " + Connection.IP);
}

private void OnMessageEvent(TsgcWSConnection Connection, string Text)

{
}

private void OnDisconnectEvent(TsgcWSConnection Connection, int CloseCode)

{
} . :
private void OnErrorEvent(TsgcWSConnection Connection, string Error)

{
}

DoLog(Text);

DoLog("Disconnected (" + CloseCode.ToString() + "): " + Connection.IP);

DoLog("#error: " + Connection.IP + " - " + Error);

294

Demos | Client MQTT

This demo shows how connect to a MQTT broker server. Requires a TsgcWebSocketClient to handle WebSocket /

TCP protocols.

Configuration

+ First create a new TsgcWebSocketClient instance, check the Client Demo.

* Then, create a new instance of TsgcWSPClient MQTT.

+ After that, you must assign the MQTT Protocol to WebSocket client and configure the connection options in
WebSocket client.

matt

mgtt.
mgtt.
mgtt.
mgtt.
mgtt.
mgtt.
mgtt.
mgtt.
mgtt.
matt
mgtt.

mgtt.Client

txtParameters.Text = "/";
chkTLS.Checked = false;
Authentication.Enabled = false;
Authentication.UserName
Authentication.Password = "";
MQTTVersion TwsMQTTVersion.mqtt311;
HeartBeat.Interval = 5;
HeartBeat.Enabled = true;

switch (Index)

= new TsgcWSPClient_MQTT();
onMQTTBeforeConnect += OnMQTTBeforeConnectEvent;
OnMQTTConnect += OnMQTTConnectEvent;
OnMQTTDisconnect += OnMQTTDisconnectEvent;
OnMQTTSubscribe += OnMQTTSubscribeEvent;
onMQTTUNSubscribe += OnMQTTUnSubscribeEvent;
OnMQTTPing += OnMQTTPingEvent;

OnMQTTPubAck += OnMQTTPubAckEvent;
OnMQTTPubComp += OnMQTTPubCompEvent;
OnMQTTPublish += OnMQTTPublishEvent;
.ONMQTTPubRec += OnMQTTPubRecEvent;

Client = client;

case 0:

// esegece.com
txtHost.Text
txtPort.Text
txtParameters.Text
mgtt.Authentication.Enabled = true;
mgtt.Authentication.UserName
mqtt.Authentication.Password = "sgc";
chkOverwWebSocket.Checked = true;

"www.esegece.com";

case 1:

// test.mosquitto.org

txtHost.Text = "test.mosquitto.org";
txtPort.Text = "1883";
chkTLS.Checked = false;
chkOverwWebSocket.Checked = false;

case 2:

// mqtt.fluux.io
txtHost.Text
txtPort.Text = "1883";
chkTLS.Checked = false;
chkOverwebSocket.Checked = false;
mqtt.MQTTVersion

"mqtt.fluux.io";

TwsMQTTVersion

case 3:

// broker.hivemq.com

txtHost.Text = "broker.mqttdashboard.com";
txtPort.Text
txtParameters.Text = "/mqtt";
chkTLS.Checked = false;
chkOverwebSocket.Checked = true;
TwsMQTTVersion.mqtt5;

mqtt.MQTTVersion

MQTT Events

The connection flow is controlled by MQTT Client component, so you must handle the MQTT events to know when
it's connected to broker, when a new message is published, when is disconnected...

private void OnMQTTConnectEvent(TsgcWSConnection Connection, bool Session, int ReasonCode, string ReasonName, Ts¢
{
DoLog("#MQTT Connect");
chkTLS.Enabled = false;
chkCompressed.Enabled = false;
if (FMQTTSubscribeTopic != "")
{
mqtt.Subscribe(FMQTTSubscribeTopic);
FMQTTSubscribeTopic = "";

private void OnMQTTPublishEvent(TsgcwWSConnection Connection, string Topic, string Text, TsgcWSMQTTPublishProperti
{

}

DoLog(Topic + ": " + Text);

private void OnMQTTSubscribeEvent(TsgcwWSConnection Connection, int PacketIdentifier, TsgcWSSUBACKS Codes, TsgcWSh
{

}

DoLog("#Subscribe: " + PacketIdentifier.ToString());

private void OnMQTTDisconnectEvent(TsgcWSConnection Connection, int ReasonCode, string ReasonName, TsgcWSMQTTDIS(

{

DoLog("#disconnected");
chkTLS.Enabled = true;
chkCompressed.Enabled = true;

Demos | Client SocketlO

This demo shows how connect to a Socket.lIO Server. Requires a TsgcWebSocketClient to handle WebSocket /
TCP protocols.

Configuration

+ First create a new TsgcWebSocketClient instance, check the Client Demo.
* Then, create a new instance of TsgcWSAPI_SocketlO.
+ Atfter that, you must assign the Socket.IO API to WebSocket client and configure the connection options in

WebSocket client.

if (socketio == null)

{
socketio = new TsgcWSAPI_SocketIO();

socketio.Client = client;
socketio.Client = client;
txtParameters.Text = "/";
chkTLS.Checked = true;
chkOverwWebSocket.Checked = true;
txtHost.Text = "socketio-chat-h9jt.herokuapp.com";

txtPort.Text = "443";
txtParameters.Text = "/";

Send Messages

Socket.lO uses TsgcWebSocketClient to send messages to server, so just call WriteData and pass as a parame-
ter the JSON message to socket.io server

client.writeData("42[\"new message\", \"" + txtSocketIOMessage.Text + "\"]");

Receive Messages

The messages received as the flow of connection is handled by TsgcWebSocketClient, so use this component to
read the messages sent from server and to know if connection is active or not.

private void OnMessageEvent(TsgcWSConnection Connection, string Text)

DoLog(Text);

297

Demos | Server Monitor

This demo show how update 3 HTML Monitors using WebSocket as protocol. Server has an internal timer that up-
dates randomly the values of the gauges and updates the value using a websocket message. This message is read
by javascript client and updates the value of the Gauge.

Configuration

+ First create a new TsgcWebSocketServer instance, check the Server Chat Demo.

» Then Create a new Timer and every 500 milliseconds update the values of: memory, network or cpu. Send
the update to all clients connected.

+ In Javascript client, read the message sent by server and update the value of the gauge.

<pre><code>
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Server Monitor Demo</title>
<script src="http://127.0.0.1:5413/sgcWebSockets.js"></script>
<script src="http://127.0.0.1:5413/esegece.com.js"></script>
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.1.0/jquery.mobile-1.1.0.min.css" />
<script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
<script src="http://code.jquery.com/mobile/1.1.0/jquery.mobile-1.1.0.min.js"></script>
<script type='text/javascript' src='https://www.google.com/jsapi'></script>
<style>
#status {
padding: 5px;
color: #fff;
background: #ccc;
}
#status.fail {
background: #c00;

}

#status.offline {
background: #c00;

}

#status.online {
background: #0c0O;

}
</style>
<script type='text/javascript'>
var vMemory;
var vCpu;
var vNetwork;
var chart;
var data;
var options;
var ws;

vMemory=30;
vCpu=55;
vNetwork=68;
google.load('visualization', '1', {packages:['gauge']});
google.setOnLoadCallback(drawChart);
function drawChart() {

data = google.visualization.arrayToDataTable([
['Label', 'value'],
["Memory', vMemory],
['CPU', vCpu],
["'Network', vNetwork]

1)

options = {
width: 400, height: 120,
redFrom: 90, redTo: 100,
yellowFrom:75, yellowTo: 90,
minorTicks: 5

};

chart = new google.visualization.Gauge(document.getElementById('chart_div'));

chart.draw(data, options);

}

function updateChart() {

data = google.visualization.arrayToDataTable([
['Label', 'value'],
E:Mem?ry', vTemory],
CPU', vCpu],
['Network', vNetwork]

1);
chart.draw(data, options);
}
function subscribe(Channel)
if (document.getElementById(Channel).checked) {
ws.subscribe(Channel);

} else {
ws.unsubscribe(Channel);
}

}

function wsmonitor ()

if ("webSocket" in window)

{
WS = new sgcws('"ws://127.0.0.1:5413");
ws.on('open', function(evt){
document.getElementById('status').innerHTML = "Socket Open";
document.getElementById('status').className = "online";
ws.subscribe("memory");
ws.subscribe("cpu");
ws.subscribe("network");
}
)7
ws.on('close', function(evt){
document.getElementById('status').innerHTML = "Socket Closed";
document.getElementById('status').className = "offline";
}
)7
ws.on('sgcevent', function(evt){
if (evt.channel == "memory") {
vMemory = parseInt(evt.message);
} else if (evt.channel == "cpu") {
vCpu = parseInt(evt.message);
} else if (evt.channel == "network") {
vNetwork = parselInt(evt.message);
}
updateChart();
}
)i
ws.on('error', function(evt){
document.getElementById('status').innerHTML = "Socket Error";
document.getElementById('status').className = "fail";
}
)i
}
}
</script>
</head>
<body>

<div data-role="page" id="wsdemo_monitor">
<div data-role="header" data-theme="b">
<hi1>Server Monitor</hi>
<a href="#home" data-icon="home" data-iconpos="notext" data-direction="reverse" class="ui-btn-lef
</div><!-- /header -->
<div data-role="content">
<h2>Press Start to Get Monitor Data</h2>
<p id="status" classname="success'"></p>
<h4>Select which data you want to receive: Memory - CPU - Network</h4>
Start
<div id='chart_div'></div>
<div data-role="fieldcontain">
<fieldset data-role="controlgroup" data-type="horizontal">
<input type="checkbox" name="memory" id="memory" class="custom" checked="True" onclic
<label for="memory">Memory</label>
<input type="checkbox" name="cpu" id="cpu" class="custom" checked="True" onclick=
<label for="cpu">CPU</label>
<input type="checkbox" name="network" id="network" class="custom" checked="True"
<label for="network">Network</label>

</fieldset>
</div>
</div><!-- /content -->

<div data-role="footer" class="footer-docs" data-theme="c">
<p>© 2020 eSeGeCe.com</p>

</div>
</div><!-- /page -->
</body>
</html>

</code></pre>

Demos | Server Snapshots

This demo show how send images from server to client and how all clients receive the same image using broad-
cast method of server component.

Configuration

+ First create a new TsgcWebSocketHTTPServer instance, check the Server Chat Demo.
+ Enable compression to send less bytes when message is transmitted to clients

Server.Extensions.PerMessage Deflate.Enabled = true

* Then every 5 seconds the server broadcast an image stream to all connected clients

Random r = new Random();

int rInt = r.Next(1, 12);

Bitmap bmp = new Bitmap(Application.StartupPath + "\\img\\" + rInt.ToString() + ".bmp");
MemoryStream memoryStream = new MemoryStream();

bmp.Save(memoryStream, System.Drawing.Imaging.ImageFormat.Bmp);
server.Broadcast(memoryStream.ToArray());

Demos | Client Snapshots

This demo shows how read binary websocket messages, using TsgcWebSocketClient, which connects to a Web-
Socket Server, and receives a stream which is an image that is shown to user.

Connect to Server

First create a new instance of TsgcWebSocketClient.
Then configure the server Host and Port.
» Enable compression to receive less bytes when message is transmitted from server.

Client.Extensions.PerMessage_Deflate.Enabled = true

» The image sent by server arrives as a stream, so use OnBinary event to read images.

private void OnBinaryEvent(TsgcWSConnection Connection, byte[] Bytes)

{

MemoryStream stream = new MemoryStream(Bytes);
pictureBoxl.Image = new Bitmap(stream);

Demos | Upload File

This demo shows how upload a file from web browser to a server using websocket protocol.

Configuration

+ First create a new TsgcWebSocketServer instance, check the Server Chat Demo.
» The file will arrive to server as a binary stream, so you must handle OnBinary event to read the file.

private void OnBinaryEvent(TsgcWSConnection Connection, byte[] Bytes)

File.WriteAllBytes(filename, Bytes);
DoLog("File Received: " + filename);

+ If you want to know the name of the file, you can send a text message before the file is sent with the name of
the file

private void OnMessageEvent(TsgcWSConnection Connection, string Text)

if (Text.StartswWith("uploadfile:") == true)

{
string[] filePath = Text.Split(':'");
filename = filePath[1];
}
else
{
DoLog("Message Received (" + Connection.Guid + "): " + Text);
}

The javascript code to send a file using websockets is shown below:

<script type='text/javascript'>
var ws;
function DoOpen()

if ("webSocket" in window)

{
ws = new sgcWebSocket("ws://127.0.0.1:5418");
ws.on('open', function(evt){
ws.binaryType = "arraybuffer";
document.getElementById('status').innerHTML = "Socket Open";
document.getElementById('status').className = "online";
}
)i
ws.on('close', function(evt){
document.getElementById('status').innerHTML = "Socket Closed";
document.getElementById('status').className = "offline";
}
)i
ws.on('error', function(evt){
document.getElementById('status').innerHTML = "Socket Error";
document.getElementById('status').className = "fail";
}
)i
}
}
function DoClose()
{
ws.close();
}

function DoUploadFile() {
var file = document.getElementById('filename').files[0];
var reader = new FileReader();
var rawData = new ArrayBuffer();

reader.loadend = function() {

reader.onload = function(e) {
ws.send("uploadfile:" + file.name);
rawData = e.target.result;
ws.send(rawData);
document.getElementById('status').innerHTML
document.getElementById('status').className

"File Uploaded";
"online";

reader.readAsArrayBuffer(file);

}

</script>

304

Demos | Server Authentication

This demo show how use Server Authentication, if you want to know more about the different types of authentica-
tion, read the following article about Authentication.

Authentication

+ First create a new instance of TsgcWebSocketServer. Enable Authentication property,

server.Authentication.Enabled = true;
» Then, check in OnAuthentication event handler if the username and password are correct. If they are cor-

rect, set the Authenticated property to true, otherwise set to false.

private void OnAuthenticationEvent(TsgcwWSConnection Connection, string User, string Password, ref bool Authentice

if ((User == "user") && (Password == "1234"))

Authenticated = true;

Demos | KendoUIl Grid

This demo show how KendoUI Grid works using WebSockets as protocol and a Web Browser as a client. Basically
is a javascript grid that is updated when any of the clients makes any change, these changes are updated using
websocket protocol to all connected clients, so all clients can see in real-time the same data, including all changes
made by clients.

Configuration

+ First create a new TsgcWebSocketHTTPServer instance, check the Server Chat Demo.
* Then you must handle OnCommandGet to send the required files requested by web browser clients.

if (RequestInfo.Document == "/")
string readText = File.ReadAllText(Application.StartupPath + "\\files\\index.html");
readText = readText.Replace("<#port>", txtDefaultPort.Text);
readText = readText.Replace("<#host>", txtHost.Text);
ResponseInfo.ContentText = readText;
ResponseInfo.ResponseNo = 200;
else

ResponseInfo.ResponseNo = 404;

WebSockets Updates

When a client updates a grid record, this change is transmitted to all connected clients using websocket protocol.
Use OnMessage event to get notified about grid changes. The messages are in JSON format so you only must
read the JSON text, decode it and send a response to the other peer.

private void OnMessageEvent(TsgcWSConnection Connection, string Text)

{
DoLog(Text);
var 0JSON = JObject.Parse(Text);
if (0JSON["type"].ToString() == "read")

JArray oArray = new JArray();

for (int i = 0; 1 < 20; i++)

{
JObject oObject = new JObject();
oObject.Add("ContactID", i.ToString());
oObject.Add("ContactName", ContactName[i]);
oObject.Add("ContactTitle", ContactTitle[i]);
oObject.Add("CompanyName", CompanyName[i]);
oObject.Add("Country", Country[i]);
OArray.Add(oObject);

0JSON.Add("data", oArray);
Connection.WriteData(0JSON.ToString());

}

else if (0JSON["type"].ToString() == "update")

{
Text = Text.Replace("\"type\":\"update\"", "\"type\":\"push-update\"");
server.Broadcast(Text, "", "", Connection.Guid);

}

else if (0JSON["type"].ToString() == "destroy")

{
Text = Text.Replace("\"type\":\"destroy\"", "\"type\":\"push-destroy\"");
server.Broadcast(Text, "", "", Connection.Guid);

}

else if (0JSON["type"].ToString() == "create")

{
Text = Text.Replace("null", DateTime.Now.ToString("yyyyMMddHHmmss"));
string vText = Text.Replace("\"type\":\"create\"", "\"type\":\"push-create\"");
server.Broadcast(vText, "", "", Connection.Guid);

Connection.WriteData(Text);

307

Demos | ServerSentEvents

This demo show how Server Sent Events works in WebSocket Server. sgcWebSockets allows that the server can
handle more than one protocol on the same listening port.

You can read more about Server Sent Events.

This demo shows how the Server will send every second the time to all connected clients using Server Sent
Events.

Once the server is started, broadcasts to all connected clients a message with the Server Time, so every time the
client receives this message, it shows to user.

private void timerl_Tick(object sender, EventArgs e)

{
}

server.Broadcast("data: " + "Server Time: " + DateTime.Now.ToString("HH:mm:ss"));

The javascript code to handle the websocket connection is shown below:

socket = new sgcWebSocket('sse', '', 'sse');

socket.on('open', function(evt){
document.getElementById('status').innerHTML
document.getElementById('status').className

}
);

socket.on('close', function(evt){
document.getElementById('status').innerHTML
document.getElementById('status').className

}
);

socket.on('message', function(evt){
document.getElementById('log').innerHTML = evt.message;

}
):

socket.on('error', function(evt){
document.getElementById('status').innerHTML = "Socket Error";
document.getElementById('status').className = "fail";

}

"Socket Open";
"online";

"Socket Closed";
"offline";

):

Demos | Server WebRTC

This demo shows how build a Video Conference Server using TsgcWebSocketHTTPServer and WebRTC as
javascript library.

The demo uses WebSocket protocol to signal WebRTC and uses public STUN/TURN servers, for production sites,
you need to use your own STUN/TURN servers. Registered users can download Coturn for windows, which is al-
ready compiled and with all the required libraries to run in your servers.

The client must be a web browser with support for WebRTC connections.

Configuration

* First create a new TsgcWebSocketHTTPServer instance, check the Server Chat Demo.

» Then, create a new instance of TsgcWSPServer WebRTC.

+ After that, you must assign the WebRTC Protocol to WebSocket Server and configure the server host and
port.

server .DocumentRoot = Application.StartupPath + "\\html";
server.Port = Int32.Parse(txtDefaultPort.Text);
server.Active = true;

The demo requires an index HTML page which is used to dispatch the WebRTC front page, this page is provided
with the demo.

Run in WebBrowser

Once configured the server, start it and select one of the web-browsers available. It will open a new Web-Browser
session asking to start a new session. If successful you will see your video and if you open the same url in another
web-browser, you will see both peers connected.

The demo runs by default without SSL, this is only valid for localhost connections. For production sites, use SSL
connections. Check Server Chat Demo to configure SSL in server side.

Demos | Server AppRTC

This demo shows how build a Video Conference Server using TsgcWebSocketHTTPServer and AppRTC as
javascript library.

The demo uses WebSocket protocol to signal WebRTC and uses public STUN/TURN servers, for production sites,
you need to use your own STUN/TURN servers. Registered users can download Coturn for windows, which is al-
ready compiled and with all the required libraries to run in your servers.

The client must be a web browser with support for WebRTC connections.

Configuration

* First create a new TsgcWebSocketHTTPServer instance, check the Server Chat Demo.

* Then, create a new instance of TsgcWSPServer_ AppRTC.

+ After that, you must assign the AppRTC Protocol to WebSocket Server and configure the server host and
port. WebRTC requires secure connections, so you will need to use a PEM certificate and configure the SS-
LOptions property of the component.

server.DocumentRoot = Application.StartupPath + "\\html";

server.Port = Int32.Parse(txtDefaultPort.Text);

AppRTC.AppRTC.RoomLink = "https://" + txtHost.Text + ":" + txtDefaultPort.Text + "/r/";
AppRTC.AppRTC.WebSocketURL = "wss://" + txtHost.Text + ":" + txtDefaultPort.Text;
server.Active = true;

* AppRTC.RommlLink is the url where the web-browser will be redirected to login to a room
* AppRTC.WebSocketURL is the url of the websocket connection
» The IceServers can be configured in the AppRTC Server protocol.

The demo requires an index HTML page which is used to dispatch the AppRTC front page, this page is provided
with the demo.

Run in WebBrowser

Once configured the server, start it and select one of the web-browsers available. It will open a new Web-Browser
session asking to join a new room. Join this room and if successful you will see a link which must be used from an-
other web-browser to start a new video-conference.

AppRTC

Please enter a room name.

959454873

JOIN

Recently used rooms:

Demos | Telegram Client

This demo shows how connect to Telegram, receive all contacts, send Text messages, send Images... and much
more

Configuration

* First create a new instance of TsgcTDLib_Telegram.

» Then, before you attempts to connect to telegram, you must pass some parameters to client component like
API Hash, API Id... Once you must set all required parameters, set property Active = true to start a connec-
tion.

telegram.Telegram.API.ApiHash = txtApiHash.Text;
telegram.Telegram.API.ApiId = txtApiId.Text;
telegram.Telegram.PhoneNumber = "";
telegram.Telegram.BotToken = "";

if (chkLoginBot.Checked)

telegram.Telegram.BotToken = txtBotToken.Text;
}

else

{
}

telegram.Telegram.PhoneNumber = txtPhoneNumber.Text;

telegram.Active = true;

» When client tries to connect to Telegram, usually a code is required, so you must handle OnTelegramAu-
thenticationCode and return the Code parameter with the value provided by your Telegram account.

private void OnAuthenticationCodeEvent (TsgcTDLib_Telegram Sender, ref string Code)

{
}

Code = InputBox("Telegram", "Introduce Telegram Code");

Send Telegram Messages
To send a telegram message (text, files, images...) always requires first set the Chald where you want to send the

message and then the parameter that can be a text message, a filename...

// send text message
sgcTelegram.SendTextMessage("456413", "Hello From sgcWebSockets!!!");

// send file message
sgcTelegram.SendDocumentMessage('"383784", "c:\yourfile.txt");

Receive Telegram Messages

Messages received by Telegram client, are handled on specific event Handlers. There is an event when a next Text
Message is received, when a new Document is received, photo...

private void OnMessageTextEvent(TsgcTDLib_Telegram Sender, TsgcTDLib_Telegram_Client.TsgcTelegramMessageText Mess

{
DoLogMessage (MessageText.ChatId, MessageText.SenderUserId.ToString(), MessageText.Text);

private void OnMessageDocumentEvent(TsgcTDLib_Telegram Sender, TsgcTDLib_Telegram_Client.TsgcTelegramMessageDocun

{

DoLogMessage (MessageDocument.ChatId, MessageDocument.SenderUserId.ToString(), MessageDocument.FileName);

}

REFERENCE

WebSockets

WebSocket is a web technology providing for bi-directional, full-duplex communications channels, over a single
Transmission Control Protocol (TCP) socket.

The WebSocket API is being standardized by the W3C, and the WebSocket protocol has been standardized by the
IETF as RFC 6455.

WebSocket is designed to be implemented in web browsers and web servers, but it can be used by any client or
server application. The WebSocket protocol makes possible more interaction between a browser and a web site,
facilitating live content and the creation of real-time games. This is made possible by providing a standardized way
for the server to send content to the browser without being solicited by the client, and allowing for messages to be
passed back and forth while keeping the connection open. In this way a two-way (bi-direction) ongoing conversa-
tion can take place between a browser and the server. A similar effect has been done in non-standardized ways us-
ing stop-gap technologies such as comet.

In addition, the communications are done over the regular TCP port number 80, which is of benefit for those envi-
ronments which block non-standard Internet connections using a firewall. WebSocket protocol is currently support-
ed in several browsers including Firefox, Google Chrome, Internet Explorer and Safari. WebSocket also requires
web applications on the server to be able to support it.

More Information
Browser Support

314

http://en.wikipedia.org/wiki/WebSocket
http://caniuse.com/websockets

REFERENCE

HTTP/2

HTTP/2 will make our applications faster, simpler, and more robust — a rare combination — by allowing us to undo
many of the HTTP/1.1 workarounds previously done within our applications and address these concerns within
the transport layer itself. Even better, it also opens up a number of entirely new opportunities to optimize our ap-
plications and improve performance!

The primary goals for HTTP/2 are to reduce latency by enabling full request and response multiplexing, minimize
protocol overhead via efficient compression of HTTP header fields, and add support for request prioritization and
server push. To implement these requirements, there is a large supporting cast of other protocol enhancements,
such as new flow control, error handling, and upgrade mechanisms, but these are the most important features
that every web developer should understand and leverage in their applications.

HTTP/2 does not modify the application semantics of HTTP in any way. All the core concepts, such as HTTP
methods, status codes, URIs, and header fields, remain in place. Instead, HTTP/2 modifies how the data is format-
ted (framed) and transported between the client and server, both of which manage the entire process, and hides
all the complexity from our applications within the new framing layer. As a result, all existing applications can be
delivered without modification.

More information

https://developers.google.com/web/fundamentals/performance/http2

REFERENCE

JSON

JSON or JavaScript Object Notation, is a text-based open standard designed for human-readable data inter-
change. It is derived from the JavaScript scripting language for representing simple data structures and associative
arrays, called objects. Despite its relationship to JavaScript, it is language-independent, with parsers available for
many languages.

The JSON format is often used for serializing and transmitting structured data over a network connection. It is used
primarily to transmit data between a server and web application, serving as an alternative to XML.

More Information

http://en.wikipedia.org/wiki/JSON

REFERENCE

WAMP

The WebSocket Application Messaging Protocol (WAMP) is an open WebSocket subprotocol that provides two
asynchronous messaging patterns: RPC and PubSub.

The WebSocket Protocol is already built into modern browsers and provides bidirectional, low-latency message-
based communication. However, as such, WebSocket it is quite low-level and only provides raw messaging.

Modern Web applications often have a need for higher level messaging patterns such as Publish & Subscribe and
Remote Procedure Calls.

This is where The WebSocket Application Messaging Protocol (WAMP) enters. WAMP adds the higher level mes-
saging patterns of RPC and PubSub to WebSocket - within one protocol.

Technically, WAMP is an officially registered WebSocket subprotocol (runs on top of WebSocket) that uses JSON
as message serialization format.

More Information

317

http://www.wamp.ws

REFERENCE

WebRTC

WebRTC is a free, open project that enables web browsers with Real-Time Communications (RTC) capabilities via
simple Javascript APIs. The WebRTC components have been optimized to best serve this purpose. The WebRTC
initiative is a project supported by Google, Mozilla and Opera.

WebRTC offers web application developers the ability to write rich, real-time multimedia applications (think video
chat) on the web, without requiring plugins, downloads or installs. Its purpose is to help build a strong RTC platform
that works across multiple web browsers, across multiple platforms.

More Information

http://www.webrtc.org

REFERENCE

MQTT

MQTT (MQ Telemetry Transport or Message Queue Telemetry Transport) is an ISO standard (ISO/IEC PRF 20922)
publish-subscribe-based "lightweight" messaging protocol for use on top of the TCP/IP protocol. It is designed for
connections with remote locations where a "small code footprint" is required or the network bandwidth is limited.
The publish-subscribe messaging pattern requires a message broker. The broker is responsible for distributing
messages to interested clients based on the topic of a message. Andy Stanford-Clark and Arlen Nipper of Cirrus
Link Solutions authored the first version of the protocol in 1999.

The specification does not specify the meaning of "small code footprint" or the meaning of "limited network band-
width". Thus, the protocol's availability for use depends on the context. In 2013, IBM submitted MQTT v3.1 to the
OASIS specification body with a charter that ensured only minor changes to the specification could be
accepted.MQTT-SN is a variation of the main protocol aimed at embedded devices on non-TCP/IP networks, such
as ZigBee.

Historically, the "MQ" in "MQTT" came from IBM's MQ Series message queuing product line. However, queuing it-
self is not required to be supported as a standard feature in all situations.

Specification
More Info

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://en.wikipedia.org/wiki/MQTT

REFERENCE

Server-Sent Events

Server-sent events (SSE) is a technology for where a browser gets automatic updates from a server via HTTP con-
nection. The Server-Sent Events EventSource API is standardized as part of HTML5 by the W3C.

A server-sent event is when a web page automatically gets updates from a server. This was also possible before,
but the web page would have to ask if any updates were available. With server-sent events, the updates come au-
tomatically.

Examples: Facebook/Twitter updates, stock price updates, news feeds, sport results, etc.

More information
Browser Support

http://en.wikipedia.org/wiki/Server-sent_events
http://caniuse.com/eventsource

REFERENCE

OAuth2

OAuth 2 is an authorization framework that enables applications to obtain limited access to user accounts on an
HTTP service, such as Facebook, and GitHub. It works by delegating user authentication to the service that hosts
the user account, and authorizing third-party applications to access the user account. OAuth 2 provides authoriza-
tion flows for web and desktop applications, and mobile devices.

Read more
Specification

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://tools.ietf.org/html/rfc6749

REFERENCE

JWT

JSON Web Token is an Internet proposed standard for creating data with optional signature and/or optional encryp-
tion whose payload holds JSON that asserts some number of claims. The tokens are signed either using a private
secret or a public/private key. For example, a server could generate a token that has the claim "logged in as admin"
and provide that to a client. The client could then use that token to prove that it is logged in as admin.

The tokens can be signed by one party's private key (usually the server's) so that party can subsequently verify the
token is legitimate. If the other party, by some suitable and trustworthy means, is in possession of the correspond-
ing public key, they too are able to verify the token's legitimacy. The tokens are designed to be compact, URL-safe,
and usable especially in a web-browser single-sign-on (SSO) context. JWT claims can typically be used to pass
identity of authenticated users between an identity provider and a service provider, or any other type of claims as
required by business processes.

Read more
Specification

https://en.wikipedia.org/wiki/JSON_Web_Token
https://tools.ietf.org/html/rfc7519

REFERENCE

STUN

Session Traversal Utilities for NAT (STUN) is a standardized set of methods, including a network protocol, for tra-
versal of network address translator (NAT) gateways in applications of real-time voice, video, messaging, and other
interactive communications.

STUN is a tool used by other protocols, such as Interactive Connectivity Establishment (ICE), the Session Initiation
Protocol (SIP), and WebRTC. It provides a tool for hosts to discover the presence of a network address translator,
and to discover the mapped, usually public, Internet Protocol (IP) address and port number that the NAT has allo-
cated for the application's User Datagram Protocol (UDP) flows to remote hosts. The protocol requires assistance
from a third-party network server (STUN server) located on the opposing (public) side of the NAT, usually the public
Internet.

Read more
Specification

https://en.wikipedia.org/wiki/STUN
https://tools.ietf.org/html/rfc8489

REFERENCE

TURN

Traversal Using Relays around NAT (TURN) is a protocol that assists in traversal of network address translators
(NAT) or firewalls for multimedia applications. It may be used with the Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP). It is most useful for clients on networks masqueraded by symmetric NAT devices.
TURN does not aid in running servers on well known ports in the private network through a NAT; it supports the
connection of a user behind a NAT to only a single peer, as in telephony, for example.

Read more
Specification

324

https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT
https://datatracker.ietf.org/doc/html/rfc8656

LICENSE

License

eSeGeCe Components End-User License Agreement

eSeGeCe Components ("eSeGeCe") End-User License Agreement ("EULA") is a legal agreement between you (ei-
ther an individual or a single entity) and the Author of eSeGeCe for all the eSeGeCe components which may in-
clude associated software components, media, printed materials, and "online" or electronic documentation ("eS-
eGeCe components"). By installing, copying, or otherwise using the eSeGeCe components, you agree to be bound
by the terms of this EULA. This license agreement represents the entire agreement concerning the program be-
tween you and the Author of eSeGeCe, (referred to as "LICENSER"), and it supersedes any prior proposal, repre-
sentation, or understanding between the parties. If you do not agree to the terms of this EULA, do not install or use
the eSeGeCe components.

The eSeGeCe components are protected by copyright laws and international copyright treaties, as well as other in-
tellectual property laws and treaties. The eSeGeCe components are licensed, not sold.

If you want SOURCE CODE you need to pay the registration fee. You must NOT give the license keys and/or the
full editions of eSeGeCe (including the DCU editions and Source editions) to any third individuals and/or entities.
And you also must NOT use the license keys and/or the full editions of eSeGeCe from any third individuals' and/or
entities'.

1. GRANT OF LICENSE

The eSeGeCe components are licensed as follows:

(a) Installation and Use.

LICENSER grants you the right to install and use copies of the eSeGeCe components on your computer running a
validly licensed copy of the operating system for which the eSeGeCe components were designed [e.g., Windows
2000, Windows 2003, Windows XP, Windows ME, Windows Vista, Windows 7, Windows 8, Windows 10].

(b) Royalty Free.

You may create commercial applications based on the eSeGeCe components and distribute them with your exe-
cutables, no royalties required.

(c) Modifications (Source editions only).

You may make modifications, enhancements, derivative works and/or extensions to the licensed SOURCE CODE
provided to you under the terms set forth in this license agreement.

(d) Backup Copies.

You may also make copies of the eSeGeCe components as may be necessary for backup and archival purposes.
2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS

(a) Maintenance of Copyright Notices.

You must not remove or alter any copyright notices on any and all copies of the eSeGeCe components.

(b) Distribution.

You may not distribute registered copies of the eSeGeCe components to third parties. Evaluation editions available
for download from the eSeGeCe official websites may be freely distributed.

You may create components/ActiveX controls/libraries which include the eSeGeCe components for your applica-
tions but you must NOT distribute or publish them to third parties.

(c) Prohibition on Distribution of SOURCE CODE (Source editions only).

You must NOT distribute or publish the SOURCE CODE, or any modification, enhancement, derivative works and/
or extensions, in SOURCE CODE form to third parties.

You must NOT make any part of the SOURCE CODE be distributed, published, disclosed or otherwise made avail-
able to third parties.

(d) Prohibition on Reverse Engineering, Decompilation, and Disassembly.

You may not reverse engineer, decompile, or disassemble the eSeGeCe components, except and only to the extent
that such activity is expressly permitted by applicable law notwithstanding this limitation.

(e) Rental.

You may not rent, lease, or lend the eSeGeCe components.

(f) Support Services.

LICENSER may provide you with support services related to the eSeGeCe components ("Support Services"). Any
supplemental software code provided to you as part of the Support Services shall be considered part of the eS-
eGeCe components and subject to the terms and conditions of this EULA.

eSeGeCe is licensed to be used by only one developer at a time. And the technical support will be provided to only
one certain developer.

(g9) Compliance with Applicable Laws.

You must comply with all applicable laws regarding use of the eSeGeCe components.

3. TERMINATION

Without prejudice to any other rights, LICENSER may terminate this EULA if you fail to comply with the terms and
conditions of this EULA. In such event, you must destroy all copies of the eSeGeCe components in your posses-
sion.

LICENSE

4. COPYRIGHT

All title, including but not limited to copyrights, in and to the eSeGeCe components and any copies thereof are
owned by LICENSER or its suppliers. All title and intellectual property rights in and to the content which may be ac-
cessed through use of the eSeGeCe components are the property of the respective content owner and may be pro-
tected by applicable copyright or other intellectual property laws and treaties. This EULA grants you no rights to use
such content. All rights not expressly granted are reserved by LICENSER.

5. NO WARRANTIES

LICENSER expressly disclaims any warranty for the eSeGeCe components. The eSeGeCe components are pro-
vided "As Is" without any express or implied warranty of any kind, including but not limited to any warranties of mer-
chantability, non-infringement, or fitness of a particular purpose. LICENSER does not warrant or assume responsi-
bility for the accuracy or completeness of any information, text, graphics, links or other items contained within the
eSeGeCe components. LICENSER makes no warranties respecting any harm that may be caused by the transmis-
sion of a computer virus, worm, time bomb, logic bomb, or other such computer program. LICENSER further ex-
pressly disclaims any warranty or representation to Authorized Users or to any third party.

6. LIMITATION OF LIABILITY

In no event shall LICENSER be liable for any damages (including, without limitation, lost profits, business interrup-
tion, or lost information) rising out of "Authorized Users" use of or inability to use the eSeGeCe components, even if
LICENSER has been advised of the possibility of such damages. In no event will LICENSER be liable for loss of
data or for indirect, special, incidental, consequential (including lost profit), or other damages based in contract, tort
or otherwise. LICENSER shall have no liability with respect to the content of the eSeGeCe components or any part
thereof, including but not limited to errors or omissions contained therein, libel, infringements of rights of publicity,
privacy, trademark rights, business interruption, personal injury, and loss of privacy, moral rights or the disclosure of
confidential information.

LICENSE

Index

Add Telegram Proxy 222

ALPN 49

APl Binance 162, 176, 181

APl Binance Futures 176, 181

API Binance Futures Trade 181

APl SocketlO 182

API Telegram 207

APIs 162, 169, 172, 176, 181, 182, 207
Authentication 35, 81, 104

Binance Connect 169

Binance Get Market Data 171
Binance Private Requests Time 175
Binance Private REST APl 172
Binance Subscribe 170

Binance Trade Spot 173

Binary Message 78

Bindings 43, 95

Bot 218

Broadcast 42

Build 19

Certificates OpenSSL 73
Certificates SChannel 74

Channels 42, 170, 284

Client 64, 66, 67, 76, 77, 78, 81, 83, 84, 85,
86, 110, 137, 139, 140, 160, 270, 271, 281,
282, 283, 284, 292, 294, 295, 297, 302, 312
Client Authentication 81

Client Chat 292

Client Close Connection 66

Client Exceptions 83

Client Keep Connection Open 67
Client MQTT Connect 137

Client MQTT Sessions 139

Client MQTT Version 140

Client Open Connection 64

Client Proxies 86

Client Register Protocol 85

Client Send Binary Message 77
Client Send Text 76, 78

Client Send Text Message 76

Client Snapshots 302

Client SocketlO 297
Client WebSocket HandShake 84
Clients 139, 160, 292, 295

Send Files 160
Compression 46
Connect Mosquitto 138
Connect Secure Server 72
Connect TCP Server 69
Connect WebSocket Server 63
Connections TIME_WAIT 70
Deflate-Frame 232
Dropped Disconnections 68
Editions 12
Extensions 230
Files 44, 116, 159, 160, 161, 303
Flash 47
Flow 18

Threading 18
Forward HTTP Requests 50
Found 218
Fragmented Messages 56
HeartBeat 38
HTTP 41, 50, 115, 116
HTTP Dispatch Files 116
HTTP/2 117,118,120, 315
HTTP/2 Alternate Service 120
HTTP/2 Server Push 118
In HTML 249
Installation 13
Introduction 10
IOCP 48
JSON 316
JWT 255, 322
KendoUI_Grid 306
License 325
Logs 40
MQTT 137, 138, 139, 140, 141, 142, 143, 144,
145, 146, 147, 295, 319
MQTT Clear Retained Messages 147
MQTT Publish 141, 144, 146
MQTT Publish Message 144

327

LICENSE

MQTT Publish Subscribe 141
MQTT Receive Messages 145
MQTT Subscribe 143
MQTT Topics 142
OAuth2 233, 245, 249, 250, 251, 252, 253,
254, 321
OAuth2 Customize Sign 249
OAuth2 None Authenticate URLs 254
OAuth2 Recover Access Tokens 252
OAuth2 Register Apps 251
OpenSSL 20, 23, 25, 73
OpenSSL OSX 25
OpenSSL Windows 23
Overview 14
PerMessage-Deflate 231
Post Big Files 44
Protocol AppRTC 148
Protocol Files 153
Protocol MQTT 129
Protocol WebRTC 150, 152
Protocol WebRTC Javascript 152
Protocols 85, 125, 126, 129, 148, 150, 152,
153
Protocols Javascript 126
Proxy 86, 222
QuickStart WebSockets 16
Receive Binary Messages 80, 109
Receive Text Messages 79, 108
Register 223
Register Telegram User 223
RTCMultiConnection 224
Secure Connections 37
Send Big Files 161
Send Files 159, 160
Clients 160
Server 159
Send Files To Clients 160
Send Files To Server 159
Send Telegram Message Bold 217
Send Telegram Message With Buttons 215,
216
Send Telegram Message With Inline Buttons
215
Server 94, 95, 96, 97, 98, 101, 102, 103, 104,
106, 107,108, 109, 110, 115, 117, 138, 159,

245, 250, 253, 274, 275, 288, 289, 290, 298,
301, 305, 309, 310

Send Files 159
Server AppRTC 310
Server Authentication 104, 253, 305
Server Bindings 95
Server Chat 290
Server Close Connection 103
Server Endpoints 250
Server Example 245
Server Keep Active 97
Server Keep Connections Alive 101
Server Monitor 298
Server Plain TCP 102
Server Read Headers 110
Server Requests 115
Server Send Binary Message 107
Server Send Text Message 106
Server Snapshots 301
Server SSL 98
Server Start 94
Server Startup Shutdown 96
Server-Sent Events 54, 320
ServerSentEvents 308
Service 120
STUN 266, 270, 271, 274, 275, 323
STUN Client Long Term Credentials 271
STUN Client UDP Retransmissions 270
STUN Server Alternate Server 275
STUN Server Long Term Credentials 274
SubProtocol 52
TCP Connections 51
Telegram Chat 218
Telegram Client 312
Telegram Get SuperGroup Members 221
Threading 18

Flow 18
Throttle 53
TsgcHTTP_JWT_Client 257
TsgcHTTP_JWT_Server 260
TsgcHTTP_OAuth2_Client 234
TsgcHTTP_OAuth2_Server 242
TsgcSTUNClient 267
TsgcSTUNServer 272
TsgcTURNClient 277
TsgcTURNServer 285

LICENSE

TsgcWebSocketClient 57
TsgcWebSocketHTTPServer 111
TsgcWebSocketServer 87
TsgcWSConnection 123
TsgcWSMessageFile 158
TsgcWSPClient_Files 156
TsgcWSPClient_MQTT 131
TsgcWSPServer_AppRTC 149
TsgcWSPServer_Files 154
TsgcWSPServer_WebRTC 151

TURN 276, 281, 282, 283, 284, 288, 289, 324
TURN Client Allocate IP Address 281
TURN Client Create Permissions 282
TURN Client Send Indication 283

TURN Server Allocations 289

TURN Server Long Term Credentials 288
Upload File 303

Using DLL 33

Wait Response 146

WAMP 317

WatchDog 39

Web Browser Test 34

WebRTC 309, 318

WebSocket Events 31

WebSocket Parameters Connection 32
WebSocket Redirections 71

WebSockets 16, 31, 32, 63, 71, 84, 169, 170,
314

Copyright © 2012-2026 eSeGeCe Software

info@esegece.com
www.esegece.com

https:#nogo

	sgcWebSockets .NET 2026.1
	Contents
	Introduction
	Versions Support
	.NET Supported Versions

	Installation
	Nuget Package
	Assembly Reference

	QuickStart
	WebSockets Components
	HTTP Components
	Threading Flow
	How Build Applications
	OpenSSL
	ASP.NET

	QuickStart | WebSockets
	WebSocket Server
	WebSocket Client
	Web Browser Client
	How To Use
	ASP.NET

	QuickStart | Threading Flow
	QuickStart | Build
	OpenSSL
	openSSL Configurations
	Load Additional OpenSSL Functions
	Ciphers
	
	Self-Signed Certificates
	Common Errors

	OpenSSL | Windows
	API 1.0
	API 1.1
	API 3.*

	OpenSSL | OSX
	API 1.0
	API 1.1
	API 3.0
	Errors

	OpenSSL | Own CA Certificates
	OpenSSL | P12 Certificates
	sgcWebSockets
	sgcIndy

	OpenSSL | Verify Certificate
	WebSocket Events
	WebSocket Parameters Connection
	Using inside a DLL
	WebBrowser Test
	Authentication
	Secure Connections
	HeartBeat
	WatchDog
	Server
	Client

	Logs
	HTTP
	Broadcast and Channels
	Bindings
	Post Big Files
	Events

	Compression
	Flash
	IOCP
	ALPN
	Client
	Server

	Forward HTTP Requests
	Other Options

	TCP Connections
	SubProtocol
	Throttle
	Server-sent Events (Push Notifications)
	Fragmented Messages
	TsgcWebSocketClient
	Most common uses
	Methods
	Properties

	TsgcWebSocketClient | Connect WebSocket Server
	URL Property
	Host, Port and Parameters

	TsgcWebSocketClient | Client Open Connection
	Active Property
	Start/Stop methods
	Connect/Disconnect methods

	TsgcWebSocketClient | Client Close Connection
	CleanDisconnect
	Disconnect
	Close

	TsgcWebSocketClient |Client Keep Connection Open
	HeartBeat
	
	WatchDog

	TsgcWebSocketClient | Dropped Disconnections
	Disconnection reasons
	Detect Half-Open Disconnections
	You can try to detect disconnections using the following methods
	Second Connection
	Ping other peer
	Enable KeepAlive at TCP Socket level

	TsgcWebSocketClient | Connect TCP Server
	TsgcWebSocketClient can connect to WebSocket servers but can connect to plain TCP Servers too.
	URL Property
	Host, Port and Parameters

	TsgcWebSocketClient | Connections TIME_WAIT
	TsgcWebSocketClient | WebSocket Redirections
	Example

	TsgcWebSocketClient | Connect Secure Server
	TsgcWebSocketClient can connect to WebSocket servers using secure and none-secure connections.
	TLSOptions

	TsgcWebSocketClient | Certificates OpenSSL
	TsgcWebSocketClient | Certificates SChannel
	PFX Certificate
	Hash Certificate

	TsgcWebSocketClient | Client Send Text Message
	Send a Text Message
	Send a Text Message and Wait the Response

	TsgcWebSocketClient | Client Send Binary Message
	Send a Binary Message
	Send a Binary Message and Wait the Response

	TsgcWebSocketClient | Client Send a Text and Binary Message
	TsgcWebSocketClient | Receive Text Messages
	TsgcWebSocketClient | Receive Binary Messages
	TsgcWebSocketClient | Client Authentication
	Authorization Basic
	
	Authorization Token
	
	Authorization Session
	
	Authorization URL

	TsgcWebSocketClient | Client Exceptions
	OnError
	OnException

	TsgcWebSocketClient | WebSocket HandShake
	WebSocket protocol uses an HTTP HandShake to upgrade from HTTP Protocol to WebSocket protocol. This handshake is handled internally by TsgcWebSocket Client component, but you can add your custom HTTP headers if server requires some custom HTTP Headers info.

	TsgcWebSocketClient | Client Register Protocol
	TsgcWebSocketClient | Client Proxies
	TsgcWebSocketServer
	Most common uses
	Methods
	Properties

	TsgcWebSocketServer | Start Server
	Active Property
	Start / Stop methods

	TsgcWebSocketServer | Server Bindings
	TsgcWebSocketServer | Server Startup Shutdown
	OnStartup
	OnShutdown

	TsgcWebSocketServer | Server Keep Active
	WatchDog

	TsgcWebSocketServer | Server SSL
	Simple SSL Configuration
	SSL and None SSL

	TsgcWebSocketServer | Server Verify Certificate
	TsgcWebSocketServer | Server Keep Connections Alive
	TsgcWebSocketServer | Server Plain TCP
	TsgcWebSocketServer | Server Close Connection
	Disconnect
	Close
	DisconnectAll

	TsgcWebSocketServer | Server Authentication
	OnAuthentication
	OnUnknownAuthentication

	TsgcWebSocketServer | Server Send Text Message
	Send a Text Message
	
	Send a message to ALL connected clients

	TsgcWebSocketServer | Server Send Binary Message
	Send a Text Message
	
	Send a message to ALL connected clients

	TsgcWebSocketServer | Server Receive Text Message
	TsgcWebSocketServer | Server Receive Binary Message
	TsgcWebSocketServer | Server Read Headers from Client
	TsgcWebSocketHTTPServer
	Most common uses
	Methods
	
	Properties

	TsgcWebSocketHTTPServer | HTTP Server Requests
	OnBeforeCommand

	TsgcWebSocketHTTPServer | HTTP Dispatch Files
	TsgcWebSocketHTTPServer | HTTP/2 Server
	TsgcWebSocketHTTPServer | HTTP/2 Server Push
	Configure Server Push

	TsgcWebSocketHTTPServer | HTTP/2 Alternate Service
	TsgcWebSocketHTTPServer | HTTP/2 Server Threads
	HTTP 1.1
	HTTP 2.0
	TsgcWebSocketHTTPServer

	TsgcWSConnection
	Methods
	Properties

	Protocols
	Javascript Reference

	Protocols Javascript
	Open Connection
	Open Connection With Authentication
	Send Message
	Show Alert with Message Received
	Binary Message Received
	Binary (Header + Image) Message Received
	
	Show Alert OnConnect, OnDisconnect and OnError Events
	Close Connection
	Get Connection Status

	Protocol MQTT
	Features
	Components
	Most common uses

	TsgcWSPClient_MQTT
	Methods
	Events
	Properties

	TsgcWSPClient_MQTT | Client MQTT Connect
	Basic Usage
	Client Identifier
	Authentication

	TsgcWSPClient_MQTT | Connect MQTT Mosquitto
	MOSQUITTO MQTT WebSockets
	MOSQUITTO MQTT WebSockets TLS
	MOSQUITTO MQTT Plain TCP
	MOSQUITTO MQTT Plain TCP TLS

	TsgcWSPClient_MQTT | Client MQTT Sessions
	Clean Start
	Session

	TsgcWSPClient_MQTT | Client MQTT Version
	TsgcWSPClient_MQTT | MQTT Publish Subscribe
	Subscribe Topic
	Publish Message

	TsgcWSPClient_MQTT | MQTT Topics
	Topics
	WildCards
	Single Level: +
	Multi Level: #

	TsgcWSPClient_MQTT | MQTT Subscribe
	Subscribe QoS = At Least Once
	Subscribe MQTT 5.0

	TsgcWSPClient_MQTT | MQTT Publish Message
	Publish a simple message
	Publish QoS = At Least Once
	Publish Retained message

	TsgcWSPClient_MQTT | MQTT Receive Messages
	Read published Messages

	TsgcWSPClient_MQTT | Publish and Wait Response
	TsgcWSPClient_MQTT | MQTT Clear Retained Messages
	Protocol AppRTC
	Components

	TsgcWSPServer_AppRTC
	Parameters

	Protocol WebRTC
	Components
	Parameters
	Browser Test

	TsgcWSPServer_WebRTC
	Properties

	Protocol WebRTC Javascript
	Open Connection
	Open WebRTC Channel
	Close WebRTC channel

	Protocol Files
	Features
	Components
	Classes
	Most common uses

	TsgcWSPServer_Files
	Methods
	Properties
	Events

	TsgcWSPClient_Files
	Methods
	Properties
	Events

	TsgcWSMessageFile
	Properties

	Protocol Files | How Send Files To Server
	Protocol Files | How Send Files To Clients
	Protocol Files | How Send Big Files
	API Binance
	Properties
	Most common uses
	WebSocket Stream API
	
	User Data Stream API
	REST API
	Events

	Binance | Connect WebSocket API
	Binance | Subscribe WebSocket Channel
	Binance | Get Market Data
	Binance | Private REST API
	Binance | Trade Spot
	Configuration
	Place an Order

	Binance | Private Requests Time
	API Binance Futures
	Futures Contracts
	WebSocket Stream API
	User Data Stream API
	REST API
	Events

	API Binance Futures | Trade
	Configuration
	Place an Order

	API SocketIO
	Messages Types
	Properties
	Methods
	Events
	OnHTTPRequest
	OnAfterConnect

	WhatsApp Cloud API
	Features
	Most common uses
	Get Started
	Events

	WhatsApp Create App
	WhatsApp Phone Number Id
	WhatsApp Token
	WhatsApp Webhook
	Create Endpoint

	WhatsApp Security
	WhatsApp Send Messages
	Text Messages
	Image Messages
	Document Messages
	Audio Messages
	
	Video Messages
	Sticker Messages
	Location Messages
	Contact Messages

	WhatsApp Send Interactive Messages
	Interactive Message Specifications
	When You Should Use It
	Interactive List
	
	Reply Buttons

	WhatsApp Send Template Messages
	WhatsApp Receive Messages and Status Notifications
	Received Messages
	Sent Messages

	WhatsApp Send Files
	Image Messages
	Document Messages
	Audio Messages
	
	Video Messages
	Sticker Messages
	

	WhatsApp Download Media
	API Telegram
	Configuration
	Creating your Telegram Application
	Authorization
	Authorization Status
	Connection Status
	Main Methods
	Events
	Properties
	Full Code Sample

	Telegram | Send Telegram Message With Inline Buttons
	Telegram | Send Bot Message With Buttons
	Telegram | Send Telegram Message Bold
	Markdown Syntax

	Telegram | Chat not found as Bot
	Telegram | Sponsored Messages
	Displaying sponsored messages
	Get Sponsored Messages

	Telegram | Send Telegram Invoice Message
	Telegram | Get SuperGroup Members
	Telegram | Add Telegram Proxy
	Add Proxy
	Remove Proxy

	Telegram | Register Telegram User
	RTCMultiConnection
	Configuration
	Applications

	WebPush
	Components

	TsgcWSAPIServer_WebPush
	Configuration
	Properties
	Methods
	Events

	TsgcWebPush_Client
	Extensions
	Extensions | PerMessage-Deflate
	Max Window Bits
	No Context Take Over
	MemLevel

	Extensions | Deflate-Frame
	HTTP | OAuth2
	Components

	OAuth2 | TsgcHTTP_OAuth2_Client
	OnBeforeAuthorizeCode
	OnAfterAuthorizeCode
	OnErrorAuthorizeCode
	OnBeforeAccessToken
	OnAfterAccessToken
	OnErrorAccessToken
	OnBeforeRefreshToken
	OnAfterRefreshToken
	OnErrorRefreshToken
	OnHTTPResponse
	OAuth2 Code Example

	OAuth2 Client for Web Applications
	OAuth2 Client for Desktop Applications
	OAuth2 | TsgcHTTP_OAuth2_Server
	EndPoints
	Configuration
	Register App
	Delete App
	AddToken
	RemoveToken

	Most common uses
	Connections
	
	Events
	OnOAuth2BeforeRequest

	OnOAuth2BeforeDispatchPage
	OnOAuth2Authentication
	OnOAuth2AfterAccessToken
	OnOAuth2AfterRefreshToken
	OnOAuth2AfterValidateAccessToken
	OnOAuth2Unauthorized

	OAuth2 | Server Example
	OAuth2 | Customize Sign-In HTML
	OAuth2 | Server Endpoints
	OAuth2 | Register Apps
	OAuth2 | Recover Access Tokens
	OAuth2 | Server Authentication
	OAuth2 | None Authenticate URLs
	HTTP | JWT
	Algorithms supported
	Components

	JWT | TsgcHTTP_JWT_Client
	Configuration
	OpenSSL Options
	Custom Headers
	WebSocket Client and JWT
	
	HTTP Clients and JWT
	Expiration
	Create JWT Signature

	JWT | TsgcHTTP_JWT_Server
	Configuration
	Events

	Webauthn | Javascript Client
	WebAuthn Registration
	WebAuthn Authentication

	STUN
	Components

	STUN | TsgcSTUNClient
	Basic usage
	
	Most common uses
	
	Methods
	
	Properties
	Events

	STUN Client | UDP Retransmissions
	STUN Client | Long Term Credentials
	STUN | TsgcSTUNServer
	Basic usage
	Most common uses
	
	Properties
	Events

	STUN Server | Long-Term Credentials
	STUN Server | Alternate Server
	TURN
	How WebRTC sessions connect
	Components

	TURN | TsgcTURNClient
	Basic usage
	Most common uses
	
	TURN Relay Data
	
	Methods
	Properties
	Events

	TURN Client | Allocate IP Address
	TURN Client | Create Permissions
	TURN Client | Send Indication
	TURN Client | Channels
	TURN | TsgcTURNServer
	Basic usage
	Most common uses
	Properties
	Events

	TURN Server | Long Term Credentials
	TURN Server | Allocations
	Demos | Server Chat
	Start Server
	Events Configuration
	
	Dispatch HTTP Requests

	Client Chat
	Connect to Server
	Send Message To Server
	Receive Messages from Server

	Demos | Client
	Connect to Server
	Client Events

	Demos | Client MQTT
	Configuration
	MQTT Events

	Demos | Client SocketIO
	Configuration
	Send Messages
	Receive Messages

	Demos | Server Monitor
	Configuration

	Demos | Server Snapshots
	Configuration

	Demos | Client Snapshots
	Connect to Server

	Demos | Upload File
	Configuration

	Demos | Server Authentication
	Authentication

	Demos | KendoUI_Grid
	Configuration
	WebSockets Updates

	Demos | ServerSentEvents
	Demos | Server WebRTC
	Configuration
	Run in WebBrowser

	Demos | Server AppRTC
	Configuration
	Run in WebBrowser

	Demos | Telegram Client
	Configuration
	Send Telegram Messages
	Receive Telegram Messages

	WebSockets
	HTTP/2
	JSON
	WAMP
	WebRTC
	MQTT
	Server-Sent Events
	OAuth2
	JWT
	STUN
	TURN
	License
	Index

